... amplifier it knownn as...
|
|
- Κλεοπάτρα Ακρίδας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Faculty of Engineering Benha university Electrical EngDept Dr Hossam Labibb Zayed Microelectronics (E302) Final-Term Exam (June 203) Data: 2/5/203 Time: 3 Hours Answer the following questions: Q: Complete the following sentences: i The family of FET transistors may be divided into: and ii The MOSFET has a physical channel between the drain and source iii The high input resistance of a JFET is due to iv The non-inverting configuration has a gain greater than or equally v The detectors can be used to produce a square wave from a sine wave vi The feedback element in an integrator is vii The bandwidth of the ideal op amp is approximately equal to viii The input stage of every op amp is amplifier ix When same signals are applied to the inputs of a differential amplifier it knownn as x The input differential resistancee of BJT differential amplifier is equal to xi is a measure of a differential amplifier s ability to reject common mode signal Q2: (a) the NMOS transistors in the circuit of Fig () have t =, μ n C ox = 20 μa/ 2, λ = 0, and L =L 2 = L3 = μm Find the required values of gate width for each of Q, Q 2, and Q 3 to obtain the voltages and current values indicated (b) Find the input resistance of the circuit shown in Fig(2) Assuming ideal op amp, R = 0 kω, R 2 = 000 kω, and R 3 = 5 kω Q3: A common gate amplifier using an n-channel E-MOS transistor for whichh g m m=5ma/, shown in Fig(3), has R D =5KΩ, and R L =2 KΩ The amplifier is driven by voltage source having a 200ΩΩ resistance What are the input resistance and the overall voltage gain of the amplifier? f the circuits allow a bias current increase by a factor of 4 while maintaining linear operation, what do the input resistance and voltage gain become? Q4: The two op amps in the circuit shown in fig(4) are ideal Find v o,i x and i o o Q5: Find the overall voltage gain v o /v s and the differential input resistance of the amplifier shown in fig (5) Assuming β = 00 PTO Page / /2
2 Fig(2) Fig () Fig(4) Fig(3) Fig(5) BEST WSHESS Hossam Labibb Page 2/2
3 Faculty of Engineering Benha university Electrical EngDept Dr Hossam Labibb Zayed Microelectronics (E302) Final-Term Exam (June 203) Data: 2/5/203 Time: 3 Hours Model Answer ii Q: Complete the following sentences: i The family of FET transistors may be divided into: Junction FET (JFET) and Metal- Oxide-Semiconductor FET (MOSFET) The depletion MOSFET has a physical channel between the drain and source iii The high input resistance of a JFET is due to the reverse-biased or equally one gate source junction iv The non-inverting configuration has a gain greater than v The zero crossing detectors can be used to produce a square wave from a sine wave vi vii viii The feedback element in an integrator is a capacitor The bandwidth of the ideal op amp is approximately equal to The input stage of every op amp is a differential amplifier ix When same signals are applied to the inputs of a differential amplifier it known as common mode signal x The input (+ +β)2r e differential resistance of BJT differential amplifier is equal to xi CMRR is a signal measure of a differential amplifier s ability to reject common mode Page
4 > Q =s v t i DJ" DJ /0&7, /-3_ Q2: (a) the NMOS transistors in the circuit of Fig () have H,' =»HnC<>x=20 HA/2, K = 0, and L =L2= L3 = mm Find the required values of gate Width for each of Q] Q2 and if 20 HA Q3 to obtain the voltages and current values indicated E: Q ---~+w0 4 Kb XQL: Z0 +[ 5y _~?_,:*_; f Q: EQW Q >_, -/'*'/ /?-,= Q Q9 ' b xi 2? i(>s (,,- 45' = T Q55 ; ld»- 5 ==' M6 xi /<>>$J,<, ~t= -"5 = '5J f057 <> Qt M 6* E -XD = ]< _; CiS Hl7- JJKX/l O a4>" "'< 2 2 Q os,- H-) L<>~ 5) KL <_,,)>M,,Xt,J : 7W =z ' T J"v(a é Q W 7, ' X Z u_m M % gown CQ Z<> H9 3 j"" wt: 3; r '2 ]C7dL: ]G -5~,,=3»-~ D, 5 -- W5 -- "Lg D5'7 - i'>'z_"i 7':'3') w M_: 55 2 Q65? - qt _ w ~= ukufbii >-A ' ~» lr>, t Q Q lh K Km L<»;~A, xzn a~n~ ' *"" 'f7' U3 e w Li<=- L : L /<2 ' bé{ l ~_ 2 MM :» z: :'l06 EQTQ -5 ~(, -do =5 v3): 3 '9,3 _ '/ <;/J/L)» )<; _~, -r J:= -5-'> -<- i '>>3 :3 El-E Q3 Z<=) # Q8, y'p~ 2' K6, _,'9_2_-f" L : ---<-) T-5'_: L: kj6>3-vi) i ) $~/ 3=-um:-'%J
5 r E E > ' ' $2 9%?-J- *i <i? "fit 2( Fifi Tg /c;'5t0w~ca <% K g 7% C_ (C»'3K e-- ;s>--*» _ '6QJ 0'2 Av-*3 c~/a z : [0 Kn) R3 W ' ZL~= '<'Q 9 2}=5K' ' /M 3?L Jf L /x,>,>é>' } 7 =LTo~X Q2 ev,,9w,t if/e 7%, -5/ c»v'<~j Xx» 7 u/3, vhij _ --- Q 2?:»- *4 ' T 5 ' "'~ -L Er, F5 *3 " <> S- 'M: - P X] X 2 X '; Kin // jv,-9$: 3 <ll _:9*% 9 -= =, ~/* Z3-64--T QTLQ 0 6:,, ti ; f/o_,/ E Tzx }z F R t %= '/mkx +5?- -_-=>(z' > flow A :, 4/'M ii /l/l h E (D"-' '$7j 4 T? 2} -""- ;~ -»gb+ F TM=/Q k --E-?= /4» (_?2 P: '2 '75? "E Yaw _- *4" f 33 ch/<4} is c -93 ne u5~'*"'~ j : "" iv 3 --' E X_v~Q s )ull C_ J ()(T(/- 3 )? n; i< % / 2 : o,
6 '3 i Q3: A common gate amplier using an n- i oz: channel E-MOS transistor for which gm=5ma/, shown in Fig, has RDSKQ, RH Q: and RL=2 KQ The amplier is driven by W l~~<>_~»--~t~ voltage source having a ZOOQ resistance What are the input resistance and the pk f h f > overall voltage gain o t e amp i ier %, _ _ the circuits allow a bias current increase by a factor of 4 while maintaining linear operation, what do the input resistance 2" f ' * - and voltage gain become? Rm Solution: +4 on O6,_: Rs) :»~::l'f l % i 0 Ru '2 at EX», = 5 Kgil ",,,,,, - '= "- 5' * ';» 7 Q» C ~ E - ~ *<t>~» - /l l Cr» "W",, '', t )r S C Q,/ Q/~C4 OK $QJ/("3 ~Q,/*5 ;,_l)_q ->t_c_ To _c - ~/U X ii L ~L La -$ 5 2 K,_,_,_ A ES J 7- ~= L j, 4P~4" ' _ so 7 v / xv ii, "2 _ i_- L,_ / 6 A r» /v K;l/Ru) ' U9 5 Kiizmn _ Mp okgwag R5 A, i,/3 + /55& 3» "g,(z_s,: "" /lg Q/,_ :,_~ 8% J5, L/ - 0 w '2 -*,~ ~-~--_;i ~ R c~>,q?_, ) /it//q <=* M»» K =55»-,/4 : _ -_/<» 9),»z 32 t_t_,l_i_,,,,,,,_m -l< t _* wt we -_A,l»~<} g5; / l~'r' ~, ~?> + 2 ~;
7 E "' z 6 5 L _, F K A M; L :, C; '") /gi ; _,,,» 4 L W _ A) 73 : )c)3 /'7 _ -~ / v /U -T&;~ ~" v? -,- -*0, <sr $5 ':_,-»-:_ A) OE 7 " ed A r:r+ l D " 2 KT»_D c_»gfa T y,v~(/ : '~_T:; :)< : > va[/ i Ty ~ ) E6 P ( ("0'-5 - :C 73/ L -:49 El-»*'T, : L4 ~g _; Z ' ( *" *@~:*?%@;:z?6l:q ;zg2 { ; i *~> * "~f'~=-~/~»/i»~, - ~- :< = ~--M» :,, M, Q : (,S/u O 4/ > - Q/Y/,J 7? v"@ ic - ~""" )/Z5 Q 5 C5 -, ~_} i _ Qih//» UK),/7 Lg j}/ A'oK-:»
8 to ' Two U)? AM/D5 >H/ ( T%e Q}f(,Q,3} ghqw/ '---> T Me,*J J ;;4, " '" W [,6 / /0) LX c»4_ 00 ): it ér 'Ql got!/d Ot/" L5 W4 <9 v M; fer O ) Av-»3Q) _ _:7 i ; / _-_ Q-D -( L,-= Lz>:~> -6v i7, / W -our h, - _Q_ -L?-;L9 JP2;-= ;y:_'~'; - -=7 L) :?_'2_ ; 03,// :6! Q) /A / / J ":37 /' _ / E 3 U -Q J - - " /: _ 0 cj A < ~ ' * - ' -'6"-L _3" lrl- _) L L/Z0 _/v»v'_'/ )0» /'5» (Jr "'5 =47"? U = - _ <>v Of); D ; - :,"f; 4/9: am ; /5 : LX Mm +0-SK : gw/ L- 'c"_; 7 L-5' xi M»»- /'5; L,'a-(~L_)g :$L'=: ;5' L-')< / 3'"*' W»;[a/ - /" _q/j _- O D ~» - -'? LQ _y/ : - o~3- ---fm K _' U ' SW O / - ) <> Q 4 /* 3 - ~ = K L :7 M 5 Y<b K),,/
9 /_,-_//, O-?»/ ro~/o QL/QKAK Q 9/ )OZ/S O /K CJ,~A;b7/Lp/Fviw u) "7f7/5 / l )7/<--M< of -:Z3c,,_/L/7 [xf) Sj~/( L/< 6 v <;,@b»m ;;;; Q wl/lku/-:'zi) 5'3 0% ~ ol i /,t,_;- K5 T3-ji - Kg;, i '&'*l> 7(*;,l ~* /: r F 2 Tc; (KY5: W: T, -; ',;_p /-~~ =» '6 rl tg Tr -03- ~~ - ---~ ~ 20 (Y7 T L 2 L> 0 ;_ (6 0 M5 r S :_ :~ >0Q9~ : KS Q aw (d7<+)3)2)/(54 /2) _ _- "6 M Y G3 QYQMA Q-H@~= Q'l " _~> % %) rgo i+k d_l_ 9 /5 A//5 "7/5 /0 FC 2 L/ "4-Q_ : >" ~-~_-----» - -- ~ -- : 6 Z)Z f»+ Z}/e "Z-H o+zi4, 5 //6: M5 E6 < (E36- > ZS '/5? ( /tjl K Q - ">2_ 77 E 737? : r " L "*> v ~ '5',/ '5 7'=L > -2 L{o~ _/-~ ~>
Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET)
Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET) Χρησιµοποιούνται σε κλίµακα υψηλής ολοκλήρωσης VLSI Χρησιµοποιούνται και σε αναλογικούς ενισχυτές καθώς και στο στάδιο εξόδου ενισχυτών Ισχύος-
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)
hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.
Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions xercise Solutions X5. ( β ).0 β 4. β 40. 0.0085 hapter 5 β 40. α 0.999 β 4..0 0.0085.95 X5. O 00 O n 3
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
IXBH42N170 IXBT42N170
High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor IXBH42N17 IXBT42N17 S 9 = 1 = 42A (sat) 2.8V Symbol Test Conditions Maximum Ratings TO-247 (IXBH) S = 25 C to 15 C 17 V V CGR = 25
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Lecture 210 1 Stage Frequency Response (1/10/02) Page 210-1
Lecture 210 1 Stage Frequency Response (1/10/02) Page 2101 LECTURE 210 DC ANALYSIS OF THE 741 OP AMP (READING: GHLM 454462) Objective The objective of this presentation is to: 1.) Identify the devices,
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Single Stage Amplifiers
CONTENTS Preface to Fourth Edition... (vii) Preface to Third Edition... (ix) Symbols...(xxiii) Brief History of Electronics...(xxvii) CHAPTER 1 Single Stage Amplifiers 1.1 Classification of Amplifiers...
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
ITU-R BT ITU-R BT ( ) ITU-T J.61 (
ITU-R BT.439- ITU-R BT.439- (26-2). ( ( ( ITU-T J.6 ( ITU-T J.6 ( ( 2 2 2 3 ITU-R BT.439-2 4 3 4 K : 5. ITU-R BT.24 :. ITU-T J.6. : T u ( ) () (S + L = M) :A :B :C : D :E :F :G :H :J :K :L :M :S :Tsy :Tlb
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 1 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών
AO Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης Επανάληψη μέρος 1 ο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 2 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών
AO Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης Επανάληψη μέρος 2 ο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises
Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises Page 11 CHAPTER 1 V LSB 5.1V 10 bits 5.1V 104bits 5.00 mv V 5.1V MSB.560V 1100010001 9 + 8 + 4 + 0 785 10 V O 786 5.00mV or
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
SCOPE OF ACCREDITATION TO ISO 17025:2005
SCOPE OF ACCREDITATION TO ISO 17025:2005 TFF CORPORATION TEKTRONIX COMPANY 1-14-1 Midorigaoka, Naka-gun, Ninomiya-machi, Kanagawa Pref. 259-0132 JAPAN Hideki Yuyama Phone: 81 463 70 5634 CALIBRATION Valid
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Αναερόβια Φυσική Κατάσταση
Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
MULTILAYER CHIP VARISTOR JMV S & E Series: (SMD Surge Protection)
INTRODUCTION Metal Oxide based chip varistors (JMVs) are used for transient suppression. JMVs have non-linear - behavior, which is similar to that of Zener Diode. Each grain in JMV exhibits small p-n junction
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts
/ / σ/σ σ/σ θ θ θ θ y 1 0.75 0.5 0.25 0 0 0.5 1 1.5 2 θ θ θ x θ θ Φ θ Φ θ Φ π θ /Φ γφ /θ σ θ π θ Φ θ θ Φ θ θ θ θ σ θ / Φ θ θ / Φ / θ / θ Normalized import share: (Xni / Xn) / (XII / XI) 1 0.1 0.01 0.001
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Εισαγωγή στις κρυσταλλολυχνίες (Transistors)
Εισαγωγή στις κρυσταλλολυχνίες (Transistors) Dr. Petros Panayi Διακόπτες Ένας διακόπτης είναι μια συσκευή που αλλάζει τη ροή ενός κυκλώματος. Το πρότυπο είναι μια μηχανική συσκευή (παραδείγματος χάριν
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Design and Fabrication of Water Heater with Electromagnetic Induction Heating
U Kamphaengsean Acad. J. Vol. 7, No. 2, 2009, Pages 48-60 ก 7 2 2552 ก ก กก ก Design and Fabrication of Water Heater with Electromagnetic Induction Heating 1* Geerapong Srivichai 1* ABSTRACT The purpose
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική
Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 5: Τρανζίστορ Επίδρασης Πεδίου (MOS-FET, J-FET) Δρ. Δημήτριος Γουστουρίδης Τμήμα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
i ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΠΑΡΑΓΩΓΗΣ ΜΕΤΑΦΟΡΑΣ ΔΙΑΝΟΜΗΣ ΚΑΙ ΧΡΗΣΙΜΟΠΟΙΗΣΕΩΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
First Sensor Quad APD Data Sheet Part Description QA TO Order #
Responsivity (/W) First Sensor Quad PD Data Sheet Features Description pplication Pulsed 16 nm laser detection RoHS 211/65/EU Light source positioning Laser alignment ø mm total active area Segmented in
1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC
Metallized Polyester Film Capacitor Type: ECQE(F) Non-inductive construction using metallized Polyester film with flame retardant epoxy resin coating Features Self-healing property Excellent electrical
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Metal thin film chip resistor networks
Metal thin film chip resistor networks AEC-Q200 Compliant Features Relative resistance and relative TCR definable among multiple resistors within package. Relative resistance : ±%, relative TCR: ±1ppm/
Lecture 23. Impedance, Resonance in R-C-L Circuits. Preparation for the Final Exam
Lecture 3. Impedance, Resonance in R-C-L Circuits (a) Start earlier! Preparation for the Final Exam (b) Review the concepts (lectures + textbook) and prepare your equation sheet. Think how you can use
555 TIMER APPLICATIONS AND VOLTAGE REGULATORS
555 TIMER APPLICATIONS AND VOLTAGE REGULATORS OBJECTIVE The purpose of the experiment is to design and experimentally verify astable and monostable multivibrators using 555 timers; to design variable voltage
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
RT-178 / ARC-27 All schematics
RT / ARC All schematics J I K P0 L A B M C P N D O E H G F P0 RT /ARC F L P0 A C D G J M P S B E K R H N SQ OFF GUARD REC MOD I k I B E i DRVR I g FINAL I g I ant SQ OFF MAIN REC SENS PHONE METER MIC SENS
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
SIEMENS Squirrel Cage Induction Standard Three-phase Motors
- SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque
NMBTC.COM /
Common Common Vibration Test:... Conforms to JIS C 60068-2-6, Amplitude: 1.5mm, Frequency 10 to 55 Hz, 1 hour in each of the X, Y and Z directions. Shock Test:...Conforms to JIS C 60068-2-27, Acceleration
MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-
-; Rev ; / EVALUATION KIT AVAILABLE µ µ PART ESD TEMP. RANGE - C to +5 C PPACKAGE SO TOP VIEW V EE V CC SENSE+ SENSE- R t R t R t R t MAX SENSE OUT SENSE+ SENSE- N.C. SHDN N.C. 3 5 R f R G R f 3 VDSL TRANSFORMER
Aluminum Electrolytic Capacitors
Aluminum Electrolytic Capacitors Snap-In, Mini., 105 C, High Ripple APS TS-NH ECE-S (G) Series: TS-NH Features Long life: 105 C 2,000 hours; high ripple current handling ability Wide CV value range (47
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report
LM-80 Test Report Approved Method: Measuring Lumen Maintenance of LED Light Sources Project Number: KILT1212-U00216 Date: September 17 th, 2013 Requested by: Dongbu LED Co., Ltd 90-1, Bongmyeong-Ri, Namsa-Myeon,
Metal Oxide Varistors (MOV) Data Sheet
Φ SERIES Metal Oxide Varistors (MOV) Data Sheet Features Wide operating voltage (V ma ) range from 8V to 0V Fast responding to transient over-voltage Large absorbing transient energy capability Low clamping
«Αναθεώρηση των FET Transistor»
ΗΥ335: Προχωρημένη Ηλεκτρονική «Αναθεώρηση των FET Transistor» Φώτης Πλέσσας fplessas@inf.uth.gr ΤΗΜΜΥ Δομή FET Χαρακτηριστικά Λειτουργία Πόλωση Μοντέλα και υλοποιήσεις μικρού σήματος για FET ΤΗΜΜΥ - 2
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.
Surface Mount Monolithic Amplifiers High Directivity, 50Ω, 0.5 to 5.9 GHz Features 3V & 5V operation micro-miniature size.1"x.1" no external biasing circuit required internal DC blocking at RF input &
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
2. Chemical Thermodynamics and Energetics - I
. Chemical Thermodynamics and Energetics - I 1. Given : Initial Volume ( = 5L dm 3 Final Volume (V = 10L dm 3 ext = 304 cm of Hg Work done W = ext V ext = 304 cm of Hg = 304 atm [... 76cm of Hg = 1 atm]
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.