Αναγνώριση Προτύπων. Μη παραμετρικές τεχνικές Αριθμητικά. (Non Parametric Techniques)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αναγνώριση Προτύπων. Μη παραμετρικές τεχνικές Αριθμητικά. (Non Parametric Techniques)"

Transcript

1 Αναγνώριση Προτύπων Μη παραμετρικές τεχνικές Αριθμητικά Παραδείγματα (Non Parametric Techniques) Καθηγητής Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern Recognition A Matlab Approach, S. Theodoridis, A. Pikrakis, K. Koutroubas, D. Caboyras, Academic Press, 010 Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 1/3

2 ΠΑΡΑΘΥΡΑ PARZEN Για να υπολογίσουμε την pdf pn(x) στο σημείο x προσθέτουμε το x για όλα τα N σημεία x n και το κανονικοποιούμε διαιρώντας με το NV N δηλαδή p N x) h n x n N 1 NVN i1 x x h ( i φ(.) )είναι η συνάρτηση kernel και συνήθως είναι η πολυδιάστατη κανονική με V N = (h N ) d, δηλαδή, N T 1 1 ( x x i ) ( x x p x N ( ) exp d N i1 d h N ( ) h ( i N N ) Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

3 Παράθυρα Parzen Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 3

4 Parzen Παράθυρα Example Generate N = 1000 data points lying in the real axis, xi ЄR, i = 1,,...,N, from the following pdf, and plot p(x): p ( x ) exp x 3 1 exp x 1 1 where σ 1 =σ =0 0.. Use the Parzen windows approximation with normal kernel, with h = 0.1, and plot the obtained estimate.

5

6 Ν=1000, h=0,

7 Ν=1000, h=0, Ν=10000, h=0, Ν=10000, h=0,

8 Πιθανοτικά Νευρωνικά ίκτυα Probabilistic bili Neural Networks (PNN) Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 8

9 PNN - Εκπαίδευση Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 9

10 PNN Ταξινόμηση Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 10

11 Παράδειγμα ParzenPNN function net = parzenpnnlearn(samples,classification,center) samples=[x 1 x x 3... x N ] Τ Matrix Nxd with N samples with d components each. Classification = [ω 1 ω 3 ω 3 ω 1.ω ] Classification of the N samples in C classes Center=true Example: N=5, d=, c= Samples 0,8 0,7 0,3 0,1 0,9 0,6 0,8 0, classification [abbba] Net : the probabilistic Parzen Neural Net function [class,score,scores] = parzenpnnclassify(net,x,nonlin) Net a valid parzenpnn X sample to be classified with d componets Nonlin = σ (default ) Example: X=[ 0,3 0,1]

12 Εφαρμογή 1 close('all'); clear; % To generate X, utilize the function generate_gauss_classes m=[0 0 ; 0 3 ; 3 4]'; S1=0.8*eye(); S(:,:,1)=S1;S(:,:,)=S1;S(:,:,3)=S1; P=[1/3 1/3 1/3]'; ]; N=10; randn('seed',0); [X,y]=generate_gauss_classes(m,S,P,N); net=parzenpnnlearn(x,y); class=parzenpnnclassify(net,[1 ]') ans=1 [class score scores]=parzenpnnclassify(net, X) y = [ ] class = [ ] Score =[ ] [ ] [ ] Scores = [ [ ] [ ]

13 Εφαρμογή Εάν τρέξουμε το parzenpnn_demo, μας επιτρέπει να βάλουμε 3 κλασεις σημείων διαστάσεων, μετά μας επιτρέπει να προσθέσουμε και νέα δείγματα εκπαίδευσης και στο τέλος διαχωρίζει το επίπεδο στις περιοχές των κλάσεων

14 Εκτίμηση k n -πλησιέστερων γειτόνων k n -Nearest neighbour (KNN) Το πρόβλημα: Έχουμε Ν δεδομένα {x 1, x,, x N } από μία άγνωστη pdf και θέλουμε να εκτιμήσουμε την τιμή p(x) της άγνωστη pdf για ένα x. Ο Αλγόριθμος 1. Επιλέγουμε μία τιμή για το k καθώς και την συνάρτηση μέτρου που θα χρησιμοποιήσουμε για την απόσταση (Ευκλείδεια, Mahalanobis, Manhattan,..). Βρίσκουμε την απόσταση του x από όλα τα δεδομένα 3. Βρίσκουμε τα πλησιέστερα k δεδομένα στο x 4. Υπολογίζουμε τον όγκο V(x) που περικλείει τα k σημεία k 5. Προσεγγίζουμε την pdf στο χ με p( x) NV (x) x Εάν έχουμε επιλέξει την Ευκλείδεια απόσταση στο d-διαστατο χώρο και η απόσταση από το μακρινότερο δείγμα είναι ρ τότε V(x) = ρ για d=1, V(x) = πρ για d=, V(x) = (4/3)πρ για d=3 ενώ για απόσταση Μαhalanobis έχουμε υπερελλειψοειδή. Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 14

15 k πλησιέστεροι γείτονες Example Generate N = 1000 data points lying in the real axis, xi ЄR, i = 1,,...,N, from the following pdf, and plot p(x): p( x) 1 1 x 1 x exp exp where σ 1 =σ = 0.. Use the k nearest neighborhood with k = 1, and plot the obtained estimate.

16 Ν=1000, k= Ν=10000, k= Ν=10000, k=

17 Ταξινομητής KNN Εάν έχουμε c κλάσεις τότε το k δεν πρέπει να είναι πολλαπλάσιο του c. Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 17

18 Παράδειγμα knn ταξινομητή

19 Compute the optimum Classification error with a Bayes Classifier z1=bayes_classifier(m,s,p,x); pr_err_bayes=sum(z1~=y)/length(y) Η πιθανότητα λάθους που παίρνουμε είναι 15,1% ενώ το βέλτιστο σφάλμα για ένα Bayes ταξινομητή είναι 1,44%

20 Μείωση ιαστάσεων Μία μέθοδος για να μειώσουμε την υπολογιστική πολυπλοκότητα είναι να μειώσουμε τον αριθμό N των χαρακτηριστικών των δειγμάτων Χ 1. Μπορούμε να το πετύχουμε παραλείποντας στους υπολογισμούς μερικά χαρακτηριστικά. Είναι καλύτερο να δημιουργήσουμε νέα δείγματα Y=AX με τον γραμμικό συνδυασμό ώστε κάποια χαρακτηριστικά των Υ να μην είναι πλέον σημαντικά για την αναπαράστασή τους. Παράδειγμα: Χ 1 =(1, 5), Χ =(, 8), Χ 3 =(0, ), Χ 4 =(-1, -1), Χ 5 =(0.,.6), Y A T X λ 1 =1.68 λ =0.0

21 X=[1,5;,8;0,;-1,-1;0.,.6]'; [eigenval,eigenvec,explain,y,mean_vec]=pca_fun(x,); i l i figure(1), hold on; axis([ ]); plot(x(1,:),x(,:),'r*'); Y=eigenvec'*X; figure(), hold on; axis([ ]); plot(y(1,:),y(,:),'r*'); Άρα χρειαζόμαστε μόνο ένα χαρακτηριστικό το y 1 =0.316x x 10 5 X Y Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 1

22 ΜΕΙΩΣΗ ΙΑΣΤΑΣΕΩΝ: PCA Principal Component Analysis Έστω x σε D-διαστάσεις. Θέλουμε κάποιο μετασχηματισμό A να μας δώσει ένα y=ax σε N- διαστάσεις, (N<D), ώστε να μπορούμε να αναπαραστήσουμε ικανοποιητικά το y σε λιγότερες διαστάσεις Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

23 ΜΕΙΩΣΗ ΙΑΣΤΑΣΕΩΝ: Τεχνική Fisher Έστω y σε D-διαστάσεις. Θέλουμε κάποιο μετασχηματισμό w να μας δώσει ένα x=wy σε N-διαστάσεις, ώστε να κάνουμε την κατηγοριοποίηση σε λιγότερες διαστάσεις Παράδειγμα D= και Ν=11 Θέλουμε να διαλέξουμε το μετασχηματισμό w ώστε: 1. Σε κάθε κατηγορία να έχουμε τα γεγονότα κοντά μεταξύ τους, και. οι κατηγορίες να απέχουν το μέγιστο μεταξύ τους. ηλαδή, θα θέλαμε να ισχύουν: Ανάλυση με κριτήριο την 1. οι μέσες τιμές να απέχουν το μέγιστο μεταξύ τους και. οι διασπορές των δύο κατηγοριών να είναι μηδέν. μέγιστη διαχωριστικότητα (Fisher Eye) Ανάλυση σε κύριες συνιστώσες (PCA) Τα παραπάνω μεταφράζονται ως εξής Και ο Fisher πρότεινε την 1 max 1 min 1 ( ) max 1 J w Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 3

24 Σύγκριση PCA και FISHER % Example (modified by Chamzas) % "Introduction to Pattern Recognition: A MATLAB Approach" % S. Theodoridis, A. Pikrakis, K. Koutroumbas, D. Cavouras close('all'); ll') clear; randn('seed',0) S1=[.3.;. 5]; S=[.5 1.; 1. 5]; [l,l]=size(s1); mv=[-8 9; -3 10]'; N=500; X=[mvnrnd(mv(: [mvnrnd(mv(:,1),s1,n); mvnrnd(mv(:,),s,n)] N)]'; y=[ones(1,n), *ones(1,n)]; % Plot the dataset figure(1), plot(x(1,y==1),x(,y==1),'r.',x(1,y==),x(,y==),'bo') figure(1), axis equal % FISHER EYE ANALYSIS % Estimate the mean vectors of each class using the available samples mv_est(:,1)=mean(x(:,y==1)')'; mv_est(:,)=mean(x(:,y==)')'; % Compute the within scatter matrix [Sw,Sb,Sm]=scatter_mat(X,y); w=inv(sw)*(mv_est(:,1)-mv_est(:,)); ( (, ) _ (, )); % Apply PCA on X [eigenval,eigenvec,explained,y,mean_vec]=pca_fun(x,1); w=eigenvec; % Compute the projections on PCA direction t1=w'*x(:,y==1); t=w'*x(:,y==); X_proj1=[t1;t1].*((w/(w'*w))*ones(1,length(t1))); X_proj=[t;t].*((w/(w'*w))*ones(1,length(t))); X_proj=[X_proj1 X_proj]; %Plot the projections on the PCA axis figure(1), hold on plot(x_proj(1,y==1),x_proj(,y==1), r0',x_proj(1,y==),x_proj(,y==), bx') % Compute the projections t1=w'*x(:,y==1); t=w'*x(:,y==); X_proj1=[t1;t1].*((w/(w'*w))*ones(1,length(t1))); X_proj=[t;t].*((w/(w'*w))*ones(1,length(t))); X_proj=[X_proj1 X_proj]; %Plot the projections on the FISHER axis figure(1), hold on plot(x_proj(1,y==1),x_proj(,y==1), ro',x_proj(1,y==),x_proj(,y==), bx') Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 4

25 Ανάλυση με κριτήριο την μέγιστη διαχωριστικότητα (Fisher Eye) Ανάλυση σε κύριες συνιστώσες (PCA) Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 5

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern Recognition A Matlab Approach, S. Theodoridis,

Διαβάστε περισσότερα

1η εργασία για το μάθημα «Αναγνώριση προτύπων»

1η εργασία για το μάθημα «Αναγνώριση προτύπων» 1η εργασία για το μάθημα «Αναγνώριση προτύπων» Σημειώσεις: 1. Η παρούσα εργασία είναι η πρώτη από 2 συνολικά εργασίες, η κάθε μια από τις οποίες θα βαθμολογηθεί με 0.4 μονάδες του τελικού βαθμού του μαθήματος.

Διαβάστε περισσότερα

Θεωρία Αποφάσεων ο. 4 Φροντιστήριο. Λύσεις των Ασκήσεων

Θεωρία Αποφάσεων ο. 4 Φροντιστήριο. Λύσεις των Ασκήσεων Θεωρία Αποφάσεων ο Φροντιστήριο Λύσεις των Ασκήσεων Άσκηση Έστω ένα πρόβλημα ταξινόμησης μιας διάστασης με δύο κατηγορίες, όπου για κάθε κατηγορία έχουν συλλεχθεί τα παρακάτω δεδομένα: D = {, 2,,,,7 }

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση - Διαθέσιμα δεδομένα: XX X 2 X M. Κάθε X αντιστοιχεί στην κλάση

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7-8 Μπεϋζιανή εκτίμηση - συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Δυαδικές τ.μ. κατανομή Bernoulli : Εκτίμηση ML: Εκτίμηση Bayes για εκ των προτέρων

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7 8 Μπεϋζιανή εκτίμηση συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Εκτίμηση ML για την κανονική κατανομή Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση - Διαθέσιμα δεδομένα: X=X X 2 X M. Κάθε X αντιστοιχεί στην κλάση

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 5 6 Principal component analysis EM for Gaussian mixtures: μ k, Σ k, π k. Ορίζουμε το διάνυσμα z (διάσταση Κ) ώστε K p( x θ) = π ( x μ, Σ ) k = k k k Eκ των υστέρων

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Versio A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η περίπτωση του ταξινομητή Bayes Εκτίμηση μέγιστης εκ των υστέρων πιθανότητας Maimum Aoseriori

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson Σχεδιαζόντας ταξινομητές: Τα δεδομένα Στην πράξη η γνώση σχετικά διαδικασία γέννεσης των δεδομένων είναι πολύ σπάνια γνωστή. Το μόνο που έχουμε στη διάθεσή

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Data Mining - Classification

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Data Mining - Classification ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ Data Mining - Classification Data Mining Ανακάλυψη προτύπων σε μεγάλο όγκο δεδομένων. Σαν πεδίο περιλαμβάνει κλάσεις εργασιών: Anomaly Detection:

Διαβάστε περισσότερα

ΔΙΑΧΩΡΙΣΜΟΣ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΚΡΗΤΙΚΟΥ ΚΑΤΕΡΙΝΑ NΙΚΑΚΗ ΚΑΤΕΡΙΝΑ NΙΚΟΛΑΪΔΟΥ ΧΡΥΣΑ

ΔΙΑΧΩΡΙΣΜΟΣ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΚΡΗΤΙΚΟΥ ΚΑΤΕΡΙΝΑ NΙΚΑΚΗ ΚΑΤΕΡΙΝΑ NΙΚΟΛΑΪΔΟΥ ΧΡΥΣΑ ΔΙΑΧΩΡΙΣΜΟΣ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΚΡΗΤΙΚΟΥ ΚΑΤΕΡΙΝΑ NΙΚΑΚΗ ΚΑΤΕΡΙΝΑ NΙΚΟΛΑΪΔΟΥ ΧΡΥΣΑ ΔΙΑΧΩΡΙΣΜΟΣ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ Είναι τεχνικές που έχουν σκοπό: τον εντοπισμό χαρακτηριστικών των οποίων οι αριθμητικές τιμές επιτυγχάνουν

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version Εκφράζοντας τον ταξινομητή Bayes (a) Με χρήση συναρτήσεων διάκρισης (discriminant functions) - Έστω g q (x)=f(p(ω q )p(x ω q )), q=,,m, όπου f γνησίως

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 C MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΑΠΟΦΑΣΗΣ Υπενθύμιση: είναι το σύνολο δεδομένων που περιέχει τα διαθέσιμα δεδομένα από όλες

Διαβάστε περισσότερα

1η προαιρετική εργαςία για το μάθημα «Αναγνώριςη προτύπων»

1η προαιρετική εργαςία για το μάθημα «Αναγνώριςη προτύπων» 1η προαιρετική εργαςία για το μάθημα «Αναγνώριςη προτύπων» Σημειώςεισ: 1. Η παροφςα εργαςία είναι θ πρϊτθ από 2 ςυνολικά εργαςίεσ, οι οποίεσ είναι προαιρετικζσ και κα βακμολογθκοφν (και οι δφο) με μία

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15-16 Νευρωνικά Δίκτυα(Neural Networks) Fisher s linear discriminant: Μείωση διαστάσεων (dimensionality reduction) y Τ =w x s + s =w S w 2 2 Τ 1 2 W ( ) 2 2 ( ) m2

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version 2 1 ΔΕΔΟΜΕΝΑ Δεδομένα μπορούν να αποκτηθούν στα πλαίσια διαφόρων εφαρμογών, χρησιμοποιώντας, όπου είναι απαραίτητο, κατάλληλο εξοπλισμό. Μερικά παραδείγματα

Διαβάστε περισσότερα

Ζητήματα ηήμ με τα δεδομένα

Ζητήματα ηήμ με τα δεδομένα Ζητήματα ηήμ με τα δεδομένα Ποιότητα Απαλοιφή θορύβου Εντοπισμός ανωμαλιών λώ Ελλιπείς τιμές Μετασχηματισμός Κβάντωση Μείωση μεγέθους Γραμμών: ειγματοληψία Στηλών: Ιδιοδιανύσματα, Επιλογή χαρακτηριστικών

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Διαχωριστικές συναρτήσεις Ταξινόμηση κανονικών

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά

Διαβάστε περισσότερα

ΗΜΕΡΟΜΗΝΙΑ: 25/05/2009 TΕΛΙΚΗ ΕΡΓΑΣΙΑ ΝΙΚΗ ΜΟΣΧΟΥ

ΗΜΕΡΟΜΗΝΙΑ: 25/05/2009 TΕΛΙΚΗ ΕΡΓΑΣΙΑ ΝΙΚΗ ΜΟΣΧΟΥ DATA MINING ΗΜΕΡΟΜΗΝΙΑ: 25/05/2009 TΕΛΙΚΗ ΕΡΓΑΣΙΑ ΝΙΚΗ ΜΟΣΧΟΥ 1 ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ Αφού δεν γνωρίζουμε κάποιο τρόπο για να επιλέξουμε εκ των προτέρων την πιο κατάλληλη και αποδοτική μέθοδο μάθησης

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version 2 1 ΔΕΔΟΜΕΝΑ Δεδομένα μπορούν να αποκτηθούν στα πλαίσια διαφόρων εφαρμογών, χρησιμοποιώντας, όπου είναι απαραίτητο, κατάλληλο εξοπλισμό. Μερικά παραδείγματα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Σύμφωνα με στοιχεία από το Πανεπιστήμιο της Οξφόρδης η πιθανότητα ένας φοιτητής να αποφοιτήσει μέσα σε 5 χρόνια από την ημέρα εγγραφής του στο

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Εργασία 1η Classification

Αναγνώριση Προτύπων Εργασία 1η Classification ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Αναγνώριση Προτύπων Εργασία 1η Classification Κιντσάκης Αθανάσιος 6667 Μόσχογλου Στυλιανός 6978 30 Νοεμβρίου,

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διδάσκων: Γεώργιος Μήτσης, Λέκτορας, Τμήμα ΗΜΜΥ Γραφείο: GP401 Ώρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Τηλ: 22892239 Ηλ. Ταχ.: gmitsis@ucy.ac.cy Βιβλιογραφία C. M.

Διαβάστε περισσότερα

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων Ένα δυσδιάστατο παράδειγμα με το λογισμικό MATLAB Θεωρούμε το εξής Π.Σ.Τ.: Να βρεθεί η u(x, y) έτσι ώστε όπου f (x, y) = 1. u u f ( x, y), x ( 1,1) ( 1,1) x

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012 ΔΕ. ΙΟΥΝΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η ( μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάσει το συντελεστή συσχέτισης. (γράψτε ποιο χαρακτηριστικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 M = 1 N = N prob k N k { k n ω wrongly classfed} = (1 ) N k 2 Η συνάρτηση πιθανοφάνειας L(p) μεγιστοποιείται όταν =k/n. 3 Αφού τα s είναι άγνωστα,

Διαβάστε περισσότερα

Κεφάλαιο 4: Μη Παραμετρικές Τεχνικές 4.1 Εισαγωγή

Κεφάλαιο 4: Μη Παραμετρικές Τεχνικές 4.1 Εισαγωγή Κεφάλαιο 4: Μη Παραμετρικές Τεχνικές 4.1 Εισαγωγή Στο 3 ο κεφάλαιο περιγράφηκε η διαδικασία της μη επιβλεπόμενης μάθησης υπό τη θεώρηση ότι οι μορφές των αντίστοιχων συναρτήσεων πυκνότητας πιθανότητας

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μη Παραµετρικές Τεχνικές (Nonparametric Techniques) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μη Παραµετρικές Τεχνικές (Nonparametric Techniques) Π. Τσακαλίδης Αναγνώριση Προτύπων (Patter Recogitio) Μη Παραµετρικές Τεχνικές (Noparametric Techiques) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μη-Παραµετρικές Τεχνικές Προβλήµατα παραµετρικών τεχνικών:

Διαβάστε περισσότερα

Γραµµικοί Ταξινοµητές

Γραµµικοί Ταξινοµητές ΚΕΣ 3: Αναγνώριση Προτύπων και Ανάλυση Εικόνας KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Γραµµικοί Ταξινοµητές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου 7 Ncolas sapatsouls

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4Β: Έλεγχοι Κανονικότητας Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve

Διαβάστε περισσότερα

Επιλογή χαρακτηριστικών

Επιλογή χαρακτηριστικών Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. ΤΕΙ Αθήνας Αναγνώριση Προτύπων Επιλογή χαρακτηριστικών Ιωάννης Καλατζής, Επίκουρος Καθηγητής ikalatzis@teiath.gr Αθήνα 2017 Επιλογή χαρακτηριστικών Η επιλογή

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ATTERN RECOGNITION Τυπικές περιοχές εφαρμογής Μηχανική όραση Machne vson Αναγνώριση χαρακτήρων Character recognton OCR Ιατρική διάγνωση

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Το Πιθανοκρατικό Μοντέλο Κλασικά Μοντέλα Ανάκτησης Τρία είναι τα, λεγόμενα, κλασικά μοντέλα ανάκτησης: Λογικό (Boolean) που βασίζεται στη Θεωρία Συνόλων Διανυσματικό (Vector) που βασίζεται στη Γραμμική

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

Σύστημα επεξεργασίας, ανάλυσης και ταξινόμησης εικόνων δισδιάστατης ηλεκτροφόρησης με τεχνικές αναγνώρισης προτύπων

Σύστημα επεξεργασίας, ανάλυσης και ταξινόμησης εικόνων δισδιάστατης ηλεκτροφόρησης με τεχνικές αναγνώρισης προτύπων ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ "ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗΝ ΙΑΤΡΙΚΗ ΚΑΙ ΤΗ ΒΙΟΛΟΓΙΑ"

Διαβάστε περισσότερα

Μάθηση Λανθανόντων Μοντέλων με Μερικώς Επισημειωμένα Δεδομένα (Learning Aspect Models with Partially Labeled Data) Αναστασία Κριθαρά.

Μάθηση Λανθανόντων Μοντέλων με Μερικώς Επισημειωμένα Δεδομένα (Learning Aspect Models with Partially Labeled Data) Αναστασία Κριθαρά. Μάθηση Λανθανόντων Μοντέλων με Μερικώς Επισημειωμένα Δεδομένα (Learning Aspect Models with Partially Labeled Data) Αναστασία Κριθαρά Xerox Research Centre Europe LIP6 - Université Pierre et Marie Curie

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά

Διαβάστε περισσότερα

Νευρωνικά Δίκτυα στο Matlab

Νευρωνικά Δίκτυα στο Matlab Νευρωνικά Δίκτυα στο Matlab Ρ202 Μηχανική Ευφυΐα (Machine Intelligence) Ευστάθιος Αντωνίου Τμήμα Μηχανικών Πληροφορικής Αλεξάνδρειο ΤΕΙ Θεσσαλονίκης E-mail: antoniou@itteithegr Πρόγραμμα Μεταπτυχιακών

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β =

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β = ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ 005 ΘΕΜΑ ο Α.. Θεωρία s s Α.. CV =, αν > 0, ενώ CV =, αν < 0. - Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. ΘΕΜΑ ο α. Πρέπει > 0, άρα A f = (0, + ). β. f () = (α

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές Ι

Στατιστική Ι-Θεωρητικές Κατανομές Ι Στατιστική Ι-Θεωρητικές Κατανομές Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές Η Χρήση των Θεωρητικών

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Εκτίμηση Παραμέτρων (Parameter Estimation)

Αναγνώριση Προτύπων. Εκτίμηση Παραμέτρων (Parameter Estimation) Αναγνώριση Προτύπων Εκτίμηση Παραμέτρων Parameter Estimatio Χριστόδουλος Χαμζάς Τα περιεχόμενα των παρουσιάσεων προέρχονται κυρίως από τις παρουσιάσεις του αντίστοιχου διδακτέου μαήματος του κα. Παναγιώτη

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 4 Διαχωριστικές συναρτήσεις Ταξινόμηση Γκαουσιανών μεταβλητών Bayesan decson Mnmum msclassfcaton rate decson: διαλέγουμε την κατηγορίαck για την οποία η εκ των υστέρων

Διαβάστε περισσότερα

Στατιστική. Εκτιμητική

Στατιστική. Εκτιμητική Στατιστική Εκτιμητική Χατζόπουλος Σταύρος 28/2/2018 και 01 /03/2018 Εισαγωγή Το αντικείμενο της Στατιστικής είναι η εξαγωγή συμπερασμάτων που αφορούν τον πληθυσμό ή το φαινόμενο που μελετάμε, με τη βοήθεια

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 5 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες

Διαβάστε περισσότερα

Project 1: Principle Component Analysis

Project 1: Principle Component Analysis Project 1: Principle Component Analysis Μια από τις πιο σημαντικές παραγοντοποιήσεις πινάκων είναι η Singular Value Decomposition ή συντετμημένα SVD. Η SVD έχει πολλές χρήσιμες ιδιότητες, επιθυμητές σε

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

Διδάσκουσα: Χάλκου Χαρά,

Διδάσκουσα: Χάλκου Χαρά, Διδάσκουσα: Χάλκου Χαρά, Διπλωματούχος Ηλεκτρολόγος Μηχανικός & Τεχνολογίας Η/Υ, MSc e-mail: chalkou@upatras.gr Επιβλεπόμενοι Μη Επιβλεπόμενοι Ομάδα Κατηγορία Κανονικοποίηση Δεδομένων Συμπλήρωση Ελλιπών

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος Τμήμα Μηχανικών Η/Υ & Πληροφορικής. Παρασκευάς Τσανταρλιώτης Α.Μ. 318

Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος Τμήμα Μηχανικών Η/Υ & Πληροφορικής. Παρασκευάς Τσανταρλιώτης Α.Μ. 318 Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος 2014-15 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Εαρινό Εξάμηνο Παρασκευάς Τσανταρλιώτης Α.Μ. 318 Μηχανική Μάθηση Εργασία 1 Άσκηση 1 a. Αρχικά πρέπει να βρούμε τις παραμέτρους

Διαβάστε περισσότερα

Μελέτη Αλγορίθμων Κατηγοριοποίησης με Χρήση του MATLAB

Μελέτη Αλγορίθμων Κατηγοριοποίησης με Χρήση του MATLAB Διπλωματική Εργασία Μελέτη Αλγορίθμων Κατηγοριοποίησης με Χρήση του MATLAB Στεργιανή Δόβα Διπλ. Μηχανικός Πληροφορικής και Επικοινωνιών Επιβλέπων Καθηγητής: Σαμαράς Νικόλαος Εισαγωγή: Το πρόβλημα της κατηγοριοποίησης

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων Διδάσκων: HMY 795: Αναγνώριση Προτύπων Γεώργιος Μήτσης Γραφείο: GP401 Ωρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Τηλ: 22892239 Ηλ. Ταχ.: gmitsis@ucy.ac.cy Βιβλιογραφία C. M. Bishop Pa#ern Recogni-on

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version Στη συνέεια θα μιλήσουμε μόνο για στατιστικές μεθόδους ταξινόμησης προτύπων statistical attern classification. Υπόθεση: Σε μια μεγάλη αίθουσα γυμναστηρίου

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ανάλυση Κυρίων Συνιστωσών (Principal-Component Analysis, PCA)

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ανάλυση Κυρίων Συνιστωσών (Principal-Component Analysis, PCA) ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ανάλυση Κυρίων Συνιστωσών (Principal-Coponent Analysis, PCA) καθ. Βασίλης Μάγκλαρης aglaris@netode.ntua.gr www.netode.ntua.gr

Διαβάστε περισσότερα

Συστήματα Αναμονής (Queuing Systems)

Συστήματα Αναμονής (Queuing Systems) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ - ΕΜΠ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής

Διαβάστε περισσότερα

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό 1 ΦΡΟΝΤΙΣΤΗΡΙ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 2 0 1 6 Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς Τα θέματα επεξεργάστηκαν οι

Διαβάστε περισσότερα

Συμπίεση Πληροφορίας Πλαισίου με Ανάλυση Κύριων Συνιστωσών

Συμπίεση Πληροφορίας Πλαισίου με Ανάλυση Κύριων Συνιστωσών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πρόγραμμα Μεταπτυχιακών Σπουδών Συμπίεση Πληροφορίας Πλαισίου με Ανάλυση Κύριων Συνιστωσών Διπλωματική Εργασία Παναγιώτης Γεώργας (Μ1040) Επιβλέπωντες: Επικ. Καθηγητής

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 2: Θεωρία Απόφασης του Bayes Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Θεωρία

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 6 ο : Ταξινομήσεις εικόνων μη επιβλεπόμενη ταξινόμηση

ΕΡΓΑΣΤΗΡΙΟ 6 ο : Ταξινομήσεις εικόνων μη επιβλεπόμενη ταξινόμηση ΕΡΓΑΣΤΗΡΙΟ 6 ο : Ταξινομήσεις εικόνων μη επιβλεπόμενη ταξινόμηση Μια από τις σημαντικότερες τεχνικές αυτοματοποιημένης ερμηνείας εικόνων, είναι η ταξινόμηση. Με τον όρο ταξινόμηση εννοείται η διαδικασία

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το

Διαβάστε περισσότερα

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2 + +

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2 + + ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο Υπολογισμός Πιθανοτήτων Εκθετική Κατανομή Παράδειγμα 1 Έστω ότι η μέση διάρκεια μιας υπεραστικής κλήσης είναι 2 λεπτά. Να βρεθεί η πιθανότητα των ενδεχομένων Ε 1 : μια κλήση

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2 + +

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2 + + ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο Υπολογισμός Πιθανοτήτων Εκθετική Κατανομή Παράδειγμα 1 Έστω ότι η μέση διάρκεια μιας υπεραστικής κλήσης είναι 2 λεπτά. Να βρεθεί η πιθανότητα των ενδεχομένων Ε 1 : μια κλήση

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Σημειακή επεξεργασία και μετασχηματισμοί Κατηγορίες μετασχηματισμού εικόνων Σημειακοί μετασχηματισμοί

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

c(x 1 + x 2 + x 3 ) εάν 0 x 1, x 2, x 3 k (x 1, x 2, x 3 ) =

c(x 1 + x 2 + x 3 ) εάν 0 x 1, x 2, x 3 k (x 1, x 2, x 3 ) = ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών ΤΗΛ 11: ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΤΥΧΑΙΑ ΣΗΜΑΤΑ 4ο Εξάμηνο 009-010 η ΕΡΓΑΣΙΑ ΑΣΚΗΣΗ 1 Εστω X = x 1, x, x T τυχαίο

Διαβάστε περισσότερα

Ομαδοποίηση ΙΙ (Clustering)

Ομαδοποίηση ΙΙ (Clustering) Ομαδοποίηση ΙΙ (Clustering) Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr Αλγόριθμοι ομαδοποίησης Επίπεδοι αλγόριθμοι Αρχίζουμε με μια τυχαία ομαδοποίηση Βελτιώνουμε επαναληπτικά KMeans Ομαδοποίηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

Κεφάλαιο 2: Θεωρία Απόφασης του Bayes 2.1 Εισαγωγή

Κεφάλαιο 2: Θεωρία Απόφασης του Bayes 2.1 Εισαγωγή Κεφάλαιο : Θεωρία Απόφασης του Bayes. Εισαγωγή Η θεωρία απόφασης του Bayes αποτελεί μια από τις σημαντικότερες στατιστικές προσεγγίσεις για το πρόβλημα της ταξινόμησης προτύπων. Βασίζεται στη σύγκριση

Διαβάστε περισσότερα

ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. Κατηγοριοποίηση. Αριστείδης Γ. Βραχάτης, Dipl-Ing, M.Sc, PhD

ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. Κατηγοριοποίηση. Αριστείδης Γ. Βραχάτης, Dipl-Ing, M.Sc, PhD Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Σχολή Θετικών Επιστημών Πανεπιστήμιο Θεσσαλίας ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Κατηγοριοποίηση Αριστείδης Γ. Βραχάτης, Dipl-Ing, M.Sc, PhD Κατηγοριοποιητής K πλησιέστερων

Διαβάστε περισσότερα

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων»

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πρόγραμμα Μεταπτυχιακών Σπουδών Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Αργυροπούλου Αιμιλία

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 6: Κατηγοριοποίηση Μέρος Β Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα