Structure constants of twist-2 light-ray operators in the triple Regge limit

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Structure constants of twist-2 light-ray operators in the triple Regge limit"

Transcript

1 Structure constants of twist- light-ray operators in the triple Regge limit I. Balitsky JLAB & ODU XV Non-perturbative QCD 13 June 018 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

2 Outline 1 Setting the stage: correlator of 3 light-ray operators Three-point correlator of local operators: Light-ray operators as analytic continuation of local operators Three-point correlator of LR operators: what to expect CF of two light-ray operators in the BFKL limit Correlation function of two Wilson frames in the BFKL approximation. CF of two light-ray operators. 3 3-point CF in the BK limit 3-point CF of Wilson frames from the BK equation Structure constants at ω 1 = ω + ω point CF in the triple Regge limit BFKL kernel in a triple Regge limit Structure constants at the triple BFKL point 5 Conclusions and outlook I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

3 Supermultiplet of twist- operators SU 4 singlet operators. (Korchemsky et al) S l 1n(z) = F l n(z) + l 1 4 Λ l n(z) + S l n(z) = F l n(z) 1 4 Λ l n(z) S l 3n(z) = F l n(z) l + 1 Λ l n(z) + l(l 1) Φ l 4 n(z) l(l + 1) Φ l 7 n(z) (l + 1)(l + ) Φ l 4 n(z) F l n(z) i l tr F µn l n C 5 l ( n + n n ) F µ n + O(g ) Λ l n(z) i l 1 l 1 tr λ n C 3 ( n + n ) l 1 λ(z) + O(g ) n Φ l n(z) i l tr φ I l 1 n C 3 l ( n + n n ) φ I (z) + O(g ) C λ l (x) - Gegenbauer polynomials, n = 0, and F µ n F µν n ν etc. All operators have the same anomalous dimension γ S1 l (α s ) γ l (α s ) = α s π N c[ψ(l 1) + C] + O(αs ), γ S l = γ S1 l+1, γs3 l = γ S1 l+ I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

4 3-point CF of local operators Rychkov et al: CF of 3 operators with spin (n 1 = n = n 3 = 0) < O l 1 n1 (x)o l n (y)o l 3 n3 (z) >= The sum runs over m 1,m 13,m 3 0 λ m1,m 3,m l 1 l l 3 m 3 m 13 m 1 m 1 = l 1 m 1 m 13 0, m = l m 1 m 3 0, m 3 = l 3 m 13 m 3 0 where i is dimension and l i is Lorentz spin. 1 3 l 1 l l 3 = (V 1,3) l1 m1 m13 (V,31 ) l m1 m3 (V 3,1 ) l3 m13 m3 (H 1 ) m1 (H 13 ) m13 (H 3 ) m3 x y m 3 m 13 m 1+ 3 x z 1+ 3 y z V and H - some tensor structures I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 4

5 3s If we define forward operators Φ l n(x ) = du φ a AB l nφ ABa (un + x ), Λ l n(x ) = du i λ a A l 1 n σ n λ a A (un + x ) F l (x ) = du Fni a l n Fn ai (un + x ), the renorm-invariant operators are S l 1n = Fl n Λl n 1 Φl n, S l n = Fl n S l 3n = Fl n l + (l 1) Λl n (l + 1)(l + ) Φ l n l(l 1) 1 (l + 1) 4(l 1) Λl n + 6(l 1) Φl n and Rychkov s structures reduce to one (x n 1 = x n = x n 3 = 0) S l 1 n1 (x 1 )S l n (x )S k 3 n 3 (x 3 ) = = C(g, l i ) (n 1 n ) l1+l l3 1 (n 1 n 3 ) l 1 +l 3 l 1 (n n 3 ) l +l 3 l 1 1 x x x I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 5

6 3s If we define forward operators Φ l n(x ) = du φ a AB l nφ ABa (un + x ), Λ l n(x ) = du i λ a A l 1 n σ n λ a A (un + x ) F l (x ) = du Fni a l n Fn ai (un + x ), the renorm-invariant operators are S l 1n = Fl n Λl n 1 Φl n, S l n = Fl n S l 3n = Fl n l + (l 1) Λl n (l + 1)(l + ) Φ l n l(l 1) 1 (l + 1) 4(l 1) Λl n + 6(l 1) Φl n and Rychkov s structures reduce to one (x n 1 = x n = x n 3 = 0) S l 1 n1 (x 1 )S l n (x )S k 3 n 3 (x 3 ) = = C(g, l i ) (n 1 n ) l1+l l3 1 (n 1 n 3 ) l 1 +l 3 l 1 (n n 3 ) l +l 3 l 1 1 x x x Our aim is to find the structure constants C(g, l i ) in the BFKL limit l i 1 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 5

7 Light-ray operators Gluon light-ray (LR) operator of twist F a i(x + + x )[x +, x + ] ab F b i (x + + x ) Forward matrix element - gluon parton density 1 z µ z ν p Fµξ(z)[z, a 0] ab Fν bξ (0) p µ z =0 = (pz) dx B x B D g (x B, µ) cos(pz)x B Evolution equation (in gluodynamics) µ d dµ Fa i(x + + x )[x +, x + ] ab F b i (x + + x ) = x + x + dz + z + x + 0 dz + K(x +, x + ; z +, z + ; α s )F a i(z + + x )[z +, z + ] ab F b i (z + + x ) Forward LR operator F(L +, x ) = dx + F i(l a + + x + + x )[L + + x +, x + ] ab F (x bi + + x ) I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 6

8 Light-ray operators Conformal LR operator (j = 3 + iν) F µ j (x ) = 0 dl + L 1 j + F µ (L +, x ) Evolution equation for forward conformal light-ray operators µ d dµ F j(z ) = 1 γ j (α s ) is an analytical continuation of γ n (α s ) 0 du K gg (u, α s )u j F j (z ) I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 7

9 Supermultiplet of LR operators Gluino and scalar LR operators Λ(L +, x ) = i dx + [ λ a (L + + x + + x )[x + + x +, x + ] ab σ λ b (x + + x ) + c.c] Φ(L +, x ) = dx + φ a,i (L + + x + + x )[x + + x +, x + ] ab φ b,i (x + + x ) Λ j (x ) = 0 SU 4 singlet LR operators. dl + L j+1 + Λ(L +, x ), Φ j (x ) = 0 dl + L j+1 + Φ(L +, x ) S 1j (x ) = F j (x ) + j 1 8 Λ j(j 1) j(x ) Φ j (x ) 8 S j (x ) = F j (x ) 1 8 Λ j(j + 1) j(x ) + Φ j (x ) 4 S 3j (x ) = F j (x ) j + 4 Λ (j + 1)(j + ) j(x ) Φ j (x ) 8 All operators have the same anomalous dimension γ S 1 j (α s ) γ j (α s ) = α s π N c[ψ(j 1) + C] + O(αs ), γ S j = γ S 1 j+1, γs 3 j = γ S 1 j+ I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 8

10 Correlators of LR operators Since LR operators are analytic continuation of local operators, we expect (j 1 = 3 + iν 1, j = 3 + iν ) S j 1 n1 (x 1 )S j n (x ) = δ(ν 1 ν )f (α s, j) (n 1 n ) ω 1(µ ) γ(j 1,α s) x 1 (αs,j 1) for -point CF and similarly (j i 1 + ω i ) S j 1 n1 (x 1 ) S j n (x ) S j n3 (x 3 ) = (n 1 n ) ω1+ω ω3 (n 1 n 3 ) x F(α s, ω 1, ω, ω 3 ) (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) ω 1 +ω 3 ω ω +ω 3 ω 1 (n n 3 ) x x 3 µ γ(j 1) γ(j ) γ(j 3 ) for the 3-point CF ( = j + γ(j) = 1 + ω + γ ω - dimension). I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 9

11 Correlators of LR operators Since LR operators are analytic continuation of local operators, we expect (j 1 = 3 + iν 1, j = 3 + iν ) S j 1 n1 (x 1 )S j n (x ) = δ(ν 1 ν )f (α s, j) (n 1 n ) ω 1(µ ) γ(j 1,α s) x 1 (αs,j 1) for -point CF and similarly (j i 1 + ω i ) S j 1 n1 (x 1 ) S j n (x ) S j n3 (x 3 ) = (n 1 n ) ω1+ω ω3 (n 1 n 3 ) x F(α s, ω 1, ω, ω 3 ) (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) ω 1 +ω 3 ω ω +ω 3 ω 1 (n n 3 ) x x 3 µ γ(j 1) γ(j ) γ(j 3 ) for the 3-point CF ( = j + γ(j) = 1 + ω + γ ω - dimension). The goal is to calculate f (α s, j) and F(α s, j 1, j, j 3 ) at j i = 1 + ω i in the BFKL limit g 0, ω 0, and g ω = fixed I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 9

12 Warm-up exercise: LO Since LR operators are analytic continuation of local operators, we expect S j 1 n1 (x 1 ) S j n (x ) S j n3 (x 3 ) = (n 1 n ) ω1+ω ω3 (n 1 n 3 ) x = j + γ(j) - dimension Warm-up exercise: LO F(α s, ω 1, ω, ω 3 ) (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) ω 1 +ω 3 ω ω +ω 3 ω 1 (n n 3 ) x x F L 1 F x 1 n 1 F x n 3 F + perm. L n L3 x 3 F F I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

13 Warm-up exercise: LO S 1+ω 1 n 1 (x 1 )S 1+ω n (x )S 1+ω (N 3 c 1)F(α s, ω 1, ω, ω 3 ) n 3 (z 3 ) = 4π 6 (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) 1 (n 1 n ) ω 1 +ω ω 3 (n 1 n 3 ) ω 1 +ω 3 ω (n n 3 ) ω +ω 3 ω 1 x 1 x 13 x 3 x 1 x 13 x 3 F(α s, ω 1, ω, ω 3 ) = Γ ( 1 + ω 1 + ω ω 3 ) Γ ( 1 + ω + ω 3 ω 1 ) ( ω 1 + ω 3 ω ) Γ ) Γ(1 ω i )Γ ( ω 1 + ω ω 3 + ) Γ ( ω + ω 3 ω 1 + ) Γ ( ω 1 + ω 3 ω i { (e iπω 3 1 )[ e iπ(ω 1 ω ) + e iπ(ω ω 1 ) e iπω ] 3 + ( e iπω 1 1 )[ e iπ(ω ω 3 ) + e iπ(ω 3 ω ) e iπω ] 1 + ( e iπω 1 )[ e iπ(ω 3 ω 1 ) + e iπ(ω 1 ω 3 ) e iπω ] } +e iπ(ω 1+ω ω 3 ) + e iπ(ω +ω 3 ω 1 ) + e iπ(ω 1+ω 3 ω ) e iπ(ω 1+ω +ω 3 ) At small ω s F(ω 1, ω, ω 3 ) π (ω 1 + ω + ω 3) π (ω 1 + ω + ω 3 ω 1 ω ω 1 ω 3 ω ω 3 ) I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

14 In higher orders one should expect Sn 1+ω1 1 (x 1 )Sn 1+ω (x )Sn 1+ω3 3 (z 3 ) = = N c 1 1 4π 6 x1 x 13 x 3 (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) (n 1 n ) ω1+ω ω3 (x1 ) (n 1 n 3 ) ω 1 +ω 3 ω (x13 ) (n n 3 ) ω +ω 3 ω 1 (x3 ) ) ] n ω i F(ω 1, ω, ω 3 ; g ) F(ω 1, ω, ω 3 ) [1 + (g c n F(ω 1, ω, ω 3 ; g ), It could be obtained from the CF of three color dipoles with long sides collinear to n 1, n, and n 3 and transverse short sides. This means analyzing QCD (or N=4 SYM) in the triple Regge limit. Triple Regge limit: scattering of 3 particles moving with speed c in x, y, and z directions. I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

15 In higher orders one should expect Sn 1+ω1 1 (x 1 )Sn 1+ω (x )Sn 1+ω3 3 (z 3 ) = = N c 1 1 4π 6 x1 x 13 x 3 (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) (n 1 n ) ω1+ω ω3 (x1 ) (n 1 n 3 ) ω 1 +ω 3 ω (x13 ) (n n 3 ) ω +ω 3 ω 1 (x3 ) ) ] n ω i F(ω 1, ω, ω 3 ; g ) F(ω 1, ω, ω 3 ) [1 + (g c n F(ω 1, ω, ω 3 ; g ), It could be obtained from the CF of three color dipoles with long sides collinear to n 1, n, and n 3 and transverse short sides. This means analyzing QCD (or N=4 SYM) in the triple Regge limit. Triple Regge limit: scattering of 3 particles moving with speed c in x, y, and z directions. What we can do in a meantime is to take n 3 n and consider the CF of a dipole in n 1 = n + direction and two dipoes in n = n 3 = n directions which can be obtained using the BK evolution. I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

16 CF of two light-ray operators S j + (x ) = dx + dl + L 1 j + Fa i(l + + x + + x )[L + + x +, x + ] ab F (x bi + + x ) 0 + gluinos + scalars S j (y ) = dy dl L 1 j Fa i(l + y + y )[L + y, y ] ab F (y bi + y ) 0 + gluinos + scalars A general formula for the correlation function of two LR operators reads S + j= 3 +iν(x )S j = 3 +iν (y ) = δ(ν ν )a(j, α s )(µ ) γ(j,αs) ((x y) )j+1+γ(j,αs) δ(ν ν ) reflects boost invariance: x + λx +, x 1 λ x does not change the correlation functions which depend on x + y. We need to reproduce it and find γ(j, α s ) and a(j, α s ) as j 1. I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

17 Correlator of two Wilson frames Wilson frame : light-ray operator with point-splitting in the transverse direction I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

18 Correlator of two color dipoles U σ (x 1, z )V σ+ (y 1, w ) = = 8g4 dν ν d ( z 0 (x 1 z) N ( ν ) (x 1 z 0 ) (z z 0) ( (y 1 w) ) 1 iν ( ) ℵ(ν) σ+ σ (y 1 z 0 ) (w z 0). σ +0 σ 0 where ℵ(ν) = αs π N c[ ψ(1) ψ ( 1 + iν 1) ψ ( 1 iν 1)]. From experience with 4-point CFs in the BFKL limit ) 1 +iν ( σ+ σ ) ℵ(ν) σ +0 σ 0 i (((x 1 y 3 ) ) ℵ(ν) ((x 3 y 1 ) ) ℵ(ν) sin πℵ(ν) (x13 ) ℵ(ν) (y 13 ) ℵ(ν) ((x 1 y 1 ) ) ℵ(ν) ((x 3 y 3 ) ) ℵ(ν) (x13 ) ℵ(ν) (y 13 ) ℵ(ν) (For small x13 and y 13 Wilson frames are approximately conformally invariant) XV Non-perturbative QCD 13 June I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit ).

19 Correlator of two Wilson frames V. Kazakov, E. Sobko, I.B. S +ω 1 S +ω gl+ gl = g 4 in 4π 3 ν δ(ω 1 ω ) ( ν ) ( x 13 y 13 ℵ(ν) )1+ where dν( )ℵ(ν) ω B( ω, ω ℵ(ν)) 1 eiπ(ℵ(ν) ω) sin πℵ(ν) ( ) ( x 13 ) 1 +iν ( y 13 ) 1 +iν ( x y G(ν) + (ν ν) )1+iν 4 1 iν π 3 (i ν) G(ν) = i Γ ( 3 iν)γ (1 + iν) sinh(πν). Now we can carry out the last integration over ν as the pole contribution at ω = ℵ(ν). We pick here the first pole Ψ-functions in pomeron intercept which corresponds to the operator with the lowest possible twist=. I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

20 Correlator of two Wilson frames V. Kazakov, E. Sobko, I.B. + (x 1, x 3 )S 1+ω (y 1, y 3 ) δ(ω 1 ω )Υ( γ) (x 13 ) γ ω (y 13 ) γ ω x 13, y 13 0 ((x y) )+ γ, S 1+ω 1 Υ( γ) = N g 4 1 γ π γ Γ (1 γ )Γ ( 1 + γ ) sin(π γ)ˆℵ ( γ) γ = 1 + iν is the solution of ω = ˆℵ( γ) We use the point-splitting regularization in the orthogonal direction for our light-ray operators cutoffs are defined as Λ x = 1 x 13 and Λ y = 1 y 13 Rewrite + (x 1, x 3 )S 1+ω (y 1, y 3 ) δ(ω 1 ω )Υ(γ + ω) (x 13 ) γ (y 13 ) γ x 13, y 13 0 ((x y). )+ω+γ S 1+ω 1 The anomalous dimension γ = γ ω satisfies - Lipatov-Fadin formula ω = ˆℵ(γ + ω) = ˆℵ(γ) + ˆℵ (γ)ˆℵ(γ) + o(g 4 ). XV Non-perturbative QCD 13 June I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit

21 CF of three Wilson frames: one in + direction and two in - x 3 [x 1, x 3 ] Wilson frame (without F insertions) x1 x3 dx 1 dx 3 (x 1 x 3 ) ω [x 1, x 3 ] x 1 y 1 z 1 x 13 γj c(g YM, N c, ω) S +ω (x 1 ). x 13 0, ω 0 [x 1, x 3 ] U σ1 (x 1, x 3 ) with some cutoff σ 1 y 3 z 3 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

22 Using decomposition over Wilson lines we get: = D dx 1 dx 3 x ω1 31 x 1 S +ω 1 + (x 1, x 3 )S +ω (y 1, y 3 )S +ω 3 (z 1, z 3 ) = dy 1+ dy 3+ y ω 31+ y 1+ dz z 1+ dz 3+ z ω3 U σ 1 (x 1, x 3 )V σ + (y 1, y 3 )W σ 3+ (z 1, z 3 ), where D = N 3 c(ω 1 )c(ω )c(ω 3 ) ( x 1 x 3 )( y 1 y 3 )( z 1 z 3 ). I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

23 BK equation: where K BK in LO approximation: σ d dσ Uσ (z 1, z ) = K BK U σ (z 1, z ), = g π K LO BK U(z 1, z ) = d z 3 z 1 [U(z 1, z 3) + U(z 3, z ) U(z 1, z ) U(z 1, z 3)U(z 3, z )]. z 13 z 3 Schematically calculation of correlation function of 3 dipoles can be wrote as: ( ) dy 0(U Y 1 U Y 0 U Y 0 V Y ) (BK vertex at Y 0) U Y 0 W Y 3 where we introduced rapidity Y i = ln σ i I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

24 The structure of 3-point correlator in d - space Figure : The structure of 3-point correlator. Red circles correspond to BFKL propagators (the crossed one has extra multiplier ( ν 1 ) ). The blue blob corresponds to the 3-point functions of -dimensional BFKL CFT. The triple veritces correspond to E-functions. The αβγ-triangle in the first, planar, term and βγ-link in the second, nonplanar, term correspond to triple pomeron vertex. I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

25 Result: Sn 1+ω1 1 (x 1, x 3 )Sn 1+ω (y 1, y 3 )Sn 1+ω3 (z 1, z 3 ) = = ig 10 δ(ω 1 ω ω 3 ) c(ω 1 )c(ω )c(ω 3 ) H Ψ(ν1, ν, ν 3 ) x 13 γ1 y 13 γ z 13 γ3 x y +γ1+γ γ3 x z +γ1+γ3 γ y z +γ+γ3 γ1 where ν i is a solution of BFKL equation for anomalous dimensions ω i = ℵ(ν i ) H = 10 (Nc 1) γ1( + γ 1) 4 ( + γ ) ( + γ 3) G(ν1 ) G(ν ) G(ν3 ) π Nc 5 ℵ (ν1 ) ℵ (ν ) ℵ (ν3 ), γ i = γ(j i) - anomalous dimension (j i = 1 + ω i) and ν πγ ( 1 G(ν) = + iν)γ( iν) ( 1 +, 4 ν ) Γ ( 1 iν)γ(1 + iν) Ψ(ν 1, ν, ν 3) = Ω(h 1, h, h 3) π Λ(h 1, h, h 3)Re(ψ(1) ψ(h 1) ψ(h ) ψ(h 3)), Nc where h i = 1 + iνi = 1 + γ i. Expression for Ω and Λ was obtained by G.Korchemsky in terms of higher hypergeometric and Meijer G-functions. XV Non-perturbative QCD 13 June 018 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit

26 n n 3 limit To identify the function Ψ(ν1, ν, ν 3 ) with structure constants of CF of three LR operators we need to consider limit n n 3 in the formula S j 1 n1 (x 1 ) S j n (x ) S j n3 (x 3 ) = (n 1 n ) ω1+ω ω3 x (n 1 n 3 ) ω 1 +ω 3 ω x C(α s, ω 1, ω, ω 3 ) (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) (n n 3 ) ω +ω 3 ω 1 x The limit n n 3 is tricky: in the limit n n 3 we get a zero mode coming from boost invariance at n = n 3 1 ( (n, n 3 ) ) ω +ω 3 ω 1 n n 3 dξe ξ(ω 1 ω ω 3 ) = δ(ω 1 ω ω 3 ) ω 1 ω ω 3 s I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

27 Limit n n 3 Rapidity integral at n = n 3 dy 1 dy dy 3 dy 0 θ(y 1 Y 0 )θ(y 0 + Y )θ(y 0 + Y 3 )e ω 1Y 1 ω Y ω 3 Y 3 e ℵ 1(Y 1 Y 0 )+ℵ (Y 0 +Y )+ℵ 3 (Y 0 +Y 3 ) = δ(ω 1 ω ω 3 ) (ω 1 ℵ 1 )(ω ℵ )(ω 3 ℵ 3 ) Let us take n n 3 but n 1 n n 1 n 3. We can use our formulas for n = n 3 case until longitudinal distances between frames and 3 are smaller than typical transverse separation, i.e. when (y 1 z 1 ) l l 3 n 3. In terms of rapidities Y = ln l n 1, Y 3 = ln l n 1 3 this restriction means Y + Y 3 r, r ln n 1 n n n 3. I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

28 Limit n n 3 Rapidity integral with restriction Y + Y 3 r, r ln n 1 n n n 3. dy 1 dy dy 3 dy 0 θ(y 1 Y 0 )θ(y 0 + Y )θ(y 0 + Y 3 )θ ( Y + Y 3 < r ) e ω 1Y 1 ω Y ω 3 Y 3 +ℵ 1 (Y 1 Y 0 )+ℵ (Y 0 +Y )+ℵ 3 (Y 0 +Y 3 ) = e r (ω +ω 3 ω 1 ) (ω 1 ω ω 3 )(ω 1 ℵ 1 ) ( ω ℵ + ω 1 ω ω 3 ω +ω 3 ω 1 n 1 n ) ω +ω 3 ω 1 ( n n 3 (ω 1 ω ω 3 )(ω 1 ℵ 1 )(ω ℵ )(ω 3 ℵ 3 ) )( ω3 ℵ 3 + ω 1 ω ω 3 ) 1 ( (n, n 3 ) ) ω +ω 3 ω 1 n n 3 δ(ω1 ω ω 3 ) ω 1 ω ω 3 s I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

29 Structure constant in the BFKL limit V. Kazakov, E. Sobko, I.B. Finally for normalized structure constant C ω1,ω,ω 3 = C + ({ i },{1+ω i }) b1+ω1 b 1+ω b 1+ω3 we get: C ω1,ω,ω 3 = i 3/ g 4 N c 1 γ1( + γ 1) G(ν1 ) G(ν ) G(ν3 ) π 5 Nc ℵ (ν1 ) ℵ (ν ) ℵ (ν3 ) Ψ(ν 1, ν, ν3 ), where ω i = ℵ(ν i ) and ν πγ ( 1 G(ν) = + iν)γ( iν) ( 1 +, 4 ν ) Γ ( 1 iν)γ(1 + iν) Ψ(ν 1, ν, ν 3) = Ω(h 1, h, h 3) π Λ(h 1, h, h 3)Re(ψ(1) ψ(h 1) ψ(h ) ψ(h 3)) Nc with notation h i = 1 + iνi = 1 + γ i, ωi = ℵ(νi) The structure of the formula is C ω1,ω,ω 3 = g Nc 1 Nc f ( g ω 1, g ω, g ω 3 ) I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

30 Structure constant in the BFKL limit In the limit g ω i 0 we get the asymptotics: Ω(h 1, h, h 3) 16π3 γ1 [γ1(γ + γ 3 ) + γ(γ 1 + γ 3 )+ γ γ 3 +γ3(γ 1 + γ ) + γ 1 γ γ 3 )(1 + O(g /ω i )) Λ(h 1, h, h 3) 8π (γ 1 + γ + γ 3 ) γ 1 γ γ 3 (1 + O(g /ω i )) γ i = 8g ω i + o( g ω i ) C ω1,ω,ω 3 = ig N c 1 πn c 1 ω 5 1 ω 1 ω 1 3 (ω 1(ω + ω 3 )+ ω (ω 1 + ω 3 ) + ω 3(ω 1 + ω ) + ω 1 ω ω 3 )(1 + O(g )) I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

31 Wilson frames in the triple Regge limit n 1 Sn ω1 1 (z 1, z 1 ) = du 1 dl l ω1 Tr{F n1i(u 1 n 1 + ln 1 + z 1 )Fn i 1 (un 1 + z 1 )} 0 z 1 n 1 = n = n 3 = 0, z n i = 0, n 1 n n n 3 n 1 n 3 z 1 z 13 z 3 z 1 z 11 z z 33 z 3 n 3 z z n z 3 Triple Sudakov variables : k = αn 1 + βn + γn 3 + k I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

32 Triple BFKL evolution n 1 z 1 z 1 k = k + αβs 1 + αγs 13 + βγs 3 s 1 n 1 n, s 13 n 1 n 3, s 3 n n 3 z 4 z 5 z 9 z 8 z 6 n 3 z 7 z 3 z z z 3 If α β, γ eikonal n α k + iɛ 1 β + γ + iɛα XV Non-perturbative QCD 13 June 018 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit

33 Check: BFKL kernel in the triple Regge regime n 1 k 1 k' 1 k k' n n 3 L µ (k, k 1 )L µ (k, k 1) = ( k 1 k 1) + k 1 k + k k 1 ( k 1 + k ) BFKL kernel with k = k + s 1s 3 s 13 β k, s ik = n i n k I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

34 BFKL evolution in triple Regge limit n 1 k 1 k' 1 k 1 k = α 1 n 1 + β 1 n + γ 1 n 3 + k 1 = α n 1 + β n + γ n 3 + k k = α n 1 + β n + γ n 3 + k k k' n n 3 The BFKL evolution is logarithmic until α 1 β s 1, α 1 γ s 13 m. In terms of rapidities η 1 ln α, η ln β, η 3 ln γ η 1 + η ln s 1, η 1 + η 3 ln s 13, I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

35 BFKL evolution of Wilson frames Evolution from α max l1 s z 11 to α min n 1 z 1 z 1 z 4 z 5 du 1 Tr{F n1i(u 1 n 1 + l 1 n 1 + z 1 )Fn i 1 (un 1 + z 1 ) z 11 0 = s N c dν Γ ( 3 16l 1 z 11 π 4 4iν iν) Γ(1 + iν) [ z Γ ( 11 z iν) Γ( iν) z 14 z 15 η 1 = ln l1 s z 11, y 1 = ln α min ] 1 +iν e ℵ(ν)(ln l1 y1) Tr{U z4 U z 5 } y1 At small z 11 we can close the contour over 1 + iν in the right half-plane and the leading contribution comes from the pole of ℵ(ν) at iν = 1 αsnc πω 1 XV Non-perturbative QCD 13 June I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit

36 Result = longitudinal integral transverse integral Longitudinal integral dη 1 dη dη 3 η1 η η3 dy 1 dy dy 3 e ω 1η 1 ω η ω 3 η 3 +ℵ 1 (η 1 y 1 )+ℵ (η y )+ℵ 3 (η 3 y 3 ) θ (y 1 + y ln ) θ (y + y 3 ln ) θ (y 1 + y 3 ln ) s 1 s 3 s 13 4 = (ω 1 ℵ 1 )(ω ℵ )(ω 3 ℵ 3 ) (s 1z 1 ) ω1+ω ω3 (s 13 z 13 ) ω 1 +ω 3 ω (s 3 z 3 ) ω +ω 3 ω 1 (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) η 1 ln l 1 s1 s 13 s 3 z 11, η ln l s1 s 3 s 13 z, η 3 ln l 3 s13 s 3 s 1 z 33 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

37 At the end of evolution As usual, the end of evolution means s leading-order tree diagrams m 1 but α s ln s m 1 n 1 z 4 z 5 z 9 z 8 n 3 z 6 z 7 n ln Z(1) 46 Z (1) 57 Z (1) 47 Z (1) 56 ln Z(3) 68 Z (3) 79 Z (3) 69 Z (3) 78 Z (kl) ij z ij (z ij n k )(z ij n l ) n k n l ln Z(3) 48 Z (13) 59 Z (3) 49 Z (13) 58 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

38 Transverse integral The transverse planes of the evolution of Wilson frames are different the resulting integral is two-dimensional but not translation invariant 1 a z z 1 1 a 1 1 a 1 z 5 z 4 1+a 1 ln z ln 56 6 z 9 1 a 1+a ln z 7 1+a 3 78 z 8 1 a a 3 z 3 = (z z ) + z = (z z ) +(z +z ) a ( 39) = (z 1 ) 1+a 1+a a 3 (z 13 ) 1+a 1+a 3 a (z 3 ) 1+a +a 3 a 1 Φ(a 1, a, a 3 ) a 1 = 1 iν 1 etc XV Non-perturbative QCD 13 June I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit

39 Result = longitudinal integral transverse integral Result = dν 1 dν dν 3 z iν z iν 1 z iν Longitudinal integral Transverse integral Longitudinal integral = 4 (ω 1 ℵ(ν 1 ))(ω ℵ(ν ))(ω 3 ℵ(ν 3 )) (s 1z 1 ) ω1+ω ω3 (s 13 z 13 ) ω 1 +ω 3 ω (s 3 z 3 ) ω +ω 3 ω 1 (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) Transverse integral = (z 1 ) 1 iν 1 iν +iν 3 (z 13 ) 1 iν 1 iν 3 +iν (z 3 ) 1 iν iν 3 +iν 1 Φ ( 1 iν 1, 1 iν, 1 iν ) 3 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

40 Three-point CF in the triple Regge limit Taking residues at ν 1 = ℵ 1 (ω 1 ), ν = ℵ 1 (ω ), ν 3 = ℵ 1 (ω 3 ) we get S j 1 n1 (z 1 ) S j n (z ) S j n3 (z 3 ) Φ( γ 1, γ, γ 3 ) = (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) (s 1) ω1+ω ω3 (s 13 ) z ω 1 +ω 3 ω ω +ω 3 ω 1 (s 3 ) z z 3 µ γ(ω 1) γ(ω ) γ(ω 3 ) where i = 1 + ω i + γ i and γ i = 1 + iν i is a solution of ω i = ℵ(ν i ) To compare to previous results (for tree approximation and for ω 1 = ω + ω 3 ) we need Φ(a 1, a, a 3 ) at a 1, a, a 3 1. I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

41 Conclusions and Outlook Conclusions Outlook QCD structure constants in the triple BFKL limit ω i 0 at g ω 1 are expressed in terms of the transverse integral Φ(γ 1, γ, γ 3 ). Calculate this transverse integral and compare to previous result in the limit n n 3 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

NLO BFKL and anomalous dimensions of light-ray operators

NLO BFKL and anomalous dimensions of light-ray operators NLO BFKL and anomalous dimensions of light-ray operators I. Balitsky JLAB & ODU (Non)Perturbative QFT 13 June 013 (Non)Perturbative QFT 13 June 013 1 / Outline Light-ray operators. Regge limit in the coordinate

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Solution of the NLO BFKL Equation and γ γ cross-section at NLO

Solution of the NLO BFKL Equation and γ γ cross-section at NLO Solution of the NLO BFKL Equation and γ γ cross-section at NLO Giovanni Antonio Chirilli The Ohio State University Santa Fe - NM 13 May, 014 G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Duality Symmetry in High Energy Scattering

Duality Symmetry in High Energy Scattering Duality Symmetry in High Energy Scattering Alex Prygarin Hamburg University 10 March 010 Outline Introduction BFKL Hamiltonian Duality symmetry of forward BFKL Duality symmetry of BK and non-forward BFKL

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13 ENGR 69/69 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework : Bayesian Decision Theory (solutions) Due: Septemer 3 Prolem : ( pts) Let the conditional densities for a two-category one-dimensional

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x. Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases

Διαβάστε περισσότερα

Andreas Peters Regensburg Universtity

Andreas Peters Regensburg Universtity Pion-Nucleon Light-Cone Distribution Amplitudes Exclusive Reactions 007 May 1-4, 007, Jefferson Laboratory Newport News, Virginia, USA Andreas Peters Regensburg Universtity in collaboration with V.Braun,

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

AdS black disk model for small-x DIS

AdS black disk model for small-x DIS AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα