LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, FALL 2012 Lecture 08. Fundamentals of Lidar Remote Sensing (4) Solutions for Lidar Equations
|
|
- Αγάθη Παπαδόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Lecture 08. Fundamentals of Lidar Remote Sensing (4) Solutions for Lidar Equations Lidar Classification with Physical Processes Solution for scattering form lidar equation Solution for Raman lidar equation Solution for differential absorption lidar equation Solution for fluorescence form lidar equation Solution for resonance fluorescence lidar Solution for Rayleigh and Mie lidar in middle atmos Summary 1
2 Review Lidar Equation Lidar equation is to link the expected lidar returns (N S ) to the lidar parameters (both transmitter and receiver), transmission through medium, physical interactions between light and objects, and background/noise conditions, etc. Keep in mind the big picture of a lidar system - " "Radiation source " "Radiation propagation in the medium " "Interaction of radiation with the objects " "Signal propagation in the medium " "Photons are collected, filtered and detected Can you derive a lidar equation by yourself? 2
3 Physical Process Elastic Scattering by erosols and Clouds bsorption by toms and Molecules Inelastic Scattering Elastic Scattering By ir Molecules Resonance Scattering/ Fluorescence By toms Doppler Shift Device Mie Lidar DIL Raman Lidar Rayleigh Lidar Resonance Fluorescence Lidar Wind Lidar Objective erosols, Clouds: Geometry, Thickness Gaseous Pollutants Ozone Humidity (H 2 O) erosols, Clouds: Optical Density Temperature in Lower tmosphere Stratos & Mesos Density & Temp Temperature, Wind Density, Clouds in Mid-Upper tmos Wind, Turbulence Laser Induced Fluorescence Fluorescence Lidar Marine, Vegetation Reflection from Surfaces Target Lidar Laser ltimeter Topography, Target 3
4 Parameters in General Lidar Equation ssumptions: independent and single scattering N S (λ,r) = P L(λ L )Δt β(λ,λ L,θ,R)ΔR hc λ L [ ] N S (R) - expected received photon number from a distance R P L - transmitted laser power, λ L - laser wavelength Δt - integration time, h - Planck s constant, c - light speed β(r) - volume scatter coefficient at distance R for angle θ, ΔR - thickness of the range bin - area of receiver, T(R) - one way transmission of the light from laser source to distance R or from distance R to the receiver, η - system optical efficiency, G(R) - geometrical factor of the system, N B - background and detector noise photon counts. [ ] [ η(λ,λ L )G(R)] + N B R 2 T(λ L,R)T(λ,R) (8.1) 4
5 Review Lidar Equation General lidar equation with angular scattering coefficient N S (λ,r) = N L (λ L ) [ β(λ,λ L,θ,R)ΔR] N S (λ,r) = N L (λ L ) [ β T (λ,λ L,R)ΔR] R 2 T(λ L,R)T(λ,R) [ ] η(λ,λ L )G(R) [ ] + N B General lidar equation with total scattering coefficient 4πR 2 T(λ L,R)T(λ,R) [ ] η(λ,λ L )G(R) [ ] + N B General lidar equation in angular scattering coefficient β and extinction coefficient α form (4.2) (4.12) N S (λ,r) = P L(λ L )Δt [ β(λ,λ L,θ,R)ΔR] hc λ L R 2 R exp α(λ L, r ʹ )dr ʹ 0 exp R 0 α(λ, r ʹ )d r ʹ η(λ,λ L )G(R) (4.17) [ ] + N B 5
6 Specific Lidar Equations Lidar equation for Rayleigh lidar N S (λ,r) = P L (λ)δt ( β(λ,r)δr) hc λ R 2 T 2 (λ,r)( η(λ)g(r) )+ N B (5.17) Lidar equation for resonance fluorescence lidar N S (λ,r) = P L (λ)δt ( σ eff (λ,r)n c (z)r B (λ)δr) hc λ 4πR 2 T 2 a (λ,r)t 2 c (λ,r) Lidar equation for differential absorption lidar ( ) η(λ)g(r) ( )+ N B (4.14) off N S (λ on,r) = off NL (λ on ) [ off βsca (λ on,r)δr ] z off R 2 exp 2 α (λ on, r ʹ )dr ʹ 0 z off exp 2 σ abs (λ on, r ʹ )nc ( r ʹ )dr ʹ [ 0 η(λ off on )G(R) ] + N B ( ) 6
7 Elastic Scattering Lidar: Rayleigh Lidar and Mie Lidar Strong Mie Scattering above Rayleigh Background Chapter 3 in our textbook 7
8 Solution for Scattering Form Lidar Equation Scattering form lidar equation N S (λ,r) = P L(λ L )Δt β(λ,λ L,R)ΔR hc λ L [ ] Solution for scattering form lidar equation R 2 T(λ L,R)T(λ,R) [ ] [ η(λ,λ L )G(R)] + N B (8.2) β(λ,λ L,R) = P L (λ L )Δt hc λ L N S (λ,r) N B ΔR R 2 T(λ L,R)T(λ,R) [ ][ η(λ,λ L )G(R)] (8.3) 8
9 Inelastic Scattering Lidar: Raman Lidar Raman spectra for O 2, N 2 and H 2 O under 355nm laser wavelength H 2 O in atmosphere 9
10 Solution for Raman Lidar Equation Raman lidar equations for gas of interest (8.4) and reference gas (8.5) P cra (R,λ cra ) = E oη λcra R 2 O(R,λ cra )β cra (R,λ 0,λ cra )exp R [ α(r,λ 0 ) +α(r,λ cra ) 0 ]dr Solution for Raman lidar equations { } { } P RefRa (R,λ RefRa ) = E oη λrefra R 2 O(R,λ RefRa )β RefRa (R,λ 0,λ RefRa )exp R [ α(r,λ 0 ) +α(r,λ RefRa ) 0 ]dr P cra (R,λ cra ) P RefRa (R,λ RefRa ) = η λ cra η λrefra N cra (R) dσ cra dω (π,λ 0,λ cra ) N RefRa (R) dσ RefRa dω (π,λ 0,λ RefRa ) Mixing Ratio = N cra(r) N RefRa (R) (8.4) (8.5) exp{ R α(r,λ cra )dr} 0 exp{ R α(r,λ RefRa )dr} 0 (8.6) 10
11 Differential bsorption Lidar (DIL) This is a nice schematic, but in reality, light cannot turn as drawn! Collis and Russell in Laser monitoring of the atmosphere 11
12 Differential bsorption/scattering Form For the laser with wavelength λ on on the molecular absorption line [ ] N S (λ on,r) = N L (λ on ) β sca (λ on,r)δr R 2 exp 2 σ abs (λ on, r ʹ )n c ( r ʹ )dr ʹ exp[ 2 R α (λ on, r ʹ 0 )dr ʹ ] [ R ] 0 η(λ on )G(R) [ ] + N B (8.7) For the laser with wavelength λ off off the molecular absorption line [ ] N S (λ off,r) = N L (λ off ) β sca (λ off,r)δr R 2 exp 2 σ abs (λ off, r ʹ )n c ( r ʹ )dr ʹ exp[ 2 R α (λ off, r ʹ 0 )dr ʹ ] [ R ] 0 η(λ off )G(R) [ ] + N B (8.8) 12
13 Differential bsorption/scattering Form The ratio of photon counts from these two channels is a function of the differential absorption and scattering: N S (λ on,r) N B = N L(λ on )β sca (λ on,r) N S (λ off,r) N B N L (λ off )β sca (λ off,r) R 0 η(λ on ) η(λ off ) { } exp 2 [ α (λ on, r ʹ ) α (λ off, r ʹ ) ]d r ʹ (8.9) { } R 0 exp 2 [ σ abs (λ on, r ʹ ) σ abs (λ off, r ʹ ) ]n c ( r ʹ )dr ʹ Δσ = σ abs (λ on ) σ abs (λ off ) (8.10) 13
14 Solution for Differential bsorption Lidar Equation Solution for differential absorption lidar equation n c (R) = 1 2Δσ d dr ln N L(λ on )β sca (λ on,r) N L (λ off )β sca (λ off,r) η(λ on ) η(λ off ) ln N S(λ on,r) N B N S (λ off,r) N B R 2 [ α (λ on, r ʹ ) α (λ off, r ʹ )]dr ʹ 0 (8.11) Δσ = σ abs (λ on ) σ abs (λ off ) (8.10) 14
15 Resonance Fluorescence Lidar Resonance Fluorescence Profile on an Fe meteor trail measured by lidar [Chu et al., 2000] 15
16 Solution for Fluorescence Form Lidar Equation Fluorescence form lidar equation N S (λ,r) = P L (λ)δt ( σ eff (λ,r)n c (R)R B (λ)δr) hc λ 4πR 2 T 2 a (λ,r)t 2 c (λ,r) Solution for fluorescence form lidar equation ( ) η(λ)g(r) ( ) + N B (8.12) n c (R) = P L (λ)δt hc λ N S (λ,r) N B ( σ eff (λ)r B (λ)δr) 4πR 2 η(λ)t 2 a (λ,r)t 2 c (λ,r)g(r) ( ) (8.13) 16
17 Solution for Resonance Fluorescence Lidar Equation Resonance fluorescence and Rayleigh lidar equations N S (λ,z) = P L(λ)Δt ( σ eff (λ,z)n c (z)r B (λ)δz) hc λ N R (λ,z R ) = P L (λ)δt σ R (π,λ)n R (z R )Δz hc λ ( ) Rayleigh normalization n c (z) n R (z R ) = N S(λ,z) N B N R (λ,z R ) N B z 2 z R 2 4πz 2 z R 2 4πσ R (π,λ) σ eff (λ,z)r B (λ) Solution for resonance fluorescence 2 2 T a (λ)tc (λ,z) ( ) η(λ)g(z) ( )+ N B T a 2 (λ,z R )( η(λ)g(z R ))+ N B 2 T a (λ,zr )G(z R ) 2 2 T a (λ,z)tc (λ,z)g(z) (8.12) (8.14) (8.15) n c (z) = n R (z R ) N S (λ,z) N B N R (λ,z R ) N B 2 z 4πσ R (π,λ) R σ eff (λ,z)r B (λ) 1 2 T c (λ,z) z 2 (8.16) 17
18 Rayleigh and Mie Lidar for Middle tmosphere Detection ltitude (km) [Chu et al., GRL, 2001] PMC PMC Courtesy of Pekka Parviainen Polar mesospheric clouds (PMC), also noctilucent clouds (NLC), are thin scattering layers of nanometer-sized water ice particles, occurring around km in the high-latitude summer mesopause region Volume backscatter coefficient β (10 9 m -1 sr -1 ) Polar mesospheric clouds Noctilucent clouds Chapter 5 in our textbook 18
19 Solution for Rayleigh and Mie Lidars Rayleigh and Mie (middle atmos) lidar equations N S (λ,z) = P L(λ)Δt 2 ( β R (z) + β aerosol (z))δz hc λ z 2 T a (λ,z) ( η(λ)g(z) )+ N B N R (λ,z R ) = P L (λ)δt ( β R (z R )Δz) hc λ 2 z T a 2 (λ,z R )( η(λ)g(z R ))+ N B R Rayleigh normalization β R (z) + β aerosol (z) β R (z R ) = N S (λ,z) N B N R (λ,z R ) N B z 2 2 z T 2 a (λ,zr )G(z R ) 2 R T a (λ,z)g(z) (8.17) (8.18) (8.19) For Rayleigh scattering at z and z R β R (z) β R (z R ) = σ R (z)n atm (z) σ R (z R )n atm (z R ) = n atm (z) (8.20) n atm (z R ) 19
20 Solution (Continued) Solution for Mie scattering in middle atmosphere N β aerosol (z) = β R (z R ) S (λ,z) N B z 2 N R (λ,z R ) N 2 B z n atm (z) R n atm (z R ) (8.21) β R (λ,z R,π) = P(z R ) T(z R ) 1 λ ( m 1 sr 1 ) (5.14) Rayleigh normalization when aerosols are not present β R (z) β R (z R ) = N S (λ,z) N B N R (λ,z R ) N B z 2 2 z T 2 a (λ,zr )G(z R ) 2 R T a (λ,z)g(z) (8.22) Solution for relative number density in Rayleigh lidar RND(z) = n atm (z) n atm (z R ) = β R (z) β R (z R ) = N S (λ,z) N B N R (λ,z R ) N B z 2 z R 2 (8.23) 20
21 Rayleigh Backscatter Cross Section It is common in lidar field to calculate the Rayleigh backscatter cross section using the following equation dσ m (λ) dω = λ ( m 2 sr 1 ) (5.16) where λ is the wavelength in nm. The Rayleigh backscatter cross section can also be estimated from the Rayleigh backscatter coefficient β Rayleigh (λ,z,θ = π) = P(z) T(z) 1 dσ m (λ) dω = β Rayleigh (λ,z,π) n atmos (z) λ ( m 2 sr 1 ) ( m 1 sr 1 ) where λ is the wavelength in meter, P in mbar, T in Kelvin. (8.24) (5.14) 21
22 Summary Physical processes in the interaction between radiation and objects classify lidars into different kinds, each possessing unique features and lidar equations along with certain applications. Solutions of lidar equations can be obtained by solving the lidar equations directly if all the lidar parameters and atmosphere conditions are well known. Solutions for three forms of lidar equations are shown: scattering form, fluorescence form, and differential absorption form, along with a few specific lidar types. However, system parameters and atmosphere conditions may vary frequently and are NOT well known to experimenters. good solution is to perform Rayleigh normalization to cancel out most of the system and atmosphere parameters so that the essential and known parts can be solved. 22
Lecture 44. Constituent Lidar (4) Multi-wavelength Raman DIAL & DOAS and MAX-DOAS
LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 21 Lecture 44. Constituent Lidar (4) Multi-wavelength Raman DIAL & DOAS and MAX-DOAS q Review conventional DIAL q Raman DIAL for Ozone Measurement
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]
d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
DuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG
Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
DuPont Suva 95 Refrigerant
Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
for fracture orientation and fracture density on physical model data
AVAZ inversion for fracture orientation and fracture density on physical model data Faranak Mahmoudian Gary Margrave CREWES Tech talk, February 0 th, 0 Objective Inversion of prestack PP amplitudes (different
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:
UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΜΖΜΑ
ΠΣΤΧΛΑΚΘ ΕΡΓΑΛΑ ΜΕΣΡΘΕΛ ΟΠΣΛΚΟΤ ΒΑΚΟΤ ΑΣΜΟΦΑΛΡΑ ΜΕ ΘΛΛΑΚΟ ΦΩΣΟΜΕΣΡΟ ΕΚΟ
ln(f( )) ΑΡΛΣΟΣΕΛΕΛΟ ΠΑΝΕΠΛΣΘΜΛΟ ΚΕΑΛΟΝΛΚΘ ΣΜΘΜΑ ΦΤΛΚΘ ΠΣΤΧΛΑΚΘ ΕΡΓΑΛΑ ΜΕΣΡΘΕΛ ΟΠΣΛΚΟΤ ΒΑΚΟΤ ΑΣΜΟΦΑΛΡΑ ΜΕ ΘΛΛΑΚΟ ΦΩΣΟΜΕΣΡΟ ΕΚΟ 4,6 4,4 4,2 4,0 3,8 3,6 3,4 3,2 3,0 2,8 2,6 2,4 2,2 2,0 1,8 1,6 1 2 3 4 5
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
d I λ = k λ ρ I λ ds+ j λ ρ ds Σκέδαση στην Ατμόσφαιρα Θεωρητική προσέγγιση - Γενικές ανακοινώσεις
Γενικές ανακοινώσεις Σκέδαση στην Ατμόσφαιρα Θεωρητική προσέγγιση - Τρίτη 4 Δεκεμβρίου: Μάθημα «Σκέδαση» Τρίτη 11 Δεκεμβρίου: Μάθημα «Δορυφορική τηλεπισκόπηση της υπέρυθρης ακτινοβολίας» Τρίτη 18 Δεκεμβρίου:
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΧΗΜΕΙΑΣ & ΒΙΟΧΗΜΙΚΩΝ ΙΕΡΓΑΣΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.
Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.
Artiste Picasso 9.1. Total Lumen Output: lm. Peak: cd 6862 K CRI: Lumen/Watt. Date: 4/27/2018
Color Temperature: 62 K Total Lumen Output: 21194 lm Light Quality: CRI:.7 Light Efficiency: 27 Lumen/Watt Peak: 1128539 cd Power: 793 W x: 0.308 y: 0.320 Test: Narrow Date: 4/27/2018 0 Beam Angle 165
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα
ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear
2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F 441.6 441.6 441.6 441.6 30 50 70 100 TEM00 TEM00 TEM00 TEM00 BEAM DIAMETER ( 1/e2) 1.1 1.1 1.2 1.2 0.5 0.5 0.5 0.4 RATIO
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ & ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.
ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗ ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ. ιπλωµατική Εργασία. της ΘΕΟ ΟΣΟΠΟΥΛΟΥ ΕΛΕΝΗΣ ΜΣ:5411
Παρακίνηση εργαζοµένων: Ο ρόλος του ηγέτη στην παρακίνηση των εργαζοµένων. ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗ ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ιπλωµατική Εργασία της ΘΕΟ ΟΣΟΠΟΥΛΟΥ ΕΛΕΝΗΣ ΜΣ:5411 ΠΑΡΑΚΙΝΗΣΗ
Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου
Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Quick Installation Guide
A Installation 1 F H B E C D G 2 www.trust.com/17528/faq Quick Installation Guide C C D Freewave Wireless Audio Set 17528/ 17529 D Installation Configuration Windows XP 4 5 8 Windows 7/ Vista 6 7 9 10
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations