Unit 3 Lecture Number 16

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Unit 3 Lecture Number 16"

Transcript

1 Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr 6 Eltron Gas n Hartr Fo and Random Phas Aroxmatons Frst, a short rvst to Hartr Fo Formalsm, but from a dffrnt rout. PCD STTACS Unt 3 Eltron Gas n HF & RPA

2 W shall sulmnt and omlmnt that dsusson to qu ourslvs to buld th mahnry to s how th mthods of nd quantzaton dvlod n Unt an b xtndd to addrss th ltron COULOMB orrlatons that ar lft out of th HF mthod. PCD STTACS Unt 3 Eltron Gas n HF & RPA

3 H H + H f ( q ) v( q, qj) + j j Z f( q) r Many-Eltron Hamltonan n th notaton of FIRST QUATIZATIO H f j + j v l j j l j j l j v l dq dq φ q φ q v q, q φ q φ q HF SCF Mthod: STAP Unt 4 L Rfrnhtt:// Many-Eltron Hamltonan n th notaton of SECOD QUATIZATIO * * j l PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

4 Ψ () t t () f j j+ j j v l l Ψ t j j l H f j + j v l j j l j j l Fttr & Wala (.8); Rams (.3;4) ot: Ordr j v l dq dq ψ q ψ q v q, q ψ q ψ q * * j l Th ordr dos not mattr for Bosons; for Frmons, t dos mattr. For ltrons, ψ ψ χ ζ ( q) ( r) sn orbtal χ ( ζ) s thr or PCD STTACS Unt 3 Eltron Gas n HF & RPA α for ms + β for ms 4

5 Fld orators dfnton ψ Lnar ombnaton of raton & dstruton orators ( q) : sngl artl wavfuntons.. sn-orbtals nd, : quantzaton dstruton & raton orators { }, ms or { n,,, } wth l j mj m s + or Fr ltron Hydrogn Potntal Sn-orbtals ψ ψ χ ζ ( q) ( r) whr χ( ζ ) or χ ζ for ms + or m s PCD STTACS Unt 3 Eltron Gas n HF & RPA ψˆ ( q) ψˆ ( q) ψ * ψ adjont sn orbtals ψ * ψ * χ ζ q q ( q) ( r) [ ] or [ ] χ ζ χ ζ for ms + or m s 5

6 H Φ E Φ -ltron Shrodngr quaton Φ ( q, q,.., q ) Φ ( q, q,.., q ) ( ) n, n,.., n,.., n a, a,.., a Ordrd st: a < a <.. < a <.. < a <.. < a j ( ) n, n,.., n,.., n Slatr dtrmnantal wavfunton ( q, q,.., q ) Φ! ψ ψ ( q ).... ψ ( q ) a a.... ( q j ).. ψ.. ( q ).... ψ ( q ) a a a * ψ ( q) ψ j q dx δj ( ') ( ') ( ') * ψ ψ δ δ δ q q q q r r ζζ PCD STTACS Unt 3 Eltron Gas n HF & RPA Orthonormal omlt st of on-ltron sn-orbtals ' 6

7 Fld Orators ψˆ ( q) ψˆ ( q) ψ * Mult-omonnt sn-orbtal wavfunton (j+) numbr of omonnts ψ q ψ Fld Orator ψˆ α( q) ψ α ( q) ψˆ ( q) ψ ( q) α,,3,...,( j + ) ψˆ ˆ α q, ψ ( q' ) β δαβδ ( q q' ) ψˆ ˆ α q ψβ ( q ) Frm + Bos - Fld orators q Inluson of sn: mult-omonnt sn-orbtals ± ( q) In gnral, for sn j : α,,...( j+ ) j : ntgr for Bosons, half-ntgr for Frmons ψ ψ ψ ψ ψ, α, α, α 3, α..., α j+ ( q) ( q) ( q) ( q) ( q) * α α, ' ( q) ψˆ ( q ) ψ ˆ, α β ' ± ± PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

8 Fld Orator ψˆ ( q) ψ H f j + j v l α α * α q ψ α ( q) ψˆ α,,3,...,( j + ) q, δ r, σ rσ ± r, σ rσ rσ rσ ± rr σσ ± j j l j j l δ ψ ψ ( q) ψ α ms + α ms sn : Hamltonan n trms of sngl artl raton and dstruton orators ψˆ ˆ α q, ψ ( q' ) β δαβδ ( q q' ) ± ψˆ ( q ) ˆ ( q ) α ψ β ψˆ ( q), ψˆ ( q' ) Hamltonan n trms of fld orators α β ±, ', α, α H ψˆ ( q) f ( q) ψˆ( q) dq + ψˆ ( q) ψˆ ( q ')v( q, q ') ψˆ( q ') ψˆ( q) dqdq ' That ths form s orrt an b sn asly as shown on nxt sld F + B - PCD STTACS Unt 3 Eltron Gas n HF & RPA ± ot: Ordr ( q) ( q) 8

9 H ψˆ ( q) f ( q) ψˆ( q) dq + ψˆ ( q) ψˆ ( q ')v( q, q ') ψˆ( q ') ψˆ( q) dqdq ' * ˆ( q) ˆ q ( q) q ψ ψ ψ ψ ( q) f( q) ψ * H ψ j q dqj j + + j * * j j l v(, ') ψ q ψ q q q ψ q ψ dqdq ' l l H f j + j v l j j l j j l Rams, Many Eltron Thory / Eq..7 /.4 PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

10 Comlt xrssons for th Hamltonan, nlusv of sn labls aσ aσ aa σσ aσ aσ aσ aσ H ψˆ ˆ ˆ ˆ v(, ') ˆ ( ') ˆ α q f q ψ β q dq + ψα q ψ β q q q ψδ q ψγ( q) dqdq ' PCD STTACS Unt 3 Eltron Gas n HF & RPA * ˆ ˆ α α α β jβ j α β j ψ q ψ q ψ q ψ q β ( q) f( q) ψ * H ψ j q dq α α β jβ j +, δ δ,, ± ± ± + α β j l α β δ γ v( * * ψ α q ψ jβ q q, q') ψl δ q ψγ dqdq ' γ l δ α jβ H α f jβ + α, jβ v lδ, γ α jβ α jβ γ lδ j j l α β α β δ γ Rams /.4 / Eq..7 nlusv of sn labls

11 W rognz that and ar Hrmtan onjugats. Ths orators wr ntrodud as dstruton & raton orators. Lt Proo f : Φ Φ + PCD STTACS Unt 3 Eltron Gas n HF & RPA a Φ Φ b (,,,,,,... ) (,,,,,,...) dτ * Φ a Φb and Φb Φ a dstruton orator :dstruton orator H all othr ouaton numbrs n + Φ a Φ Φ b Φ & bng sam H lt Hrmtan onjugat of H w must show that : by dfnton of * H * b adτ b adτ ( * H ) * a bdτ Φ Φ Φ Φ Hrmtan onjugat normalzaton ntgral H Φ b Φ a umbr of oud stats rdng th th stat: vn.. and ar Hrmtan onjugats raton orator Φ Φ normalzaton ntgral

12 Z rj ( ) (,,.., ) + r < j H q q q f( r) + ; j j rj (,,.., ) v(, ) ( ) H q q q f r + r rj ; j j add and subtrat q r ( ) r ( r ) ( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j Modfd on-ltron orator Modfd ntraton F? PCD STTACS Unt 3 Eltron Gas n HF & RPA

13 q r ( ) r ( r ) ( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j Z r H f( r) f( r) f Modfd onltron orator would ontan muh/most of th fft of th two-ltron trms. ( ) H ( q, q,.., q ) f H + F + F Cho of th orator F s to b so mad that th total nrgy s mnmsd. Modfd, rsdual, ntraton btwn ars of ltrons. Ths trm would b wa, and would b tratd rturbatvly. PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

14 ( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j ( ) Φ Z r PCD STTACS Unt 3 Eltron Gas n HF & RPA q r ( ) r ( r ) f ( r ) Modfd on-ltron orator ψ ψ! ψ ψ [ ] () ψ () ψ j ψ ( q ).. () ψ () ψ f( r) + F( r) ψ σ( r) εψ σ( r) wth ψ ( r) ψ ( r) or ψ ( r) ε σ : doubly dgnrat, wth on gnfunton ah for sn & j Modfd ntraton Whn th nd trm s ngltd, ths dtrmnant s th unrturbd ground stat wavfunton. 4

15 ( ) Φ q r ( ) r ( r ) ( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j Z f ( r ) r Modfd on-ltron orator! ψ ψ () ψ ψ () ψ ψ j ψ ( q ).. () ψ () ψ j ε Modfd ntraton [ f( r) + F( r) ] ψ σ( r) εψ σ( r) wth ψ ( r) ψ ( r) or ψ ( r) σ : doubly dgnrat, wth on gnfunton ah for sn & as ψ, ψ, ψ,..., ψ, ψ 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA ψ () ψ ψ () ψ ( ) Φ j ψ qj ! ψ () ψ ψ () ψ 5

16 ψ () ψ ψ () ψ ( ) Φ j ψ qj ! ψ () ψ ψ () ψ [ f( r) + F( r) ] ψ σ( r) εψ σ( r),,3,, ε : Lowst / gnvalus Wav funtons of th EXCITED unrturbd stats ar also th ordr dtrmnants, mad u gnfuntons of [ ] ( ) H ( q,.., q ) f ( r ) + ; j j F( r ) v( r, r ) f ( r ) + F( r ) ψ ( r ) εψ ( r ) σ σ PCD STTACS Unt 3 Eltron Gas n HF & RPA ε : doubly dgnrat, wth on gnfunton ah for sn & but wth on or mor ε > ε / + j Fr 6

17 ( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j Z r PCD STTACS Unt 3 Eltron Gas n HF & RPA q r ( ) r ( r ) f ( r ) H f( r) F F( r) Modfd onltron orator would ontan muh/most of th fft of th twoltron trms. Cho of th orator F s to b mad suh that th total nrgy s mnmsd. It turns out, as wll b shown rsntly, that ths hans whn: f Modfd, rsdual, ntraton btwn ars of ltrons. Ths trm would b wa, and would b tratd rturbatvly. qf qv qv 7

18 q r ( ) r ( r ) ( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j Z f ( r ) r It turns out that ths hans whn: Cho of th orator F s to b so mad that th total nrgy s mnmsd. qf qv qv Rmmbr th two ntr COULOMB & EXCHAGE ntgrals: q v dq dq ψ q ψ q v q, q ψ q ψ q j v l dq dq ψ q ψ q v q, q ψ q ψ q * * j l * * q q v dq dq ψ q ψ q v q, q ψ q ψ q sam * * q PCD STTACS Unt 3 Eltron Gas n HF & RPA 8

19 Lt th ground stat unrturbd wav funton dsrbd abov b: Lt an xtd stat wav funton, n whh only a sngl ltron from th abov stat s xtd, b: ( ) Φ Φ ψ In th ordrd st of th sngl artl stats : & q > ψ () ψ ψ () ψ ()! ψ () ψ ψ () ψ ψ () ψ ()! ( ) q q q () ψ PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

20 Z rj ( ) (,,.., ) + r < j H q q q Sam Slatr dtrmnant h ( q ) + H + H ; j j rj Φ H Φ α f α f Φ H Φ j v j j v j Φ H Φ f + PCD STTACS Unt 3 Eltron Gas n HF & RPA j j + v v [ ] [ j j j j ]

21 H ( ) ( ) arox ( q, q,.., q ) f( r) + Fr + v( r, r ) Fr PCD STTACS Unt 3 Eltron Gas n HF & RPA j ; j j H ( q, q,.., q ) f( r) + Fr f+ F ψ() ψ Φ ψ () ψ ()! Φ ψ () ψ Φ Usng sam thnqus dsussd n STAP Unt 4 L Rfrn htt:// w an fnd ( ) ( ) Φq Harox( q, q,.., q ) Φ Φq f + F Φ? sld 4: [ f ( r) + F( r) ] ψ σ( r) εψ σ( r).. f ( r) + F( r) s dagonal n ψ ( r) Φq f + F Φ [ ] { } σ ot th OTATIO! ψ() ψ ψ () ψ ()! ψ () ψ ( ) q q q

22 H ( q, q,.., q ) f( r) + F( r) f + F ( ) arox Φ Φ ψ () ψ ψ () ψ ()! ψ () ψ Φ orators n SIGLE COORDIATES ψ () ψ ψ () ψ ()! ( ) q q q ψ () ψ Φ H ( q, q,.., q ) Φ Φ f + F Φ ( ) ( ) q arox q f + F: dagonal wth rst to on-ltron funtons and q But, H ( q, q,.., q ) H ( q, q,.., q ) + arox v( r, r ) F( r) j ; j j of whh th frst trm gvs Φ H Φ Φ f + F PCD STTACS Unt 3 Eltron Gas n HF & RPA Φ ( ) q arox q

23 Hn, f w hoos F suh that Φ Φ Φ Φ thn H ( q, q,.., q ) H ( q, q,.., q ) + arox of whh th frst trm gvs ( ) q F q v( r, rj) ; j j w shall g THUS, hoos F suh Φ H Φ t q Φ Φ Φ Φ q F q v( r, rj) ; j j q v q v that Φ H ( ) q arox j ; j j Φ v( r, r ) F( r) Matrx lmnts of th abov two trms would anl; qual & oost sgns n ordr to gt Φ H Φ q PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

24 Havng shown now that th ho F whh Φ Φ Φ Φ q F q v( r, rj) ; j j q v q v gvs w now show that th abov ho of gvsus: Φ H Φ ( ) ( ) q onurrntly gvs th bst sngl dtrmnantal ground stat wav funton aordng to th varaton rnl (Hartr-Fo SCF aroxmaton) OTE Φ Φ d r r F r r 3 * * : q F ψq ψ F, PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

25 orrt ground Lt us as: If Φ Φ wr not th stat wavfunton, ould any othr wav funton b th ground stat? Th most gnral form n whh just on of th onsttunt sn orbtal s dffrnt would b ψ q Φ + εφ, aart from an ovrall normalzaton... For ths wavfunton, th nrgy funtonal s: E ( ε ) Φ + εφ H Φ + εφ q Φ + εφ Φ + εφ q q q PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

26 E ( ε ) Φ + εφ H Φ + εφ q Φ + εφ Φ + εφ q q q Φ H Φ Φ H Φ Φ H Φ Φ H Φ ( ) ( ) + ε q + ε q + ε q q ε ε ε Φ Φ + Φ Φ + Φ Φ + Φ Φ q q q q { H q q H } Φ H Φ Φ H Φ ( ) ( ) + ε Φ Φ + Φ Φ + ε q q ε q Φ Φ + Φ Φ { H q q H } Φ H Φ Φ H Φ ( ) ( ) + ε Φ Φ + Φ Φ + ε q q + ε q PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

27 E ( ε ) { H H } Φ H Φ + ε Φ Φ q + Φq Φ + ε Φ H Φ ( ) ( ) ( ) ( ) + ε q q dffrntatng wth rst to ε d E ( ε ) dε d dε { } Φ H Φ + ε Φ H Φ + Φ H Φ + ε Φ H Φ q q q q + ε { } d ( ) q q q q + Φ H Φ + ε Φ H Φ + Φ H Φ + ε Φ H Φ + ε dε PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

28 d E ( ε ) dε { } Φ H Φ + Φ H Φ + ε Φ H Φ q q q q + ε d { Φ } ( ) q + Φ q Φ + Φq Φq H ε H H ε H ε dε + Φ Φ + Φ + d ε ε + ε + ε ε, 4 dε ( + ε ) ( + ε + ε ) whh gos to zro as ε d E ε dε ε { Φ H Φ q + Φq H Φ } PCD STTACS Unt 3 Eltron Gas n HF & RPA 8

29 d E dε { Φ H Φ + Φ H Φ } q q ε ε But w had sn that th ho F whh gvs Φ Φ Φ Φ q F q v( r, rj) ; j j q v q v ( ) Φ gav us : Φ ( )! Φ H Φ q SD d E ε dε ε E ( ε ): xtrmum... mnmum w gt th bst sngl dtrmnantal ground stat wav funton aordng to th varaton rnl PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

30 Thus, th ho F whh gvs Φ Φ Φ Φ q F q v( r, rj) ; j j PCD STTACS Unt 3 Eltron Gas n HF & RPA q v q v gvs us : ( ) ( ) Φ Φ and t gvs th bst sngl dtrmnantal ground stat wav funton aordng to th varaton rnl ε sn MIIMISES th varatonal nrgy funtonal: E ( ε ) Φ + εφ H Φ + εφ q Φ + εφ Φ + εφ q Qustons: d@hyss.tm.a. q q q H Hartr-Fo aroxmaton. 3

31 Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr 7 Eltron Gas n Hartr Fo and Random Phas Aroxmatons HF SCF for Fr Eltron Gas PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

32 H ( ) ( ) arox ( q, q,.., q ) f( r) + Fr + v( r, r ) Fr ψ () ψ Φ ψ () ψ () Φ! ψ () ψ PCD STTACS Unt 3 Eltron Gas n HF & RPA j ; j j H ( q, q,.., q ) f( r) + Fr f+ F Th varatonal funton w onsdrd s: ψ Φ + εφ Φ q ψ () ψ ψ () ψ ()! ( ) q q q ψ () ψ Varaton onsdrd s n just on orbtal All othr orbtals FROZE Hartr Fo: FROZE ORBITAL APPROXIMATIO Sn / statstal / Frm orrlatons nludd Coulomb orrlatons gnord SCF: slf onsstnt fld STAP Unt 4 L Rfrn htt:// 3

33 f( r) u ( r ) + * u j ( r) dv u r u r m m u r u r j j r ε u j δ ( s, s ) j ( r ) PCD STTACS Unt 3 Eltron Gas n HF & RPA 33

34 f( r) u ( r ) + * u j ( r) dv u r u r m m u r u r j j r ε u r Chang of ( ) H ( q, q,.., q ) notaton slghtly: ; j ; u( r) ψ ( r) r r; r r' ψ () r + m PCD STTACS Unt 3 Eltron Gas n HF & RPA j δ ( s, s ) j Z r * ψ ( r') dv ' ( r) ( r ') ( m, m ) ( r ') ( r) r r' ε ψ ( ψ ) ψ δ s s ψ ψ Z + m r < j rj f ( r) + H + H ; j j rj ( r) otaton hangd only to brng t losr to that n Rams: Many Eltron Thory (97; orth Holland) 34

35 m Z ψ ( r') ψ ( r) dv ' ψ ( r) ψ ( r') δ( m, m ) ψ ( r') ψ ( r) ε ψ * + s s r r r' ( r) Z m r ψ * ψ ( ξ') ψ( ξ') ψ ( ξ) + r r' 4 ( ξ) dv' * ψ ( ') ( ') 4 ξ ψ ξ ψ ξ δ ( ms, m ) ' s d V ε ψ ξ r r ' PCD STTACS Unt 3 Eltron Gas n HF & RPA 35

36 on-frromagnt systms: qual numbr of & ε : doubly dgnrat; on gnfunton ah for sn & Ground stat Slatr dtrmnant ontans th st of on-ltron orbtals: ψ, ψ, ψ,..., ψ, ψ ψ, ψ, ψ, ψ,..., ψ, ψ 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA 36

37 Z m r ψ * ψ ( ξ') ψ( ξ') ψ ( ξ) + r r' 4 ( ξ) dv' * ψ ( ') ( ') 4 ξ ψ ξ ψ ξ δ ( ms, m ) ' s d V ε ψ ξ r r ' Carryng out th dsrt sum ovr th sn varabls: Z m r * ψ ( r') ψ( r') ψ () r + dv ' ψ () r r r' * ψ ( r') ψ ( r') dv ' ψ r ε ψ r r r ' Hartr-Fo on ltron Slf onsstnt fld quaton. PCD STTACS Unt 3 Eltron Gas n HF & RPA 37

38 Z m r * ψ ( r') ψ( r') ψ () r + dv ' ψ () r r r' * ψ ( r') ψ ( r') dv ' ψ r ε ψ r r r ' v( r, r ') Coulomb ntraton r r' Z m r ψ () r dv ' ψ(') r v(, r r') + ψ () r * ψ( r) dv ' ψ ( r ') ψ ( r ')v( r, r ') ε ψ r Rams / Many Eltron Thory / Eq.3.3; ag 53 PCD STTACS Unt 3 Eltron Gas n HF & RPA 38

39 H H + H j Z j f( q) r ' f ( q ) v( q, qj) + Many-Eltron Hamltonan n th notaton of FIRST QUATIZATIO H f j + j v l j j l j j l j v l dq dq ψ q ψ q v q, q ψ q ψ q Many-Eltron Hamltonan n th notaton of SECOD QUATIZATIO * * j l PCD STTACS Unt 3 Eltron Gas n HF & RPA 39

40 H f( q) + v( q, qj) j j I Q H f j + j v l j j l j j l Hn, IF q r ( ) r ( r ) ( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j THE H f + F j j + j Rams / Many Eltron Thory / Eq.3.7; ag 55 PCD STTACS Unt 3 Eltron Gas n HF & RPA jv l F j j l j j l j II Q I Q II Q 4

41 Φ H f( q) + v( q, qj) ψ () ψ ψ () ψ ()! ( ) q q q ψ () ψ j j Egnfuntons of th sngl artl orator q r ( ) r ( r ) ( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j From sld # 4, U3L7: ( f + F) φ ( q) ε φ ( q) j j j f + F j ε j εδ j j j Φ Φ Φ Φ F F q q q v q v PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

42 Φq F Φ q v q v PCD STTACS Unt 3 Eltron Gas n HF & RPA 4 4 * * q F d ξ d ξ ψ ξψq ξ r r ψ ξ ψ ξ Φ Φ v (, ) d ξ d ξ ψ ξ ψ ξ r r ψ ξ ψ ξ v (, ) 4 4 * * q 4 * q F d ξψ q ξψ ξ r Φ Φ d 4 ( ξ ) d v (, r ) ψ ( ξ ) ξψ ξ ψ ξ 4 * d ξψ ( ξ ) v ( r, r ) ψ ( ξ ) 4 * q ntrhangng ξ ξ n th sond (xhang) trm: 4 * q F d ξψ q ξ d r r ψ ξ Φ Φ d 4 ξψ( ξ) v (, ) ξψ ( ξ ) d ξψ ( ξ ) v ( r, r ) ψ ( ξ ) ψ ( ξ ) 4 * 4 * q 4

43 4 * q F d ξψ q ξ d r r ψ ξ Φ Φ d 4 ξψ( ξ) v (, ) ξψ 4 * ( ξ ) d ξψ ( ξ ) v ( r, r ) ψ ( ξ ) ψ ( ξ ) 4 * q 4 d ξψ ( ξ) v ( r, r) ψ ( ξ) 4 * Φq F Φ d ξψ q ( ξ) 4 * d ξψ ( ξ) v ( r, r) ψ ( ξ) ψ( ξ) 4 d ξψ ( ξ) v ( r, r) ψ ( ξ) 4 * Φq F Φ d ξψ q ( ξ) 4 * d ξψ ( ξ) v ( r, r) ψ ( ξ) ψ( ξ) 4 d ξψ ( ξ) v ( r, r) ψ ( ξ) Fψ ( ξ ) 4 * d ξψ ( ξ) v ( r, r) ψ ( ξ) ψ( ξ) PCD STTACS Unt 3 Eltron Gas n HF & RPA Rams / Many Eltron Thory / Eq.3.9; ag 5 43

44 4 d ξψ ( ξ) v ( r, r) ψ ( ξ) Fψ ( ξ ) 4 * d ξψ ( ξ) v ( r, r) ψ ( ξ) ψ( ξ) Fψ ξ d ξ ψ ξ r r ψ ξ 4 v (, ) d ξψ ξ ψ ξ ψ ξ v ( r, r ) 4 * arryng out th summaton ovr th dsrt sn varabl: Fψ ψ ψ 3 ( r ) dr ( r ) v ( r, r ) ( r ) d 3 rψ ψ ψ ( r ) v ( r, r ) ( r ) ( r ) * PCD STTACS Unt 3 Eltron Gas n HF & RPA 44

45 arryng out th summaton ovr th dsrt sn varabl: Fψ ψ ψ 3 ( r ) dr ( r ) v ( r, r ) ( r ) d 3 rψ ψ ψ ( r ) v ( r, r ) ( r ) ( r ) * r r r' r Z m r * ψ ( r') ψ( r') ψ () r + dv ' ψ () r r r' * ψ ( r') ψ ( r') dv ' ψ( r) ε ψ r r ' PCD STTACS Unt 3 Eltron Gas n HF & RPA ( r) Z ψ () r + Fψ + m r HF-SCF Eq. ( r) [ f F ] ψ ( r) ε ψ ( r) Rams / Many Eltron Thory / Eq.3.3; ag 53 45

46 Rall, from Sal/Slt Tos n Atom Physs, Unt STAP: 4, Unt Ltur 4, Ltur 3, Sld 3, Sld Hartr-Fo Slf-Consstnt Fld formalsm Rfrn htt:// E ψ H ψ ε j sld 4: [ f r + F r ] ψ σ r εψ σ r [ f r + F r ] { ψ r }.. s dagonal n f + F ε f + [ j v j j v j ] F σ Rams, Eq.3.35 E f + F j PCD STTACS Unt 3 Eltron Gas n HF & RPA [ j v j j v j ] Rams, Eq

47 E Also, f + F j [ v v ] j [ j v j j v j ] j j j j E + f + F Φ H Φ E f + j v j j v j j E f E + f + F [ ] E f + f F f ε + + PCD STTACS Unt 3 Eltron Gas n HF & RPA Rams, Many Eltron Thory Eq.3.38 / ag 56 47

48 Hartr Fo Slf Consstnt Fld for th Fr Eltron Gas For FEG, th HF-SCF an b obtand AALYTICALLY FEG only many-ltron systm for whh HF-SCF an b obtand AALYTICALLY fr n V o ntraton wth any xtrnal fld PCD STTACS Unt 3 Eltron Gas n HF & RPA What about th fft of th ostv nul? Frm gas of ltrons whh ntrat only wth ah othr. 48

49 dsrt ostv hargs n th nul onsdrd smard out, l jlly bans nto a jllum. Whol systm: ltrally nutral. PCD STTACS Unt 3 Eltron Gas n HF & RPA 49

50 Postv harg dnsty smard out unformly. PCD STTACS Unt 3 Eltron Gas n HF & RPA ltrons n a ubal box. Eah sd has lngth L ρ 3 V Volum of th box V L nxλx L π nx L; x x π n L π n ˆ + n ˆ + n ˆ L x x y y z z x Box normalzaton wth Born von Karmann boundary ondtons How many wavlngths ft n th box? r ψ (r) χ σ 3 σ ζ L orbtal art sn art 5

51 Z Fr ltron s wav vtor r θ dθ φ dϕ Y X PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

52 X dω Y ê x Construt a grd of onts labld by ntgrs sad at unform dstans along th X, Y, Z axs. Z PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

53 E + + m m ( ) x y z π E n + n + n m L E π ml n ( ) x y z Y ê x X stats wth dffrn t n, n, n x y z n + n + n n x y z ar dgnrat dω Z 3-dmnsonal orthogonal sa of ndndnt ntgrs n, n, n. x y z PCD STTACS Unt 3 Eltron Gas n HF & RPA 53

54 ψ () r m + V( r) ψ ( r) dv ' ψ( r ') v( r, r ') + ψ ( r) ψ ψ ψ * ( r) dv ' ( r') ( r')v( r, r') ε ψ ( r) m * ψ () r ψ() r d ' ψ (') ψ (')v(, ') ε ψ V r r r r r 54 PCD STTACS Unt 3 Eltron Gas n HF & RPA

55 m * ψ () r ψ() r d ' ψ (') ψ (')v(, ') ε ψ V r r r r r Rall, from Sal/Slt Tos n Atom Physs, STAP Unt 4, Ltur 3, Sld 8 HF SCF formalsm Rfrn htt:// ψ * ( q') ψ ( q') xhang V ( q) ψ ( q) ψ ( q) dq' r r ' * ψ ( q') ψ ( q') xhang V ( q) ψ ( q) ψ ( q) dq' r r ' m ζ ' ζ ' m δm, m ζ ' s s s s xhang 3 * ψ ψ ' ψ ( ') ψ ( ')v, ' V q q r d r r r r r PCD STTACS Unt 3 Eltron Gas n HF & RPA 55

56 m * ψ () r ψ() r d ' ψ (') ψ (')v(, ') ε ψ V r r r r r xhang 3 * ψ ψ ' ψ ( ') ψ ( ')v, ' V q q r d r r r r r xhang ψ () r V ( q) ψ ( q) ε ψ m m ( r) V q q m xhang.. ψ ε ψ + F g( q) ψ ( q) ε ψ xhan ( r) ( r) xhang F ( q) V ( q) xhang PCD STTACS Unt 3 Eltron Gas n HF & RPA Rams, Many Eltron Thory Eq.3.44 / ag 58 56

57 m * ψ () r ψ() r d ' ψ (') ψ (')v(, ') ε ψ Exhang Trm Sld 57 PCD STTACS Unt 3 Eltron Gas n HF & RPA V r r r r r 3 * ψ ( r) d rψ ( r ' ) ψ ( r)v( r, r) ψ ( ' ) ε ψ m ' L ot sgn ( ') ' 3 3 L dr 3 ' r { r } ( r ) r ψ (r) χ σ 3 σ ζ r r L orbtal art sn art ET, S57 57

58 m 3 * ψ ( r) d rψ ( r ' ) ψ ( r)v( r, r) ψ ( r ' ) ε ψ r ' L ( ') ' 3 3 L dr 3 ' r r r ET, S57 L 3 3 L dr 3 ' r PCD STTACS Unt 3 Eltron Gas n HF & RPA 3 L r 3 L ( ' ) r ' r r 58

59 L 3 3 L dr 3 ' r 3 L r 3 L ( ' ) r ' r r ( ' ) r{ } ' r dr 3 L 3 ' r L 3 r PCD STTACS Unt 3 Eltron Gas n HF & RPA 59

60 ET, S 57 ( ' ) r{ } ' r 3 r dr 3 L 3 ' r L ' ( r r) 3 dr ψ r ' r 3 L L PCD STTACS Unt 3 Eltron Gas n HF & RPA 3 ' ( ' ) r ( ) r ψ 3 L ' 3 d r r φ ψ ' r r r ' r 6

61 ET, S 57 L ( ' ) r 3 ' φ r ψ r φ r ' r ' r 3 4π d r r ' Th Wav Mhans of Eltrons n Mtals by Stanly Rams, ag 7, Eq.7.4 ET, S 57 ' r ( ' ) r 4π 3 L ' π 4 3 L ' ' ψ ' r ψ r ε ψ r PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

62 r r 3 * ψ ( r) d rψ ( r ' ) ψ ( r)v( r, r) ψ ( ' ) ε ψ m ' m ε ψ r ψ ( ) r + ε ψ ε ψ m K.E. + ε ot sgn ε xt: alulaton of ( r ) r whr ε ε Qustons: d@hyss.tm.a. 4π 3 L ' ' Hartr-Fo Eq for Fr Eltron Gas Rams / Wav Mhans of Eltrons n Mtals / Eq.7.4, ag 7 PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

63 Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr 8 Eltron Gas n Hartr Fo and Random Phas Aroxmatons Eltron-Eltron Exhang Enrgy PCD STTACS Unt 3 Eltron Gas n HF & RPA 63

64 Hartr-Fo Eq for Fr Eltron Gas m K.E. ψ ( ) r + ε ψ ε ψ ( r ) r m + ε Dtrmnaton of ε PCD STTACS Unt 3 Eltron Gas n HF & RPA ε whr ε 4π 3 L ' ' Rams / Wav Mhans of Eltrons n Mtals / Eq.7.4, ag 7 ltron gas n jllum otntal K + xhang HF orrlaton E E E 64

65 Postv harg dnsty smard out unformly. PCD STTACS Unt 3 Eltron Gas n HF & RPA ltrons n a ubal box. Eah sd has lngth L ρ 3 V Volum of th box V L nxλx L π nx L; x x π n L x Box normalzaton wth Born von Karmann boundary ondtons How many wavlngths ft n th box? π ( n ˆ ˆ ˆ ) xx + nyy + nzz L In th -sa π 'volum' of ah stat L 3 65

66 ε ε Sum ovr all stats ε 4π 3 L ' ' ' π L PCD STTACS Unt 3 Eltron Gas n HF & RPA 3 In th -sa π 'volum' of ah stat L ' : ntgraton n sa 3 d L π ' L 4π 3 d' 3 3 Intgraton u to th Frm lvl ' ' 'sn F π π π ' θ ϕ ' d d d θ θ ϕ Rams / Wav Mhans of Eltrons n Mtals / Eq.7.4nxt, ag 7 66 ' 3

67 ε ' ' 'sn F π π π ' θ ϕ ' d d d Rams / Wav Mhans of Eltrons n Mtals / Eq.7.4nxt, ag 7 d d d d θ θ ϕ d d ' ε ' d' ' sn d d F θ θ ϕ π π ε π ' θ ϕ PCD STTACS Unt 3 Eltron Gas n HF & RPA ( ' ) ( ' ) ' F π π ' d'sn d d π ' θ ϕ ' ' θ θ ϕ 67

68 ε ' F π π ' d'sn d d π ' θ ϕ ' ' θ θ ϕ ntgratng ovr ϕ ' ' 'sn ( ) F π d θdθ ε π π ' θ ' ' ε ε PCD STTACS Unt 3 Eltron Gas n HF & RPA ' F π ' θ ' d 'sn d π ' F μ+ ' μ θ θ + ' 'os ' d ' d os θ μ ;.. sn θdθ dμ π μ + ' ' μ θ 68

69 ε ' F μ+ ' d ' d π ' μ μ + ' ' μ ε π ' F μ+ ' d' ' μ dμ + ' ' μ ε + π ' F μ ' d' ln ' ' μ + ' μ ( ') ε + π ' ' F ' d' ln ' ' μ + ' PCD STTACS Unt 3 Eltron Gas n HF & RPA 69

70 ε + π ' ' F μ + ' d' ln ' ' μ ' μ ε π ' F ' d' ' ( ) ( ) ln ' ' ln ' ' ' ' ε ' F ' d ' ( ) ( ) ' ln + ' ' ln + ' + ' π ε ' F ' d ' ln ( ') ln ( ') ' + π PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

71 ε ' F ' d ' ln ( ') ln ( ') ' + π ε ' F ' π ' ' d ' ln + ' ε π ' F ' ' ' d ' ln + ' ε π ' F ' d ' ' ln + ' ' PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

72 ε ε ' F ' ' ln d' π ' + ' π { ' ' } ' ln ' d' ' ln ' d ' F F + ' ' f x a ( x a) xln( x+ a) dx ln( x+ a) 4 ( ' + ) ' ( ' ) ' ε ln ' ln ' + + π 4 4 f ε ( ' + ) ( ' ) ' ' ln + π + ' 4 4 ' f ' PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

73 ε ( ' + ) ( ' ) ' ' ln + π + ' 4 4 ' f ' ε π f f f f + ln ln f ε f f f + f ln + π + f 4 4 PCD STTACS Unt 3 Eltron Gas n HF & RPA 73

74 ε f f f + f ln + π + f 4 4 ε f f ln f π + f ε f π f f ln + f + f Exhang Trm ε + f + ln εxhang f f f f π PCD STTACS Unt 3 Eltron Gas n HF & RPA 74

75 ε + ε m & ε xhang xhang f f + f + ln π f f ε f + ln m π f f + f f lt ρ f ε f ρ + ρ + ln m π ρ ρ ε f ρ + ρ ln m π + ρ ρ dfn: ρ + ρ F( ρ) + ln ρ ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA 75

76 ε ε + ε m f ρ + ρ ln m π + ρ ρ ρ f f ρ ρ + ρ ε : EXCHAGE TERM IS EGATIVE Snglt Stat Trlt Stat Slt/Sal Tos n Atom Physs htt://ntl.a.n/ourss/5657/ Unt 4 Trlt Stat s lss unshd by th oulomb ntraton - Landau & Lfshtz PCD STTACS Unt 3 Eltron Gas n HF & RPA 76

77 Snglt : χ( ζ, ζ) χ( ζ, ζ) ant-symmtr sn art φ( r, r) + φ( r, r ) + ( ) ϕ r ϕ r ϕ r ϕ r snglt : orbtal art doubl as r r Frm orrlaton * ltrons wth antaralll sns to lum togthr, * as f n a ha of ltral harg * Ths auss ICREASED rulson lss stabl PCD STTACS Unt 3 Eltron Gas n HF & RPA 77

78 Trlt : χζ (, ζ) + χ( ζ, ζ) ant-symmtr sa art φ( r, r) φ( r, r ) ( ) ( ) ϕ r ϕ r ϕ r ϕ r trlt: orbtal art as r r Frm orrlaton * ltrons wth aralll sns hav an EXCLUSIO rgon of sa * as f a shral avty s gnratd around t n whh anothr ltron wth a aralll sn annot ntr * DECREASED rulson mor stabl PCD STTACS Unt 3 Eltron Gas n HF & RPA 78

79 ψ () r m + V( r) ψ ( r) Sld o. 54, Prvous ltur dv ' ψ( r ') v( r, r ') + ψ ( r) ψ ψ ψ * ( r) dv ' ( r') ( r')v( r, r') ε ψ ( r) m * ψ () r ψ() r d ' ψ (') ψ (')v(, ') ε ψ V r r r r r PCD STTACS Unt 3 Eltron Gas n HF & RPA 79

80 8 PCD STTACS Unt 3 Eltron Gas n HF & RPA 3 ' 3 : nt ' graton n sa L d π 3 'volum' of ah stat L π 3 ' 3 : ntgraton n sa ' d L π 3 'volum' of ah stat L π n th sa n th sa

81 Slt/Sal Tos n Atom Physs htt://ntl.tm.a.n/ourss/5657/ Unt 4 / Sld # & E ψ H ψ atom HF f + j g j j g j j [ ] Th orator f ontans th K.E. orators and th nular attraton orators Eltron gas n jllum otntal attratv jllum otntal anls th ltron-ltron drt Coulomb rulson trms ltron gas n * ntgraton nstad of th abov dsrt sum jllum otntal EHF 3 L f θ π ϕ π d sn θdθ dϕ + ε 3 xhang θ ϕ π m PCD STTACS Unt 3 Eltron Gas n HF & RPA 8

82 ltron gas n jllum otntal EHF 3 L f θ π ϕ π d sn θdθ dϕ + ε 3 xhang θ ϕ π m ltron gas n jllum otntal HF K + xhang orrlaton E E E whr 3 L f θ π ϕ π EK d snθdθ dϕ 3 θ ϕ π and m 3 L f θ π ϕ π Exhang d sn θdθ dϕ ε 3 θ ϕ orrlaton π xhang PCD STTACS Unt 3 Eltron Gas n HF & RPA 8

83 ltron gas n jllum otntal HF K + xhang orrlaton E E E whr 3 L f θ π ϕ π EK d snθdθ dϕ 3 θ ϕ π m E K 3 L 4π ( π ) m f 3 4 d E K 3 L ( π ) 3 4π m 5 5 f E K 3 L π m K: K.E. art of th HF nrgy of th dgnrat fr ltron gas f 5 f : Frm lvl E K V π m Rams / Many Eltron Thory / Eq.3.64, ag 63 f 5 PCD STTACS Unt 3 Eltron Gas n HF & RPA 83

84 umbr of ltrons n th sa 'volum' of ah stat Tw th umbr of sngl-ltron stats n th ' volum' ( n - sa) sannd by th Frm shr 4 3 whos volum s π f 3 4 π 3 π 3π π 4π 3 L 3π f V 3 f 3 3 L 3 L f π f L 4 π 3 4π 3 V 4 π π 3 f 3 f π L 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA 84

85 E K E V π m 5 3π f r 3 s K PCD STTACS Unt 3 Eltron Gas n HF & RPA f 3 V 4 3 3π π rs V 3 3 f rs : radus of a shr whos volum s qual to th avrag volum r ltron π r s π 3 9π π m 4 3 m 4 r π rs 3 K.E. ontrbuton to th avrag HF ground stat nrgy r ltron n a fr-ltron-gas Rams / Many Eltron Thory / Eq.3.68, ag 63 ( 9π ) ( 9π ) /3 /3 9π 4 r 4 4 m 3 s f f v f s 3 EK 3 9π m 4 r. Ryd r s s 4 Ryd m V ; Bohr unt.59a m 85

86 ltron gas n jllum otntal HF K + xhang orrlaton E E E K.E. E K. Ryd r s V f Exhang d θ π sn d ϕ π d 3 θ θ ϕ ε xhang θ ϕ orrlaton π ε xhang f π f + f + ln f f Qustons: d@hyss.tm.a. PCD STTACS Unt 3 Eltron Gas n HF & RPA 86

87 Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr 9 Eltron Gas n Hartr Fo and Random Phas Aroxmatons Fr Eltron Gas n Jllum Baground Potntal PCD STTACS Unt 3 Eltron Gas n HF & RPA 87

88 ltron gas n jllum otntal HF Knt + Exhang Enrgy Corrlaton E E E whr 3 L f θ π ϕ π EKnt d snθdθ dϕ 3 θ ϕ Enrgy π m E K 3 L 4π ( π ) m 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA f 4 d L V E π m π m K f f K: K.E. art of th HF nrgy of th dgnrat fr ltron gas Rams / Many Eltron Thory / Eq.3.64, ag 63 E K 3 L ( π ) f : Frm lvl 3 4π m 5 5 f 88

89 E r K s V π m 5 f ( 9π ) ( 9π ) /3 /3 4 4 mv f E K f 3 3 9π m 4 r s 4 3 3π π rs V 3 r s 3 f : radus of a shr whos volum s qual to th avrag volum r ltron. r s : Bohr unts r s : Stz aramtr K.E. ontrbuton to th avrag HF ground stat nrgy r ltron n a fr-ltron-gas Rams / Many Eltron Thory / Eq.3.68, ag 63 PCD STTACS Unt 3 Eltron Gas n HF & RPA s 3 EK 3 9π m 4 r. Ryd r 4 Ryd m V ; Bohr unt.59a m s 89

90 ltron gas n jllum otntal HF K + xhang orrlaton E E E K.E.. Ryd r? V f Exhang d θ π sn d ϕ π d 3 θ θ ϕ ε xhang θ ϕ orrlaton π E K s ε xhang f + + ln f f f f π E xhang orrlaton V f θ π ϕ π f f f + d sn d d ln 3 θ θ ϕ θ + ϕ π π f f PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

91 E xhang orrlaton V f θ π ϕ π f f f + d sn d d ln 3 θ θ ϕ θ + ϕ π π f f E xhang orrlaton 3 d d V f ( 4 ) f + π d ln 3 8 f + f π π f E xhang orrlaton V f ( ) f + d ln 3 4 f + f π f PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

92 E xhang orrlaton V f ( ) f + d ln 3 4 f + f π f E xhang orrlaton V 4 f 3 4π PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

93 E xhang orrlaton V 4 f 3 4π f π 3 9 4π 4π 4 r s 3π 4 3 f ; & π rs V V 3 from : sld 85, last lass π Exhang π rs 3 4 orrlaton 3 4π 4 rs PCD STTACS Unt 3 Eltron Gas n HF & RPA 9π rs 4 3 3π 4 E xhang orrlaton.96 r s Ryd 93

94 ltron gas n jllum otntal HF KE + xhang orrlaton E E E 3 L f θ π ϕ π whr EKE d snθdθ dϕ 3 θ ϕ π m 3 L f and Exhang d 3 orrlaton ( π ) Addng both th trms θ π ϕ π θ ϕ sn θdθ dϕ εxhang For fr ltron gas n SCF jllum otntal : E HF..96 Ryd rs r s Avrag HF nrgy r ltron PCD STTACS Unt 3 Eltron Gas n HF & RPA r s : Bohr unts H f( q) + v( q, qj) j j 94

95 ltron gas n jllum otntal HF K + xhang orrlaton E E E Avrag HF nrgy r ltron E HF..96 Ryd rs r s ltron-ltron ntraton, rdus th nrgy BELOW that of th Sommrfld gas (of ours n th ostv jllum otntal) ψ () r m + V( r) ψ ( r) dv ' ψ( r ') v( r, r ') + ψ ( r) ψ ψ ψ ε ψ * ( r) dv ' ( r') ( r')v( r, r') ( r) 95 PCD STTACS Unt 3 Eltron Gas n HF & RPA

96 Avrag HF nrgy r ltron ltron-ltron ntraton, rdus th nrgy BELOW that of th Sommrfld gas (of ours n th ostv jllum otntal) FEG n HF-SCF jllum otntal : E HF..96 Ryd rs rs : Bohr unts r s 4 Ryd m V Bohr unt A m Frst Ordr Prturbatv tratmnt of th xhang trm SAME RESULT (nxt lass) Sond (and hghr) Ordr Prturbatv tratmnt of th ltron-ltron Coulomb ntraton howvr dvrgs. PCD STTACS Unt 3 Eltron Gas n HF & RPA 96

97 For fr ltron gas n jllum otntal : E HF..96 Ryd rs r s Bohm & Pns: md-ffts D.Pns (963) Elmntary xtatons n solds (Bnjamn, Y) Random Phas Aroxmaton E BP β 4 + β 3 β rs rs r rs 48 s f PCD STTACS Unt 3 Eltron Gas n HF & RPA β d! Many-body thory byond rturbaton mthods : Ur bound to wav numbr of lasma osllatons Lowr bound to wav lngth; sn osllatons gt damd by th random thrmal moton of th ltrons. 97

98 Frst, th lassal modl ρ : avrag volum harg dnsty ξ Postv and gatv harg n balan Dslamnt of all th ltrons to th rght PCD STTACS Unt 3 Eltron Gas n HF & RPA 98

99 Frst, th lassal modl ρ : avrag volum harg dnsty ξ Dslamnt of all th ltrons to th rght nt ostv surfa harg r unt ara + ρ ξ nt ngatv surfa harg r unt ara ρ ξ surfa harg dnsty : σ ρξ PCD STTACS Unt 3 Eltron Gas n HF & RPA nt fld n-btwn E ρξuˆ ε 99

100 nt fld n-btwn E ρξuˆ ε CGS unts ; 4π 4πε ε 4πρ ω m PCD STTACS Unt 3 Eltron Gas n HF & RPA d ξ m ρξ dt ε d ξ dt ρ mε ξ ω SI unts ρ mε Frquny of lasma osllatons Thrmal moton of ltrons: gnord xt that thrmal flutuatons would hav ausd th onst of lasma osllatons Thrmal moton dsrson Eq. of moton whn dsrson s rsnt: ω E F ω m

101 dsrt ostv hargs n th nul onsdrd smard out, l jlly bans nto a jllum. Unform harg dnsty Whol systm: ltrally nutral. PCD STTACS Unt 3 Eltron Gas n HF & RPA

102 Postv harg dnsty l b ρ V PCD STTACS Unt 3 Eltron Gas n HF & RPA ltrons n volum V togthr wth a unform ostv harg baground jllum dstrbuton. Jllum baground H H + H + H st trm n th Hamltonan μ r Hl + m r r nd trm j j j l b l b Mathmatal dv to avod dvrgns. Latr, w ta th lmt: μ x x ' 3 3 ρ + xρ + x' Hb dx dx' x x' 3 rd trm n th Hamltonan 3 H d x r j μ x r ρ x + x r μ ltrons and th baground: EUTRAL systm

103 ρ nd trm ρ + + PCD STTACS Unt 3 Eltron Gas n HF & RPA μ x x ' 3 3 ρ + xρ + x' Hb dx dx' x x' V x x' (unform dnsty) x' x z dx ' dz... at onstant x μ x x ' 3 3 Hb d x d x' V x x' 3 3 H dx dz V z b μz μz 3 μz dz 4π zdz 4π z dz z z 4π 4π H b V V μ V μ Rfrn: Fttr & Wala - Eq.3.7 n Quantum Thory of Many-Partl Systms; ag H b μ dvrgs 4π μ μz Contrbuton of ths trm (r ltron) dvrgs as μ μ dvrgn 3

104 3 rd trm 3 H d x l b ρ V 4π Hl b V μ μ x r ρ x + x r μ x r 3 Hl b d x V x r 4π Hb V H b μ μ μ dvrgn Contrbuton of ths trm (r ltron) dvrgs as μ μ dvrgn Rfrn: Fttr & Wala - Eq.3.8 n Quantum Thory of Many-Partl Systms; ag PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

105 H Hl + Hb + Hl b H 4π 4π Hl + V μ V μ H H l 4 V π μ Contrbuton of ths trm (r ltron) dvrgs as μ μ dvrgn Dos th dvrgng trm anl wth any art of H l? Produr to ta lmts: FIRST: L (.. V ) and thn μ Rfrn: Eq.3.9 n Fttr & Wala - Quantum Thory of Many-Partl Systms; ag 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

106 PCD STTACS Unt 3 Eltron Gas n HF & RPA H H H f( q ) v ( q, q ) IQ C l + + j j j II Q H f j + j v l st trm H IQ l C j j l j j l C * * C v φ φj v, φ φl j l dq dq q q q q q q μ r r + m r r j j j Hn H + II Q s l j j j j v l l j m j l μ r r * * j v s l dq dqφ ( q) φj ( q) φ ( q) φl ( q) r r 6 j v s

107 H j + j l II Q s l j j v l j m j l μ r r * * v s φ φj φ φl r r j l dq dq q q q q Showng th summaton ovr sn varabls xltly: H II Q l σ σ σ m σ σ + σ σ σ σ σ σ σ v σ σ s σ σ σ σ PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

108 H II Q l σ σ σ σ σ m + σ σ σ σ σ Frst, xamn th K.E. trm. σ σ v σ σ s σ σ σ σ x x σ σ δ σ, σ d x V V m m ( π ) δ σ, σ x x σ σ 3 d x 3 m mv PCD STTACS Unt 3 Eltron Gas n HF & RPA m δ σ, σ ( ) δ ( ) 3 x dx V 3 ( ) x dx Dra δlta funton 8

109 Postv harg dnsty smard unformly ρ V π n ˆ + n ˆ + n ˆ L π ( π ) 3 ltrons n a ubal box. Eah sd has lngth L 3 x Volum of th box V L V Box normalzaton wth Born von Karmann boundary ondtons π π nx nxλ x L; nx L; x L x x y y z z ( K ) x dx δ K ( ) δ ( ) 3 x dx x In th -sa 'volum' of ah stat π L 3 ( ) x dx δ 3, L Eq.3.; ag 3; F&W x 3 3 σ σ, PCD STTACS Unt 3 Eltron Gas n HF & RPA δ d x m mv σ σ x ( ) δ mv σ σ δ, V, Eq.3.; ag 3; F&W 9

110 H II Q l σ σ σ σ σ m + σ σ σ σ σ Frst, xamn th K.E. trm. σ σ v σ σ s σ σ σ σ m m σ σ σ σ δ, δ, H II Q l σ m σ, σ σ σ σ + σ σ σ σ δ δ, σ σ v σ σ s σ σ σ σ H II Q l σ m σ σ + σ σ σ σ σ σ v σ σ s σ σ σ σ PCD STTACS Unt 3 Eltron Gas n HF & RPA

111 H II Q l σ σ m σ + σ σ σ σ σ σ v σ σ s σ σ σ σ nd trm δ δ σ, σ σ, σ 3 4 σ σ v s 3σ 4σ μ r r 3 3 * * δσ, σδ 3, dr σ σ4 drφ r φ r φ r φ r σ σ 3σ 4σ r r x x V μ r r s 3 3 σ σ v 3σ3 4σ 4 δ σ, σ δ 3 σ, σ 4 V r r dr dr + r + r 3 4 PCD STTACS Unt 3 Eltron Gas n HF & RPA

112 μ r r s 3 3 σ σ v 3σ3 4σ 4 δ σ, σ δ 3 σ, σ 4 V r r d r d r r r y + r + r 3 4 r x r y + r y + x μ y s 3 3 σσ v 3σ34σ 4 δσ, σδ 3 σ, σ d y d x 4 V y + y+ x + x 3 4 σ σ v σ σ δ δ V μ y s y x y σ, σ3 σ, σ d y d x y+ x y + + x + y y μ y s 3 3 σσ v 3σ34σ 4 δσ, σδ 3 σ, σ d y d x 4 V y + + x + y PCD STTACS Unt 3 Eltron Gas n HF & RPA

113 μ y s 3 3 σσ v 3σ34σ 4 δσ, σδ 3 σ, σ d y d x 4 V y s x σ σ v 3σ34σ 4, δ, d y V y + + x + y μ y ( + ) ( ) δσ d x σ3 σ σ4 y Consrvaton of lnar momntum n homognous sa s σ σ v 3σ 3 4σ 4 δ, σ, σδ 3 σ, σ Vδ d y V y μ y 3 + ( 3 ) ( + + ) s σσ v 3σ34σ 4 δσ, σ δ 3 σ, σ δ 4 +, d y V y y μ y 3 + ( 3 ) ( ) y Fourr transform of th Srnd Coulomb Potntal PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

114 Small dgrsson: Fourr transform of th Coulomb Potntal Fourr transform g of f( r ) : 3 g r f( rdr ) Whn th ntgral dos not onvrg: r r 3 g lm μ f ( rdr ) + μ PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

115 Gvn g, howdo w rovr f( r)? 3 + r 3 f( r) g d π PCD STTACS Unt 3 Eltron Gas n HF & RPA Whn th ntgral dos not onvrg: r 3 f ( r) lm + μ g d + μ rotatonal symmtry : ( ) Whn f r f ( r ), thn g ( ) g ( ); & v vrsa ( ) Inthasof rotatonal symmtry, f r f ( r ) f ( r): 4π g g g drrf( r)sn( r) ( ) FT of Coulomb otntal, V r V ( r ) V ( r) r 4π g g( ) g dr r sn( r) 4π r dr sn ( r) 5

116 ( ) FT of Coulomb otntal, V r V ( r ) V ( r) r 4π 4π g g g dr r r r dr r sn sn Th abov ntgral dos not onvrg μr SC ( SC ) SC FT of Srnd Coulomb otntal, V r V ( r ) V ( r) lm+ μ r μr 4π 4π g g g dr r r dr r μ r μ μr lm sn lm sn + + 4π 4π g lm dr sn r lm dr Im + μ + μ 4 r r g π r μr μ lm Im dr ( ) + μ 4π lm Im + μ μ μr μr r PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

117 g g r μr 4π 4π lm Im lm Im + μ μ + μ μ 4π lm Im [ ] + μ μ r μr [ ] 4π 4π lm Im lm Im + + μ μ μ μ 4π μ+ 4π 4π lm Im lm + + μ μ + μ μ + FT of FT μr 4π r μ + of SC C 4π r FT of FT of μr 4π μ + r 4π r PCD STTACS Unt 3 Eltron Gas n HF & RPA C SC 7

118 H s σσ v 3σ34σ 4 δσ, σ δ 3 σ, σ δ 4 +, d y V y FT of SC μr 4π r μ μ y 3 + ( 3 ) ( ) ( + + ) y Fourr transform of Srnd Coulomb Potntal s σ σ v 3σ3 4σ 4 δσ, σδσ, σ δ, 3 4 σ m σ σ, σ, σ, σ, σ σ, σ σ, σ 3 4 V 3 ( +, + ) II Q l δ Rfrn: Fttr & Wala - Quantum Thory of Many- Partl Systms; ag 4 / Eq.3.5 δ Rfrn: Fttr & Wala Quantum Thory of Many-Partl Systms ag 4 / Eq.3.4 δ V 4π + μ σ σ σ σ π + μ 3 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA Rarrang th trms Canllatons wth trms from th baground. 8

119 H Contrbuton of H Hl + Hb + Hl b H σ H m l σ σ, σ, σ, σ, σ V σ, σ σ, σ 4 π μ ths trm (r ltron) dvrgs as μ μ dvrgn ( +, + ) II Q l δ Qustons: d@hyss.tm.a. δ δ V 4π σ σ 4σ4 3σ3 3 + μ ' ' δ + + q Momntum transfr For fr ltron gas n jllum E otntal : H I ordr PT? PCD STTACS Unt 3 Eltron Gas n HF & RPA xt lass: Rarrang th trms Canllatons wth th dvrgn trms from th baground. 9

120 Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr Eltron Gas n Hartr Fo and Random Phas Aroxmatons Plasma Osllatons n Fr Eltron Gas Rfrn: Fttr & Wala Quantum Thory of Many-Partl Systms Rfrns: Th thory of lasma osllatons n mtals - by S Rams 957 R. Prog. Phys. & Many Eltron Thory by Stanly Rams PCD STTACS Unt 3 Eltron Gas n HF & RPA

121 H Hl + Hb + Hl b H H l 4 V π μ Fr Eltron Gas n Postv Jllum Baground Potntal μ dvrgn Dos th dvrgng trm anl wth any art of H l? H σ m σ σ, σ, σ, σ, σ σ, σ σ, σ 3 4 ( +, + ) II Q l δ δ δ V 4π 3 + μ Rarrang th trms Canllatons wth trms from th baground. ' ' δ + + q σ σ σ σ PCD STTACS Unt 3 Eltron Gas n HF & RPA 3 Momntum transfr

122 H PCD STTACS Unt 3 Eltron Gas n HF & RPA σ m σ σ, σ, σ, σ, σ ' ' δ ( ), q : momntum transfr 3 + q 3 + q + q q 4 3 q q 4 σ, σ σ, σ ( +, + ) II Q l δ δ δ V Rfrn: Fttr & Wala - Quantum Thory of Many-Partl Systms; ag 4 / Eq.3.5 4π + μ σ σ σ σ

123 H II Q l H H PCD STTACS Unt 3 Eltron Gas n HF & RPA II Q σ m σ σ ( +, + ) II Q l δ V 4π σ σ 3 4 σ σ 4σ 3σ 3 + μ ( + q) K.E. trm + qσ σ q q m + + σ 4π + qσ qσ σ + σ V q σ σ q + μ + q; q; ; 3 4 sarat th q trm n th ntraton π q + qσ σ σ σ V q σ q σ μ + 4π + σ σ σ σ V σ σ μ q μ q + μ for q + q 3

124 H II Q 4π q + qσ σ σ σ V q σ q σ μ + 4π + ( σ σ σ q σ ) trm V μ σ σ saratd q, δ δ,, ± ± ± rσ rσ rr σσ rσ rσ rσ rσ σ σ σ σ σ σ σ σ δ δ σ σ σ σ σ σ σ, σ, H IIQ 4π q + qσ σ σ σ V q σ σ q μ + 4π + ( σ σ σ σ, ) σ σ δσ σ δ, V μ σ σ q PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

125 H 4π + H V μ 4π II Q l II Q + σ H σ V μ + σ m H II Q Rfrn: Fttr & Wala - Quantum Thory of Many-Partl Systms; ag 4 / Eq.3.5 q trms 4π q + qσ σ σ σ V q σ σ q μ + 4π ( + ) σ σ σ σ σ σ δ σ, σ δ, V μ σ σ q q trms PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

126 H IIQ 4π q + qσ σ σ σ V q σ σ q μ + 4π + ( σ σ σ σ, ) σ σ δσ σ δ, V μ σ σ q W now wrt ths two trms saratly 4π q + qσ σ σ σ V q σ σ q μ + II Q 4π H + σ σ σ σ V μ σ σ q 4π σ σ δ σ, σ δ, V μ σ σ q PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

127 7 PCD STTACS Unt 3 Eltron Gas n HF & RPA q q q q q II Q V q H n n V n V σ σ σ σ σ σ σ σ σ σ σ σ π μ π μ π μ + + +,, 4 q q q q II Q q V q H V V σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ π μ δ δ + + +

128 H H H II Q l, ST 4π q + qσ σ σ σ V q σ σ q μ + 4π 4π + n n σ n σ σ V μ σ V σ μ σ q q 4π q + qσ σ σ σ V q σ σ q μ +, ST 4π 4π + n n σ n σ σ V μ σ σ V μ σ q q Th abov summatons gv th total numbr orator II Q l II Q l, ST V 4 q σ σ 4π ˆ V μ V + PCD STTACS Unt 3 Eltron Gas n HF & RPA q trms 4π ˆ μ q π + μ + qσ qσ σ σ q trms 8

129 H II Q V 4 + qσ qσ σ σ q σ σ 4π 4π ˆ V μ V μ + ˆ q π + μ W now rla th numbr orators by thr gnvalus H II Q V 4 q σ σ q trms 4π 4π V μ V μ + PCD STTACS Unt 3 Eltron Gas n HF & RPA q π + μ + qσ qσ σ σ 9

130 q trms 4π 4 π V μ V μ + H C-numbr ontrbutons to H and hn to H H + H + H From sld : H l l b l b 4 V π μ Rfrn: Fttr & Wala Quantum Thory of Many-Partl Systms; ag 5 PCD STTACS Unt 3 Eltron Gas n HF & RPA ontrbuton to E HF 4 V : r artl π μ Frst : V, nxt : μ 3 L V : L; μ μ L 3

131 H H V 4 + qσ qσ σ σ q σ σ 4π 4π V μ V μ + anl q π + μ H H + H + H l b l b q trms E ] Lm HF V Hamltonan for a bul ltron gas n a unform ostv baground jllum otntal ] μ m σ Rfrn: Fttr & Wala σ Quantum Thory of Many-Partl Systms; ag 5 / σ Eq.3.9 4π + qσ qσ σ + σ V q σ q σ PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

132 Hamltonan for a bul ltron gas n a unform ostv baground jllum otntal 4π H q q m σ + σ V +,, q q σ σ σ σ σ σ σ Rf: F & W; ag 5 / Eq π rs V rs : radus of a shr whos 3 volum s qual to th avrag volum r ltron. dmnsonlss : lngth sal : Bohr radus rs r a V s 3 s s rs salng: r; V ; r ; q rq m?? V q a m Rfrn: Fttr & Wala PCD STTACS Unt 3 Eltron Gas n HF & RPA Quantum Thory of Many-Partl Systms; ag 5 / Eq.3.4 3

133 lngth sal : Bohr radus a m dmnsonlss : V salng: r ; V ; r ; q rq s 3 s s rs r rs a r s m m r s m m m ar m r r m ar Vq s 3 rvq s arvq ar r r Vq PCD STTACS Unt 3 Eltron Gas n HF & RPA 33

134 Hamltonan for a bul ltron gas n a unform ostv baground jllum otntal 4π H q q m σ + σ V +,, q q σ σ σ σ σ σ σ H m ar σ σ σ ar r + V q σ σ Rfrn: Fttr & Wala PCD STTACS Unt 3 Eltron Gas n HF & RPA Quantum Thory of Many-Partl Systms; ag 5 / Eq r Vq ar Vq 4π q qσ + qσ σ σ

135 H σ σ σ ar + r V q σ σ 4π q qσ + qσ σ σ Rfrn: Fttr & Wala Quantum Thory of Many-Partl Systms; ag 5 / Eq.3.4 r st : "hgh dnsty" ordr rturbatv tratmnt ossbl vn f th rturbaton s not wa. 4π H q q m σ + σ V +,, q q σ σ σ σ σ σ σ ( unrturbd art ) H ( rturbaton) H + Rfrn: Fttr & Wala Quantum Thory of Many-Partl Systms; ag 5 / Eq.3.4 PCD STTACS Unt 3 Eltron Gas n HF & RPA 35

136 Φ H Φ Φ H Φ + Φ H Φ Φ Φ Φ Φ H σ m σ σ m m σ F ' π L 3 d 3 STTACS ' : ntgraton n sa Unt 3 Ltur 8 Sld o. 8 V f Φ H Φ 4π d 3 8π m PCD STTACS Unt 3 Eltron Gas n HF & RPA 36

137 4π H q q m σ + σ V +,, q q σ σ σ σ σ σ σ ( unrturbd art ) H ( rturbaton) H + Φ H Φ Φ H Φ + Φ H Φ Φ H Φ Φ σ Φ σ σ m σ m m F V f Φ H Φ 4π d 3 8π K.E. ontrbuton to th m avrag HF ground stat V f 4 4π d nrgy r ltron n a 3 m 8π fr-ltron-gas. 5 V F V 5 4 π 3 () F m 8π 5 mπ E HF. Ryd r s Rf: F & W QToMPS; 7 Eq.3.3 PCD STTACS Unt 3 Eltron Gas n HF & RPA Rf: F & W QToMPS; 5 Eq

138 4π H q q m σ + σ V +,, q q σ σ σ σ σ σ σ ( unrturbd art ) H ( rturbaton) H + Φ H Φ Φ H Φ + Φ H Φ 4π H q q + σ σ σ σ V, σ, σ q q Φ Φ Φ Φ, σ, σ q Frst ordr Prturbaton Thory 4π Φ Φ q V Φ Φ + qσ qσ σ σ + qσ qσ would b + qσ qσ σ σ unlss, so that annhlat ltrons n thos stats and f σ σ Rf: F & W QToMPS; 7 Eq.3.3 rat artls n th sam/orrsondng mty stats. PCD STTACS Unt 3 Eltron Gas n HF & RPA 38

139 Φ Φ + qσ qσ σ σ + qσ qσ would b unlss, so that annhlat ltrons n thos stats and f σ σ rat artls n th sam/orrsondng mty stats. () + q, σ, σ & q, σ, σ q or () + q, σ, σ & q, σ, σ sond ossblty must b orrt, not frst. Φ Φ δ δ Φ Φ + qσ qσ σ σ + q, σ, σ + qσ σ + qσ σ a, a δ r s rs σ + q qσ qσ σ + + q Φ Φ δ δ Φ Φ qσ qσ σ + σ + q, σ, σ + qσ + σ σ σ PCD STTACS Unt 3 Eltron Gas n HF & RPA 39

140 q Φ Φ δ δ Φ Φ qσ qσ σ + σ + q, σ, σ + qσ + σ σ σ 4π w had : Φ H Φ Φ Φ Φ H Φ + qσ qσ σ σ, σ, σ q q V PCD STTACS Unt 3 Eltron Gas n HF & RPA 4π, q σ Φ Φ q V σ Φ H Φ { } δ δ q σ, σ qσ qσ σ σ numbr orators 4π δ δ n n q σ Φ Φ q V σ q, σ, σ + + qσ σ Φ n n Φ, for + q q, F and + σ σ F for + q > or > (or both > ) F F f 4

141 Φ H Φ 4π δ δ Φ n n Φ + q V q σ σ q, σ, σ + q, σ, σ Φ n n Φ, for + q q, F and + σ σ F for + q > or > or both > F F F Φ n n Φ for + q F and ( F) + qσ σ for + > > ( q ) or ( ) F F Havsd st funton Φ n n Φ ( + q.. ) ( ) + q F F σ σ θ θ PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

142 Φ H Φ 4π δ δ Φ n n Φ + q V q Φ H Φ σ σ q, σ, σ + q, σ, σ Φ n n Φ θ + q θ σ σ + q,, F F 4π δ δ q, σσθ F + θ + F q V q q σ σ 4π θ F + F q V ( q ) θ( ) q q ( q ) ( ) Rf: F & W QToMPS; 8 Eq π Φ H Φ θ F + q F V θ PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

143 4π Φ H Φ θ F + q F V q q θ From Unt 3, Ltur 8, Sld umbr 8: ' L π 3 3 d ' 3 3 L 3 L 3 4π Φ H Φ d dq θ F + q F π π q V θ 3 q now nludd: d q q dqsn d d 4π V 3 3 Φ H Φ d dq θ 6 F + q θ F ( π ) q θ θ φ PCD STTACS Unt 3 Eltron Gas n HF & RPA Rf: F & W QToMPS; 8 Eq

144 4π V 3 3 Φ H Φ d dq θ 6 F + q θ F ( π ) q hang varabl, + q P.. P q onsquntly: ( + q) P+ q Φ H Φ Rf: F & W QToMPS; 8 Eq π V 3 3 d q dpθ 6 F P q θ F P q ( π ) + q d dp 3 3 ot th symmtry W hav to valuat ths volum n th -sa. PCD STTACS Unt 3 Eltron Gas n HF & RPA 44

145 Φ H Φ W hav to valuat ths volum n th -sa. 4π V 3 3 d q dpθ 6 F P q θ F P q ( π ) + q P q P q P+ q q q PCD STTACS Unt 3 Eltron Gas n HF & RPA 45

146 two rls of radus F F P q P q P+ q q q F ot whr th ntrs of th rls ar hosn PCD STTACS Unt 3 Eltron Gas n HF & RPA 46

147 F : radus of th rls F Evaluat th volum of th ntrston of th two rls n th -sa. n th rgon of ntrston of th two rls, w hav P+ q < F and also P q < P q P q P+ q q q F F Rf: F & W QToMPS; 8 Fg.3. 3 dpθ F P+ q θ F P q PCD STTACS Unt 3 Eltron Gas n HF & RPA 47

148 Φ H Φ 4π V 3 3 dq dpθ 6 F P+ q θ F P q ( π ) q 3 4π dpθ ( ) F P+ q θ F P q F x+ x θ x, 3 F&W: QToMPS; 8 Eq.3.35 q wth x Φ H Φ F 4π V 4π q 6 ( π ) whol sa wth F dx dq 4π dq ( ) F x+ x θ x q 3 4πV 4π π 6 Fdx F x x θ x ( π ) + 3 whol sa 48 PCD STTACS Unt 3 Eltron Gas n HF & RPA

149 Φ H Φ 4π V 3 3 dq dpθ 6 F P+ q θ F P q ( π ) q 4πV 4π π 6 Fdx F x x θ x ( π ) + 3 whol sa x 3 3 4πV 4π 3 6 F ( 4π F) dx x x ( π ) 3 + x wth x q F r s ( π ) / atom unts ( 4πε )...from sld 89, STTACS, Unt3, Ltur 9 f nrgy atom unts 4 m 4πε dstan a atom unts m rmttvty 4πε of vauum nrgy atom unts a a E ( 4πε ) Rydbrgs au Hartr of nrgy I ordr PT.96 r s rs Rydbrs PCD STTACS Unt 3 Eltron Gas n HF & RPA 49

150 For E HF-SCF fr ltron gas n jllum otntal : HF..96 Ryd rs r s As r (low dnsty) s E.P.Wgnr Phys Rv 46: (934) E For fr ltron gas n jllum otntal : Prturbaton thory gvs th sam rsult E I ordr PT..96 Ryd rs r s rs Wgnr sold a rs r s Mnmum At ngatv nrgy Systm: bound Rfrn: Fttr & Wala Quantum Thory of Many- Partl Systms; Fg.3./ag 9 EXT CLASS: RPA PCD STTACS Unt 3 Eltron Gas n HF & RPA Qustons: d@hyss.tm.a. 5

151 Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr Eltron Gas n th Random Phas Aroxmatons Plasma Osllatons n Fr Eltron Gas Rfrns: Th thory of lasma osllatons n mtals - by S Rams 957 R. Prog. Phys. Also: Chatr 4 n Many Eltron Thory by Stanly Rams PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

152 htt:// Exhbts- /Modrn/PlasmaTub/ndx_lasma. html htt://s.hys.ut.du/astr6/lt/arth/atmoshr.html PLASMA: 4 th stat of mattr.. hghly onzd rgon.. ostv hargd ons and vrtually fr ltrons PCD STTACS Unt 3 Eltron Gas n HF & RPA htt:// 5

153 Ignor moton of th ons. as f thy ar frozn. Ions: rlatvly far mor massv and hav larg nrta. Mtal lasma Whol systm: ltrally nutral. PCD STTACS Unt 3 Eltron Gas n HF & RPA 53

154 Postv and gatv harg n balan ξ Dslamnt of all th ltrons to th rght nt ostv harg r unt ara + ρ ξ nt ngatv harg r unt ara ρ ξ surfa harg dnsty : σ ρξ nt fld n-btwn E ρξuˆ ε PCD STTACS Unt 3 Eltron Gas n HF & RPA 54

155 Eq. of moton nt fld n-btwn d ξ E ρξuˆ m ε dt ρξ ε ρ ω mε SI unts d ξ ρ CGS unts ξ CGS unts dt mε 4πρ ; 4π ω 4πε m ε Frquny of lasma osllatons Thrmal moton of ltrons: gnord xt that mltly w assumd that thrmal flutuatons would hav ausd dartur from qulbrum n lasma dnsty and thrby aus an onst of lasma osllatons. PCD STTACS Unt 3 Eltron Gas n HF & RPA 55

156 nt fld n-btwn E ρξuˆ ε ω ρ 3 CGS unts 4πρ m 4 3 π r 4 s ω 3 π r 3 3 s 3 mrs PCD STTACS Unt 3 Eltron Gas n HF & RPA Eq. of moton d ξ m ρξ dt ε d ξ dt ρ mε ξ Frquny of lasma osllatons ω Thrmal moton dsrson whn dsrson s rsnt: ω 4π 3 4 π r m 3 s E m F ω 56

157 For fr ltron gas n jllum otntal HF EPT..96 Ryd rs r s E BP β + + f β β β 3 rs r rs 48 s ; : ur bound to th wav numbr osllatons gt damd by random thrmal moton of th ltrons ω ( 3 )( ) 3/ m r s : Bohm & Pns: md-ffts D.Pns (963) Elmntary xtatons n solds (Bnjamn, Y) zro ont nrgy of th lasma osllatons 3 ω whr ω Ryd 3 r Random Phas Aroxmaton s PCD STTACS Unt 3 Eltron Gas n HF & RPA 57

158 Fld Orators ψˆ ( q) ψˆ ( q) ψ * ψ q q Rfrn: STTACS / Unt 3 / ltur 9 / H ψˆ ( q) f ( q) ψˆ( q) dq + ψˆ ( q) ψˆ ( q ')v( q, q ') ψˆ( q ') ψˆ( q) dqdq ' quvalnt H f j + j v l j j l j j l Comlt xrssons for th orators, nlusv of sn labls PCD STTACS Unt 3 Eltron Gas n HF & RPA 58

159 Comlt xrssons for th orators, nlusv of sn labls aσ aσ aa σσ aσ aσ aσ aσ H ψˆ ˆ ˆ ˆ v(, ') ˆ ( ') ˆ α q f qψβ q dq+ ψα qψ β q q q ψδ q ψγ( q) dqdq' PCD STTACS Unt 3 Eltron Gas n HF & RPA * ˆ ˆ α α α β jβ j α β j ψ q ψ q ψ q ψ q β ( q) f( q) ψ * H ψ j q dq α α β jβ j +, δ δ,, ± ± ± boms, nlusv of th xlt sn labls: + α β j l α β δ γ v( * * ψ α q ψ jβ q q, q') ψl δ q ψγ dqdq ' γ l δ α jβ H α f jβ + α, jβ v lδ, γ α jβ α jβ γ lδ j j l α β α β δ γ Rams /.4 / Eq..7 nlusv of sn labls 59

160 q r, ζ sa + sn oordnat ψ ψ ρ ζ q q ( q) artl dnsty orator 3 3 drρ( q) drψ qψ q : numbr of ltrons n th rgon ψ δ ψ ζ ' ζ ( q') ( q q') ( q) dq' ψ ( r') χ ζ ' δ( r r') ψ( r) χ ζ d r' ζ ' δ 3 ζ, ζ ' χ ζ ' χ ζ ψ ( r') δ( r r') ψ( r) d r' δ 3 ζ, ζ ' χ ζ χ ζ ψ ( r) ψ( r) ψ q ψ q ρ( q) PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

161 ψ ψ ρ q q ( q) artl dnsty orator ρ( r ) δ r r PCD STTACS Unt 3 Eltron Gas n HF & RPA 3 3 drρ( r) drδ r r 3 δ Rams, Many Eltron Thory Eq. 4.4; ag 7 ρ : dmnsonlss dr r r Fourr xanson: ρ( r) ρ V r 6

162 Postv harg dnsty ρ smard out unformly. ltrons r unt volum: ρ/v Fourr xanson of th ltron-ltron Coulomb ntraton [ ] [ ] harg L r j r rj ( ) V PCD STTACS Unt 3 Eltron Gas n HF & RPA Th abov sum s a trl sum, ovr th thr omonnts of. 6

163 r rj ( ) V multlyng both r onsdr frst ' j ( rj r) sds by ' r r ' r r r r r V j ( j ) ( j ) ( j) ' r r r r r V j j ' ( j ) j ' ( j) dr dr 3 ' r r 3 r r j j rj V PCD STTACS Unt 3 Eltron Gas n HF & RPA Th Wav Mhans of Eltrons n Mtals by Stanly Rams, ag 85 63

164 4π 4π ' PCD STTACS Unt 3 Eltron Gas n HF & RPA 3 ' ( r rj) d r j V Dra δ ( ' ) r δ ( ') ' 3 ' rj r 3 ' r r j drj drj rj V ' ( rj r) 3 3 r r j j rj V d r d r ' from sld 7, L9 : FT of C 4π r '.. ( ') ( j ) 4π xt whn [ ] [ ] harg L 64

165 r j Intgratng r rj ( ) V 3 3 j rj V 4π xt whn What s whn { } r r j j d r d r? 3 ' ( r rj) now, d r ( ') j δ V 3 r r j.. for ' : d r j δ δ V PCD STTACS Unt 3 Eltron Gas n HF & RPA Eq.3.; ag 3; F&W 65

166 3 3 j rj V 3 ( r r ) r r r j { } r r j j d r d r j V dr 3 d r δ r j δ Th Wav Mhans of Eltrons n Mtals by Stanly Rams, ag 85 3 d r r Potntal nrgy of th th ltron du to on ltron harg unformly smard throughout th box. PCD STTACS Unt 3 Eltron Gas n HF & RPA 66

167 Potntal nrgy of th th ltron du to th j th : r j r rj ( ) V Potntal nrgy of th th ltron du to all th ltrons: Pr V r r j rj j j j ( j) 4π xt whn 3 d r r PCD STTACS Unt 3 Eltron Gas n HF & RPA 67

168 Potntal nrgy of th th ltron du to all th ltrons: Pr Potntal nrgy of th th ltron du to all th ltrons and th ostv baground: V r r j rj j j j 4π xt whn Ur j j ( j) Sld 3 (rvous lass) trm anls th ostv jllum 4π V 3 d r r r r ( j) PCD STTACS Unt 3 Eltron Gas n HF & RPA 68

169 Potntal nrgy of th th ltron du to all th ltrons and th ostv baground: For xrtd on th th ltron: PCD STTACS Unt 3 Eltron Gas n HF & RPA Ur 4π V j j mr mv U ( r ) war magnt fors gnord 4π r v U( r) m V j m j alraton of th th ltron j j ( ( r )) rj 4π j V m ( ( r r )) r r ( j) 69

170 4π r v U( r) m V m j j ( ( r )) rj Du to th symmtral dstrbuton of th vtors th summand on th 4π RHS for ( j ) s ( ) m Hn no nd to xlud j trm.. 4π r v U( r) m V m PCD STTACS Unt 3 Eltron Gas n HF & RPA j ( ( r )) rj 7

171 4π r v U( r) m Vm alraton of th th ltron ltron harg dnsty ρ( r ) δ r r j r r ( j ) 3 3 drρ( r) dr r r δ ( ) Fourr xanson of harg dnsty ρ( r) ρ V r ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA : dmnsonlss 7

172 ρ Fourr xanson of harg dnsty ρ( r) ρ V 3 r drρ( r ) ρ ρ r r 3 r drδ r r ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA ρ( r ) δ r r 3 r dr δ ( r r ) total numbr of ltrons omonnts: dnsty flutuatons ovr th avrag ρ : dmnsonlss 7

173 r 4π r v U( r) m Vm alraton of th th ltron r 4π v mv j 4π ρ mv j r PCD STTACS Unt 3 Eltron Gas n HF & RPA j ρ r r ( j ) r d r r v ρ ρ dt ρ r ρ ( ) r d dt r ( r) 73

174 ρ ( ) r r d d ρ ρ r r dt dt r ρ r r + r r ρ r ( ) r r PCD STTACS Unt 3 Eltron Gas n HF & RPA 74

175 ρ r ( ) r PCD STTACS Unt 3 Eltron Gas n HF & RPA r r ρ r r from Sld 7: ρ 4π v ρ mv r r r 4 π ' ' r r r ρ ' mv ' ' ' ρ r 4π ' ( ' ) r r ρ ' m V ' ' ' 75 r

176 ρ r 4 π ' ( ' ) r r ρ ' V m ' ' ' ( ) r 4π ρ V m π ρ r 4π ( r ) r ρ 4 ' ρ ' V m ' ' ' V 4 π ' ρ ' V m ' ' ' m ρ ( ' ) r ( ' ) r ' PCD STTACS Unt 3 Eltron Gas n HF & RPA ' trm trms 76

177 ρ ρ r 4π r V m Eq. of moton for dnsty flutuatons 4 π ' ρ ' V m ' ' ' 4 π ' ρ ' ' ' ' ρ ( ' ) r r 4π r ρ V m V m ( ' ) r ow, rmmbr that r ρ ρ Qustons: d@hyss.tm.a. PCD STTACS Unt 3 Eltron Gas n HF & RPA r 4π r V m V m 4 π ' ρ ' ' ' ' ' ρ ( ρ ) 77

178 Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr Eltron Gas n th Random Phas Aroxmatons QUATUM THEORETICAL TREATMET Plasma Osllatons n Fr Eltron Gas Rfrns: Th thory of lasma osllatons n mtals - by S Rams 957 R. Prog. Phys. Also: Chatr 4 n Many Eltron Thory by Stanly Rams PCD STTACS Unt 3 Eltron Gas n HF & RPA 78

179 Fourr xanson of harg dnsty ρ( r) ρ V ρ 3 r drρ( r ) r ρ : dmnsonlss ρ( r ) δ r r ρ 3 r drδ r r ρ r ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA total numbr of ltrons omonnts: dnsty flutuatons ovr th avrag 79

180 ρ ρ r 4π r V m Eq. of moton for dnsty flutuatons ( r ) 4 π ' ρ ' V m ' ' ' 4π ρ ( ' ) r r ρ V m ρ 4 π ' ( ' ) r ρ ' ' ' ρ ' ' V m Smlar to r ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA r 4π r V m 4 π ' ρ ' ' V m ' ' ' ρ ( ρ ) 8

181 ρ r 4π r V V m π Eq. of moton for dnsty flutuatons y PCD STTACS Unt 3 Eltron Gas n HF & RPA 4 ' ρ ρ ' ' mv ' ' ' r ρ ρ ' ρ Quadrat trms n dnsty flutuatons ( ' ) r θ x Phas fators of modulus unty Sum of vtors, n random drtons, n th omlx lan zx+y Random Phas Aroxmaton: glt quadrat trms n dnsty flutuatons omard to th lnar trms. OTE: LIEARIZATIO Bohm & Pns (95,53) 8

182 ρ ρ r 4π r V m π Eq. of moton for dnsty flutuatons RPA 4 ' ρ ρ ' ' m ' ' ' ( r ) r 4π V m ρ ρ Random Phas Aroxmaton LIEARIZATIO from Sld o.5; L : ρ RPA ρ ( r ) V r? ρ 4πρ m r ρ 8

183 ρ RPA ( r ) r 4πρ m ρ Ths trm dos not hav any alraton trm. It has only vlots: du to thrmal moton; t s not du tm-ndndnt to - ntraton st : trm Ο gnorabl for small valus of not gnorabl f would gt larg byond som lmt. must hav an ur lmt RPA + 4πρ ρ ρ ω ρ m PCD STTACS Unt 3 Eltron Gas n HF & RPA 83

184 ρ RPA ( r ) r 4πρ m ρ RPA + 4πρ ρ ρ ω ρ m ρ ω ρ + Th Fourr omonnts of th ltron dnsty osllat at th lasma frquny. PCD STTACS Unt 3 Eltron Gas n HF & RPA 84

185 ρ RPA ( r ) r 4πρ m ρ ρ ω ρ + RPA + Th Fourr omonnts of th ltron dnsty osllat at th lasma frquny. Colltv osllatons PLASMOS of th ltron gas Quantzd olltv xtatons lmntary xtatons W shall now xamn th ur lmt on PCD STTACS Unt 3 Eltron Gas n HF & RPA 85

186 ρ V r r 4 πρ m ρ ρ ω ρ r r V ρ r ρ r r ω r ρ + r ω r PCD STTACS Unt 3 Eltron Gas n HF & RPA 86

187 ρ + r ω glt of trm rqurs: r ( r ) ω st avrag r ρ v ω... for all, nludng for ltrons at th Frm surfa v(max) v v Frm f v f ω max ω v must hav an ur lmt f dnotd by Ur bound to wav numbr of lasma osllatons Lowr bound to wav lngth PCD STTACS Unt 3 Eltron Gas n HF & RPA 87

188 Quantum tratmnt H ψ Eψ Hamltonan for a bul ltron gas n a unform ostv baground jllum otntal H Hl + Hb + Hl b H 4π + m V j j r r ( j) H + m V j j PCD STTACS Unt 3 Eltron Gas n HF & RPA π r r ( j) 88

189 H + m V j j Mthod: transform th abov Hamltonan suh that lasma osllatons aar xltly as solutons of a st of Hamltonans for sml harmon osllators for varous valus of ω wth max v PCD STTACS Unt 3 Eltron Gas n HF & RPA π f r r H ( j) Quantum tratmnt ψ D. Bohm and D. Pns Phys. Rv (95) D. Pns and D. Bohm Phys. Rv (95) D. Bohm and D. Pns Phys. Rv (953) D. Pns Rvws of Modrn Physs 8 84 (956) S Rams 957 R. Prog. Phys. Th thory of lasma osllatons n mtals Eψ 89

190 H π + m V j j PCD STTACS Unt 3 Eltron Gas n HF & RPA r r ( j) Mthod: transform th abov Hamltonan suh that lasma osllatons aar xltly as a st of Hamltonans for sml harmon osllators for varous valus, ω wth max h' v SHO + q + mω q f m m ω ; mω m h' hsho + ω q m H P P + ω Q Q Hrmtan q, : Hrmtan Q, P : Hrmtan? anonally onjugat orators 9

191 H π + m V j j r r ( j) π H r + m V j j PCD STTACS Unt 3 Eltron Gas n HF & RPA ρ * r ρ j + rj r Inlud th j trm, and thn subtrat ts fft! H? j trms would gv : π + ( * ρ ρ ) m V j 9

192 H π + ( * ρ ρ ) m V Transformaton Mthod: start wth a modl Hamltonan 4π H P P M P M ρ wth V Q, P : OT Hrmtan H P P + ω Q Q P P ; Q Q ρ r * + r ρ ρ ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA H Hrmtan 9

193 4π H P P M P M ; ρ V H P P M P ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA H P P M P ρ * H P P M P ρ H P P M P ρ H ρ * + r ρ ρ ρ P P ; P P r MP H sa symmtry ρ Hrmtan MP Q, P : OT Hrmtan ρ 93

194 4π H P P M P M ; ρ V max ω v f ω max v f Th ur lmt on lmts th total dgrs of frdom so that th total numbr of dgrs rmans fxd at 3 H ψ Eψ Th wavfunton must b a funton only of th ltron oordnats. PCD STTACS Unt 3 Eltron Gas n HF & RPA 94

195 ω max v H PCD STTACS Unt 3 Eltron Gas n HF & RPA f Th ur lmt on lmts th total dgrs of frdom so that th total numbr of dgrs rmans fxd at 3 ψ Eψ Th wavfunton must b a funton only of th ltron oordnats. ( ; f ) ψ funton Q ψ ψ Q funton q : ltron oordnats for < [, ] P Q Subsdary ondton Rams: Many Eltron Thory; Eq.4., ag 76 W must not ntrodu any addtonal dgrs of frdom Pψ for < Q P δ ', ' anonal onjugaton 95

196 H ψ ψ Q Eψ for < ;.. Pψ Hψ PCD STTACS Unt 3 Eltron Gas n HF & RPA 4π H P P M P M ; ρ V H + H ψ Eψ ow, w fft a UITARY TRASFORMATIO of H + H th Hamltonan S M Q ρ ; S * ; ; M Q ρ U M Q ρ S S U S UITARITY S U U Rams: Many Eltron Thory; ag 76,77 96

197 U S S M Q ρ ; Transformaton of all orators and th wavfunton undr th untary transformaton S * ; ; M Q ρ M Q ρ S Ω Ω Ω U nw U U U U S S S U U ψ nw U ψ ψ r U r U r nw Q U Q U Q nw U ρ ρ U ρ nw PCD STTACS Unt 3 Eltron Gas n HF & RPA sn ρ r r, Q, ρ : nvarant HOWEVER :, P : hang undr th transformaton 97

198 P Q P U P U nw q F r [, ] δ [, ] ', ' [, ] δ [, ] P Q P F Q ', ' [ P, U] U Q U P U UP nw + Q U P U? U S Fr q FQ Q U PU + UP Q S MQρ ; [ ] Q P, P nw + U P U PCD STTACS Unt 3 Eltron Gas n HF & RPA 98

199 P P + U [ P, U] nw P P nw + U U Q S Q S S Q S U Q PCD STTACS Unt 3 Eltron Gas n HF & RPA U Q S [ P, U] U wth S M Qρ U Q U M ρ ; U Q P P nw + U U Mρ P + U UM ρ P P + M ρ nw Rams: Many Eltron Thory; Eq.4.35, ag 77 99

200 Transformaton of th x omonnt of th momntum orator for th th ltron: U U x nw x q F r [, ] δ [, ] ', ' Fr q U U U U q [, ] U ( ) U U U x nw x x qx U q x PCD STTACS Unt 3 Eltron Gas n HF & RPA

201 U ( ) U U U x nw x x qx U q x [, ] [ U], x x nw x U U U U U q + U [ U], x nw x x PCD STTACS Unt 3 Eltron Gas n HF & RPA

202 + U [ U], x nw x x ( ) U x nw x q x PCD STTACS Unt 3 Eltron Gas n HF & RPA U S ; ow : U wth S M Q ρ ; sn, U x U q [ ] U S ρ q q q U U M Q x x x ρ x nw x U U M Q q x ; ρ ( x ) nw x + M Q ; q x x

203 ρ x nw x M Q q x ρ + ; rj qx qx j q x r ρ r + { r } M Q x nw x x ; r ( x ) x nw x x ; PCD STTACS Unt 3 Eltron Gas n HF & RPA M Q r Smlar rlatons for y and z omonnts 3

204 M Q nw ; r Rams: Many Eltron Thory; Eq.4.38, ag 78 Smlar rlatons for y and z omonnts r, Q, ρ : nvarant undr th transformaton HOWEVER,, P : hang undr th transformaton PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

205 H ψ ( ; f ) ψ funton Q < ψ Eψ Th wavfunton must b a funton only of th ltron oordnats. funton q : ltron oordnats W must not ntrodu any addtonal dgrs of frdom ψ Q for < [, ] ' Subsdary ondton PCD STTACS Unt 3 Eltron Gas n HF & RPA Pψ for < P Q P δ, ' Q anonal onjugaton 5

206 ψ Q for < P Q Pψ for < P ψ < for ( )( ψ ) nw nw U PU U for < P P + M ρ from sld 95: nw ( ) for + < P M ρ ψ nw Qustons: d@hyss.tm.a. Subsdary ondton PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

207 Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr 3 Eltron Gas n th Random Phas Aroxmatons Plasma Osllatons n Fr Eltron Gas Rfrns: Th thory of lasma osllatons n mtals - by S Rams 957 R. Prog. Phys. Also: Chatr 4 n Many Eltron Thory by Stanly Rams PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

208 H π + ( * ρ ρ ) m V H P P M P ρ wth M 4π V Hamltonan for a bul ltron gas n a unform ostv baground jllum otntal Ω Ω Ω nw U U U U nw ; PCD STTACS Unt 3 Eltron Gas n HF & RPA U M Q S S ; r, Q, ρ : nvarant undr th transformaton W now as: H nw r M Qρ H U H + H U P P + M ρ nw? 8

209 Transformaton of all orators and th wavfunton undr th untary transformaton Ω Ω Ω nw U U U U S ψ nw U ψ ψ Subsdary ondtons ψ Q S U ; for < Pψ for < S M Qρ PCD STTACS Unt 3 Eltron Gas n HF & RPA P ψ < for nw nw 9

210 H + M m H P P M P ρ H * ( ρ ρ ) + H H + H ψ Eψ * + M P P M P m + ρ ρ ρ H Hl + Hb + Hl b Eltrons + Postv Baground Auxlry Hamltonan π M V Our quston: PCD STTACS Unt 3 Eltron Gas n HF & RPA H H U H + H U nw?

211 H + H + M + P P M P (T ) nw * m ρ ( ρ ρ ) T T Our quston: + ; ρ x nw x M Q q x Hnw U H + H U? r j MQ ( j + ) m m j m nw j M M Q Q m j ( + ) r Rams: Many Eltron Thory; Eq.4.48, ag 79 T 3 (T ) nw ( * M ρ ρ ) PCD STTACS Unt 3 Eltron Gas n HF & RPA ; sn : nvarant ρ

212 H + H + M + P P M P * m ρ ( ρ ρ ) T (T ) ( * M ) nw ρ ρ ; sn : nvarant ρ sarat th summaton n two arts: for () > and () < ; ω max v f (T ) nw H sr.. * M + ; ( * ρ ρ M ρ ρ ) ; > < Short rang long rang PCD STTACS Unt 3 Eltron Gas n HF & RPA

213 H + H + M + P P M P * m ρ ( ρ ρ ) U P P M P ρ U (T 3 ) nw P P + M ρ nw ( ) ( ρ.. ) P P + M P P + M nw nw T 3 ( P ) P ( P + M ρ )( P + M ρ ) nw ( + ) P P P P + M P ρ ρ P + M ρ ρ nw ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

214 ( + ) P P P P + M P ρ ρ P + M ρ ρ nw * + r & P P ρ ρ ρ ( ) ( * M + ) P ρ ρ P M P ρ M ρ P + < < < shral symmtry of vtors ( ) ( * M + ) P ρ ρ P M P ρ M ρ P + < < < < Hn: + ( ) ( ρ ρ ) M P M P < < ( ρ + ρ M P ρ ) M P P < PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

215 U P P M P ρ U (T 3 ) nw P P U P P U nw ( + ) P P P P + M P ρ ρ P + M ρ ρ nw ( P ) P P P + M ( P ρ+ ρ P) nw < < < ( ρ + ρ ρ ) M P P M P < < + < M ρ ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

216 (T 3 ) nw U P P M P ρ U nw ( P ) P P P + M ( P ρ+ ρ P) < < < ( ρ ) ( ρ ) MP U MP U? nw ( ρ ρ ρ ) w hav sn that: M P + P M P + < < P P P P M P nw < < < + + < < ρ M M ρ ρ ρ ρ * 6 PCD STTACS Unt 3 Eltron Gas n HF & RPA

217 (T 3 ) nw U P P M P ρ U ( ρ ) ( ρ ) MP U MP U? nw MPρ MPρ + M ρ ρ nw * + r & P P ρ ρ ρ ( ) ( ρ.. ) P P + M ρ nw P P + M P P + M nw nw ( ) ( MPρ M P ) ρ nw nw M P + M ρ ρ ρ 7 PCD STTACS Unt 3 Eltron Gas n HF & RPA

218 U P P M P ρ U (T 3 ) nw MPρ MPρ + M ρ ρ nw * + r & P P ρ ρ ρ MPρ MPρ + M ρ ρ * nw MP ρ MP ρ M ρ * ρ nw Earlr, w showd that: P P P P M P M ρ ρ + ρ + (T 3 ) nw has * nw < < < < 8 PCD STTACS Unt 3 Eltron Gas n HF & RPA

219 H + H * + M P P M P m + ρ ρ ρ T T T 3 W had asd: H H U H + H U nw? PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

220 H nw (T ) nw H ( ) j + (T ) nw m m j m j MQ r M M Q Q j ( + ) r ( * ) ( * + M ρ M ) ρ + ρ ρ ; ; > < Short rang long rang j (T 3 ) nw + P P + M P ρ + M * < < < ρ ρ (T 3 ) nw has MP ρ M * PCD STTACS Unt 3 Eltron Gas n HF & RPA ρ ρ

221 H nw H sr.. H ( ) j + m m j m j MQ r M M Q Q j ( + ) r ( * ) ( * + M ρ M ) ρ + ρ ρ ; ; > < Short rang long rang + P P + M P ρ + M * < < < ρ ρ j > * Hsr.. M ; ( ρ ρ ) MP ρ M ρ ρ * PCD STTACS Unt 3 Eltron Gas n HF & RPA

222 H nw H ( ) j + Th thr trms shown by th arrows togthr anl ah othr. m m j m j MQ ; r M M Q Q ( ρ ρ ) * + H sr.. + M > < + P P + M ρ ρ * < < j ( + ) r j PCD STTACS Unt 3 Eltron Gas n HF & RPA (T 3 ) nw has * M ρ ρ

223 H nw H ( ) j + m m j m j + P P + < MQ H sr.. r M M Q Q ; M j ( + ) r j n th nxt st, w us: < < P P P P M 4π 4π V V.. M PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

224 H nw m m H ( ) j + j m j MQ π sr.. ; V < r M M Q Q + H + P P j ( + ) r j PCD STTACS Unt 3 Eltron Gas n HF & RPA m m j j M M Q Q M M Q Q ( + ) r ( + ) r j j 4

225 m m m m j j j j M M Q Q M M Q Q shral symmtry of ( + ) r ( + ) r M M Q Q ( + ) M M Q Q ( + ) j j vtors r r j j PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

226 m m j j M M Q Q r ( + ) M M Q Q r ( + ) j M j 4π V M m + m j M Q Q M M Q Q r ( + ) j PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

227 m m m + m j j j M Q Q M M Q Q r ( + ) M M Q Q r ( + ) M M Q Q r ( + ) j M j j 4π M V shral symmtry of vtors PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

228 H H nw ( j + ) HH nw j m m j m j MQ sr.. ; V < r M M Q Q π + H + P P sr.. ; V ( + ) PCD STTACS Unt 3 Eltron Gas n HF & RPA j ( + ) r M Q ( j + ) + M Q Q m m m rj + M M Q Q m j Qustons? Wrt to: d@hyss.tm.a.n π + H + < P P r j j 8

229 Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr 4 Eltron Gas n th Random Phas Aroxmatons Plasma Osllatons n Fr Eltron Gas Rfrns: Th thory of lasma osllatons n mtals - by S Rams 957 R. Prog. Phys. Also: Chatr 4 n Many Eltron Thory by Stanly Rams PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

230 H H nw Hnt M Q ( j + ) + M Q Q m m m j + m ( H ) nt MQ j + m j PCD STTACS Unt 3 Eltron Gas n HF & RPA j sr.. ; V rj π + H + M M Q Q < r j r ( + ) P P K K M M Q Q m j j r j ( + ) 3

231 H H H M Q Q nw + nt + m m + K + H π + P P sr.. ; V < ( H ) nt MQ j + m K M M Q Q m j j r j M M r j ( + ) PCD STTACS Unt 3 Eltron Gas n HF & RPA 4π V 4π V 3

232 M M H H H M Q Q nw + nt + m m π sr.. ; V < + K + H + P P 4π V 4π V 4πρ ω ; ρ m V M ω m P M M M 4 mω ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA π V P mω ρ P V V 3

233 H Hnw + Hnt + Q Q m P + K + H π + P P sr.. ; V < ω H π H + P P + Q Q nw ( ω ) m ; V + H + H + K sr.. nt PCD STTACS Unt 3 Eltron Gas n HF & RPA 33

234 H π H + P P + Q Q nw ( ω ) m ; V + H + H + K sr.. nt EXACT Rams: Many Eltron Thory Eq.4.58, ag 58 > * H sr.. M ; ( ρ ρ ) ( H ) nt MQ j + m j r j K M M Q Q m j Random Phas Aroxmaton LIEARIZATIO j ( + r r ) PCD STTACS Unt 3 Eltron Gas n HF & RPA j 34

235 H Hnw ( P P + ω Q Q) + + m ; Quas artls ntratng va H s.r. π + H + H nt s.. r ; V > H M * sr.. ; short rang ntraton ( ρ ρ ) M 4π V H > π V sr.. ; ( * ρ ρ ) PCD STTACS Unt 3 Eltron Gas n HF & RPA 35

236 Potntal nrgy of th th ltron du to all th ltrons and th ostv baground: trms anl th ostv jllum Ur 4π V j j r r ( j) Total otntal nrgy du to Coulomb ntratons of all th ltrons and th ostv baground: π Ur V j j Sum ovr all th ltrons,,,.. r r ( j) PCD STTACS Unt 3 Eltron Gas n HF & RPA 36

237 Total otntal π nrgy du to r rj Ur ( ) Coulomb V j j ntratons of all th ltrons and th ostv add and subtrat j trms baground: π ( r rj) π Ur ( ) V V ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA j V slf r ; π nrgy π π * Ur ( ) ρ V ρ V π ( * Ur ρ ρ ) V 37

238 Total otntal nrgy du to Coulomb ntratons of all th ltrons and th ostv baground: FT of FT μr 4π r μ + of SC C 4π r π ( * Ur ρ ρ ) H V > π V sr.. ; > μ + κ κ μ ( * ρ ρ ) Srnd Coulomb PCD STTACS Unt 3 Eltron Gas n HF & RPA H sr.. total otntal nrgy du to SHORT RAGE ntratons 38

239 H nt MQ + m j ( ) j r K M M Q Q m j { } r ( + ) j j Bohm and Pns: FURTHER transformaton of th Hamltonan HH nw PCD STTACS Unt 3 Eltron Gas n HF & RPA an b arrd out to aount for H nt. 39

240 ( H ) nt MQ j + m j ; r j H Hnw + P P + Q Q m ( ω ) π V H sr.. H nt K Ths two trms gt modfd as a rsult of ths furthr transformaton Bohm and Pns: FURTHER transformaton of th Hamltonan an b arrd out to aount for H nt. PCD STTACS Unt 3 Eltron Gas n HF & RPA Rams: Many Eltron Thory; ag 8 4

241 H Hnw + P P + Q Q m F ( s Sld 56, L) ( ω ) π V H sr.. H nt K Ths two trms gt rlad, on ; aount of furthr β transformaton, + + by m 6 wth β ω ω + E ω ω m and F wa dsrson. max ( P P ω Q Q) ω v f PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

242 H Hnw + P P + Q Q m F ( s Sld 56, L) ( ω ) π V H sr.. H nt K Ths two trms gt rlad, on ; aount of furthr β transformaton, + + by m 6 wth β ω ω + E ω ω m and F wa dsrson. max ( P P ω Q Q) ω v f PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

243 H Hnw P P + Q Q + ( ω ) π + H + H + K m ; V sr.. nt π H H P P Q Q H nw + ( + ω ) + s.. r m ; V Subsdry ondton: ( ) for + < P M ρ ψ nw What nd of a systm dos ths Hamltonan dsrb? PCD STTACS Unt 3 Eltron Gas n HF & RPA 43

244 H Hnw + P P + Q Q m R-arrang th trms: ( ω ) π + V ; H s.. r H Hnw P P + Q Q ; ( ω ) + π + Hsr.. m ; V PCD STTACS Unt 3 Eltron Gas n HF & RPA 44

245 Rams: Many Eltron Thory; Eq.4.63, ag 8 π H H P P Q Q H nw ( + ω ) + + s.. r m ; V ; Subsdry ondton: for P ψ < nw nw What nd of a systm dos ths Hamltonan dsrb? SHO Hamltonan H + mω x m Plasma osllatons Quas artls ntratng va H s.r. A onstant trm that s art of th ltron slf-nrgy whh not aountd for n th lasma osllatons. Long rang ntraton s aountd for by PLASMOS, and th short rang art that rmans s a srnd Coulomb ntraton. PCD STTACS Unt 3 Eltron Gas n HF & RPA 45

246 Random Phas Aroxmaton LIEARIZATIO j K M M Q Q m j ( + r r ) Bohm and Pns Transformaton of th Hamltonan Othr aths to RPA Equaton of Moton mthod Row (968) Grns funton mthod Thoulss (96) Dagrammat rturbaton thory.. Lnarzd Tm Dndnt Hartr/Dra Fo Alx Dalgaarno.. Waltr Johnson RRPA PCD STTACS Unt 3 Eltron Gas n HF & RPA 46 j Qustons: d@hyss.tm.a.

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

General theorems of Optical Imaging systems

General theorems of Optical Imaging systems Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII 3.1. DIRAC EQUATION SUMMARY AND NOTATION April, 015 Lctur XXXIII Rlativsitic Quantum Mchanics 3.1 Dirac Equation Summary and notation W found that th two componnt spinors transform according to A = ± σ

Διαβάστε περισσότερα

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師 A G C T Juks and Cantor s (969) on-aramtr modl A T C G A G 0 0 0-3 C T A() A( t ) ( 3 ) ( ) A() A() ( 3 ) ( ) A( A( A( A( t ) A( 3 A( t ) ( ) A( A( Juks and Cantor s (969) on-aramtr modl A( A( t ) A( d

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2

A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2 Journal of Rlablty and Statstcal Studs; ISSN (Prnt: 0974-804, (Onln: 9-5666 Vol. 0, Issu (07: 79-0 A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND- G.S. Davd Sam

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Pairs of Random Variables

Pairs of Random Variables Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error onvcton rvtvs brry 7, nt Volm Mtho or onvcton rvtvs Lrry rtto Mchncl ngnrng 69 omttonl l ynmcs brry 7, Otln Rv nmrcl nlyss bscs oncl rslts or son th sorc nlyss Introc nt-volm mtho or convcton Not n or

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

16 Electromagnetic induction

16 Electromagnetic induction Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

UNIT 13: TRIGONOMETRIC SERIES

UNIT 13: TRIGONOMETRIC SERIES UNIT : TRIGONOMETRIC SERIES UNIT STUCTURE. Larg Objctvs. Itroducto. Grgory s Srs.. Gral Thorm o Grgory s Srs. Summato of Trgoomtrc Srs.. CS Mthod.. Srs Basd o Gomtrc or Arthmtco-Gomtrc Srs.. Sum of a Srs

Διαβάστε περισσότερα

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field L 0 Tuto Rfcton of pn wvs Wv mpdnc of th tot fd Rfcton of M wvs Rfcton tks pc whn n M wv hts on bound. Pt of th wv gts fctd, nd pt of t gts tnsmttd. Popgton dctons nd mptuds of th fctd nd tnsmttd wvs dpnd

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Alterazioni del sistema cardiovascolare nel volo spaziale

Alterazioni del sistema cardiovascolare nel volo spaziale POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016

Διαβάστε περισσότερα

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada

Διαβάστε περισσότερα

Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών

Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών Rlativ Valuatio Αρτίκης Γ. Παναγιώτης Rlativ Valuatio Rlativ Valuatio Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών Ø Επιλογή οµοειδών επιχειρήσεων σε όρους κινδύνου, ανάπτυξης

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Chapter 3 Prior Information

Chapter 3 Prior Information Chatr Pror Iorato Subjtv Dtrato o th Pror Dst Svral usul aroah a b us to tr th ror st Th ar th hstogra aroah th rlatv llhoo aroah athg a gv utoal or 4 CDF trato () Th hstogra aroah Dv th aratr sa to trvals

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Solution Set #2

Solution Set #2 . For the followng two harmon waves: (a) Show on a phasor dagram: 05-55-007 Soluton Set # phasor s the omplex vetor evaluated at t 0: f [t] os[ω 0 t] h f [t] 7os ω 0 t π f [t] exp[ 0] + 0 h f [t] 7exp

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ITU-R P ITU-R P (ITU-R 204/3 ( )

ITU-R P ITU-R P (ITU-R 204/3 ( ) 1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I Itrtol Mthtcl Foru Vol 6 0 o 64 379-388 So otrc Proprts o Clss o Uvlt Fuctos wth Ntv Cocts Dd y Hdrd Product wth Frctol Clculus I Huss Jr Adul Huss Dprtt o Mthtcs d Coputr pplctos Coll o Sccs Uvrsty o

Διαβάστε περισσότερα

Multi-GPU numerical simulation of electromagnetic waves

Multi-GPU numerical simulation of electromagnetic waves Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2 Mehanikateoretičnavprašanjainodgovori 1/12 Newtonovamehanika 1. Določiravninogibanjatočkevpoljucentralnesile. Ravninagibanjagreskozicentersileinimanormalovsmerivrtilne količine 2. Zapišiperiodogibanjapremočrtnegagibanjapodvplivompotenciala

Διαβάστε περισσότερα

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

ο ο 3 α. 3* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο 18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS . ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS. Givn :.53 Å 3?? n n ε πm n n Radius of n t Bo obit, n n ε πm n n 3 n 3 n 3 (3) () (.53).77Å n n ( ) () (.53) 53 Å. Givn : 3 7.7 x m? n n ε πm Radius of

Διαβάστε περισσότερα

ψ(x) ψ (x) =exp[iγ a Θ a ] ψ(x) =1+iΓ a Θ a ψ ±

ψ(x) ψ (x) =exp[iγ a Θ a ] ψ(x) =1+iΓ a Θ a ψ ± CHPR III: SYMMRIS Sytrs OFo CD CD CD s b on local SU( c gag sytry In aton: global sytrs. Nöthr s hor L CD ( ( [γ D ] ( 4 Ga ν(g ν a ( (a 8 whr D g ( ( a( λ a an (. s Lt L CD b nvarant nr a global transoraton

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal

Διαβάστε περισσότερα

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS alculus and Diffrnial Equaions pag of 7 ALULUS and DIFFERENTIAL EQUATIONS Th following 55 qusions concrn calculus and diffrnial quaions. In his vrsion of h am, h firs choic is always h corrc on. In h acual

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Review Exercises for Chapter 7

Review Exercises for Chapter 7 8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6

Διαβάστε περισσότερα