Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
|
|
- Ήλιόδωρος Καλύβας
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης
2 Σημειακή επεξεργασία και μετασχηματισμοί
3 Κατηγορίες μετασχηματισμού εικόνων Σημειακοί μετασχηματισμοί Η τιμή ενός pixel στην τελική εικόνα εξαρτάται μόνο από την τιμή του pixel στην ίδια θέση στην αρχική εικόνα Τοπικοί μετασχηματισμοί Η τιμή ενός pixel στην τελική εικόνα εξαρτάται από τις τιμές των pixel σε μια γειτονία της αρχικής εικόνας Συνολικοί μετασχηματισμοί Η τιμή ενός pixel στην τελική εικόνα εξαρτάται από τις τιμές όλων των pixel της αρχικής εικόνας
4 Ιστόγραμμα Κατανομή του πλήθους των pixels της εικόνας ανά τιμή φωτεινότητας.
5 Ιστόγραμμα Οι κορυφές στις grayscale εικόνες αντιστοιχούν σε τιμές gray με μεγάλη πυκνότητα τιμών. Ομοίως και στις RGB εικόνες για κάθε χρωματική μπάντα ξεχωριστά.
6 Ιστόγραμμα Για μια grayscale εικόνα I διαστάσεων (R C) με graylevel τιμές I u, v 0, L 1 η i-οστή τιμή του ιστογράμματος είναι h i = # u, v I u, v = i για 0 i L 1 Είναι L 1 h(i) = N = R C i=0 h(6) = 102 Παράδειγμα 4-bit grayscale εικόνα Διαστάσεις: R C = pixels Σύνολο pixels: N = R C = 676 Είναι L = 2 4 = 16 h(i)
7 Ιδιότητες ιστογράμματος Παρέχει στατιστική πληροφορία χωρίς κάποια ένδειξη για την θέση των pixels που έχουν την εκάστοτε grayscale τιμή Σε μια σκούρα εικόνα, η πληθώρα των pixels βρίσκεται στα αριστερά του ιστογράμματος Σε μια φωτεινή εικόνα, η πληθώρα των pixels βρίσκεται στα δεξιά του ιστογράμματος Μια εικόνα με καλή αντίθεση, τα pixels εκτείνονται σε όλο το φάσμα του ιστογράμματος
8 Ιδιότητες ιστογράμματος Διαφορετικές εικόνες μπορεί να έχουν το ίδιο ιστόγραμμα Π.χ. εικόνες με ίσο αριθμό gray και λευκών pixels, αλλά με διαφορετική διάταξη Μια εικόνα δεν μπορεί να ανακτηθεί από το ιστόγραμμά της (η χωρική πληροφορία έχει χαθεί)
9 Συνάρτηση πυκνότητας πιθανότητας Συνάρτηση πυκνότητας πιθανότητας (probability density function - pdf) grayscale εικόνας I διαστάσεων (R C) p i = h(i) με 0 i L 1 N όπου L 1 N = R C = h(i) i=0
10 Συνάρτηση πυκνότητας πιθανότητας Ιδιότητες της pdf H p i αντιστοιχεί στο ποσοστό των pixel της εικόνας που έχουν graylevel τιμή i. Εάν επιλεγεί ένα pixel της εικόνας στην τύχη, η p i δίνει την πιθανότητα να έχει graylevel τιμή i. Το άθροισμα όλων των τιμών p i για 0 i L 1 ισούται με 1. Η p i δίνει το κανονικοποιημένο ιστόγραμμα της grayscale εικόνας.
11 Αθροιστική συνάρτηση κατανομής Αθροιστική συνάρτηση κατανομής (cumulative probability function - cdf) grayscale εικόνας I διαστάσεων (R C) i P i = p k = 1 N h k k=0 k=0 Ιδιότητες της cdf H P i αντιστοιχεί στο ποσοστό των pixel της εικόνας που έχουν graylevel τιμή μικρότερη ή ίση με i. Εάν επιλεγεί ένα pixel της εικόνας στην τύχη, η P i δίνει την πιθανότητα να έχει graylevel τιμή μικρότερη ή ίση με i. i L 1 με 0 i L 1 και N = R C = h(i) i=0
12 Αριθμητικές πράξεις Πρόσθεση (ή αφαίρεση) μιας σταθεράς στην τιμή κάθε pixel y = x + c Οι τελικές τιμές αποκόπτονται στο εύρος τιμών εάν y > 255 y = ቊ 0 εάν y < 0 y=x+128
13 Αριθμητικές πράξεις Πολλαπλασιασμός (ή διαίρεση) κάθε pixel με μια σταθερά y = αx y=2 x
14 Αριθμητικές πράξεις Γραμμικός μετασχηματισμός για κάθε pixel y = ax + b y=0.5 f(x)+128
15 Αριθμητικές πράξεις Συμπλήρωμα εικόνας y = 255 x y=255-x
16 Φωτεινότητα εικόνας Η φωτεινότητα της εικόνας είναι η μέση φωτεινότητα όλων των pixels της εικόνας R B I = 1 N v=1 C I(u, v) u=1 όπου N = R C Χρησιμοποιείται για τον έλεγχο της έκθεσης της εικόνας Υποέκθεση Σωστή έκθεση Υπερέκθεση
17 Αντίθεση εικόνας Εκφράζεται από το εύρος των τιμών grayscale της εικόνας
18 Αντίθεση εικόνας Υπολογισμός αντίθεσης Τύπος Michelson C = I max I min I max + I min όπου I min και I max αντιστοιχούν στην ελάχιστη και μέγιστη τιμή φωτεινότητας της εικόνας. Root Mean Square (RMS) C = 1 N v=1 R C u=1 I u, v B 2 όπου B είναι η φωτεινότητα της εικόνας και N = R C
19 Μετασχηματισμός γάμα Μετασχηματισμός Γάμα (gamma correction) y = x γ για x και γ > 0 ή y = 255 x/255 γ για x [ ] και γ > 0 Ιδιότητες Για γ < 1 βελτιώνει τις σκοτεινές περιοχές της εικόνας Στο διάστημα η συνάρτηση είναι συνεχής και αύξουσα και συνεπώς μπορεί να αντιστραφεί x = y 1/γ
20 Παράδειγμα Μετασχηματισμός γάμα
21 Αυτόματη ρύθμιση αντίθεσης Auto contrast Διαδικασία μέσω της οποίας οι τιμές των pixel της εικόνας διευρύνονται σε όλο το διαθέσιμο φάσμα τιμών φωτεινότητας. όπου y = x min + (x x low ) x max x min x high x low x low, x high δίνουν το εύρος των τιμών φωτεινότητας της εικόνας x min, x max δίνουν το εύρος των διαθέσιμων τιμών φωτεινότητας Θεωρείται ότι x low x high δηλαδή ότι η εικόνα περιέχει τουλάχιστον δύο διαφορετικές τιμές φωτεινότητας. Για συνήθεις τιμές x min = 0 και x max = 255 η σχέση απλοποιείται σε 255 y = (x x low ) x high x low
22 Αυτόματη ρύθμιση αντίθεσης Auto contrast x low x high x min x max Παρατηρήσεις Το εύρος [x min x max ] μπορεί να είναι οποιοδήποτε διάστημα graylevel τιμών Μπορεί να χρησιμοποιηθεί και για την μείωση της αντίθεσης της εικόνας
23 Αυτόματη ρύθμιση αντίθεσης Πρόβλημα Η μέθοδος μπορεί να επηρεαστεί από ακραίες μικρές ή μεγάλες τιμές graylevel, οι οποίες επηρεάζουν τις τιμές x low, x high αλλά δεν είναι αντιπροσωπευτικές της εικόνας. Προσέγγιση Π.χ. εάν υπάρχει ένα μόνο pixel στην εικόνα με graylevel τιμή 0 και ένα ακόμη με τιμή 255 τότε η μέθοδος δεν έχει αποτέλεσμα. Ορίζονται δύο κατώφλια αποκοπής, c low και c high για τις μικρές και τις μεγάλες τιμές του ιστογράμματος, αντίστοιχα. Κατά τον γραμμικό μετασχηματισμό δεν λαμβάνονται υπόψη τιμές μικρότερες από c low και μεγαλύτερες από c high, αντίστοιχα. Τα κατώφλια εξαρτώνται από το περιεχόμενο της εικόνας και μπορούν να υπολογιστούν χρησιμοποιώντας την αθροιστική συνάρτηση κατανομής H(i).
24 Αυτόματη ρύθμιση αντίθεσης Τροποποιημένη μέθοδος auto contrast Το νέο εύρος τιμών [ x low, x high ] είναι Πλήθος pixels εικόνας x low = min i H(i) N c low και x high = max i H(i) N (1 c high ) όπου 0 c low, c high 1 και 0 c low +c high 1 x low x low x high x high x min x max 0 255
25 Αυτόματη ρύθμιση αντίθεσης Παράδειγμα c low = c high = 0 c low = c high = 0.05
26 Γραμμική τμηματική ρύθμιση αντίθεσης Εκφράζεται ως μια ακολουθία από N + 1 ζεύγη a 0, b 0, a 1, b 1,, a k, b k,, a N, b N όπου 0 a k, b k L 1 με a k < a k + 1 και b k < b k + 1 Το αρχικό και το τελικό σημείο είναι 0,0 και L 1, L 1, αντίστοιχα, όπου L το πλήθος των graylevel τιμών. Ορίζονται συνολικά N ευθύγραμμα τμήματα N = 3 L = 255 a, b = 0,0, 100,50, 150,200, 255,255
27 Γραμμική τμηματική ρύθμιση αντίθεσης Ο μετασχηματισμός για τα pixel της αρχικής εικόνας που εμπίπτουν στο i-οστό ευθύγραμμο τμήμα είναι y = b i b i 1 a i a i 1 (x a i 1 ) + b(i 1) για 1 i N N = 3 L = 255 a, b = 0,0, 100,50, 150,200, 255,255 Για x = 110 είναι y = 80
28 Ισοστάθμιση ιστογράμματος Περιγραφή Σημειακός μετασχηματισμός με σκοπό το ιστόγραμμα της τελικής εικόνας να προσεγγίζει την ομοιόμορφη (uniform) κατανομή Χρήση Αυτοματοποιημένη αύξηση αντίθεσης Σύγκριση εικόνων μέσω ιστογράμματος
29 Ισοστάθμιση ιστογράμματος Για μια grayscale εικόνα I u, v 0, L 1 με τιμές ιστογράμματος h i για 0 i L 1, η i-οστή τιμή του ισοσταθμισμένου ιστογράμματος είναι h eq i = H i L 1 N = h 0 + h h i N L 1 = P(i)(L 1) όπου H i = σi k=0 h(i) και P(i) η αθροιστική συνάρτηση κατανομής. Το συμβολίζει την στρογγυλοποίηση στον πλησιέστερο ακέραιο Ιστόγραμμα:
30 Παράδειγμα Ισοστάθμιση ιστογράμματος
31 Κατωφλίωση Χρήση κατωφλίου για απεικόνιση των L graylevels μιας εικόνας σε 2 προκαθορισμένες τιμές φωτεινότητας c 0 και c 1 y = ቊ c 0, x < t c 1, x t με 0 t L 1 όπου t το κατώφλι φωτεινότητας Είναι συνήθης μέθοδος για την μετατροπή μιας grayscale εικόνας σε δυαδική (binary) με c 0 = 0 και c 1 = 1. Χρησιμοποιείται εκτενώς σε προβλήματα τμηματοποίησης (segmentation) για τον διαχωρισμό αντικειμένων από το υπόβαθρο (background).
32 Παράδειγμα Κατωφλίωση
33 Παράδειγμα (συν.) Κατωφλίωση
34 Παράδειγμα (συν.) Κατωφλίωση
35 Παράδειγμα (συν.) Κατωφλίωση
36 Μέθοδος κατωφλίωσης του Otsu Στόχος Προσδιορισμός της «βέλτιστης» τιμής κατωφλίου T για τον διαχωρισμό της εικόνας σε δύο κλάσεις και την μετατροπή της σε δυαδική.
37 Μέθοδος κατωφλίωσης του Otsu Περιγραφή αλγορίθμου Έστω κατώφλι t με 1 t L 1 όπου L το πλήθος των graylevel της εικόνας. Το κατώφλι χωρίζει την εικόνα σε δύο κλάσεις C 0 και C 1 ως εξής: C 0 = u, v I u, v [0 t 1]} Τα pixel της 1 ης κλάσης και C 1 = u, v I u, v [t L 1]} Τα pixel της 2 ης κλάσης Η πιθανότητα κάθε κλάσης είναι t 1 ω 0 t = p i και ω 1 t = i=0 Η μέση τιμή κάθε κλάσης είναι L 1 i=t μ 0 t = 1 t 1 ω 0 (t) ip i και μ 1 t = 1 L 1 ω 1 (t) ip i i=0 i=t p i
38 Μέθοδος κατωφλίωσης του Otsu Περιγραφή αλγορίθμου Η διασπορά των κλάσεων είναι σ 2 0 t = 1 t 1 ω 0 (t) i=0 σ 2 1 t = 1 L 1 ω 1 (t) i=t i μ 0 (t) 2 p i i μ 1 (t) 2 p i Συνολική διασπορά εντός κλάσεων σ W 2 t = ω 0 t σ 0 2 t +ω 1 t σ 1 2 t Το κατώφλι T αντιστοιχεί στην τιμή του t που ελαχιστοποιεί την διασπορά εντός κλάσεων σ W t T = argmin t σ W 2 t
39 Παράδειγμα Μέθοδος κατωφλίωσης του Otsu
40 Μέθοδος κατωφλίωσης του Otsu Παράδειγμα Αριθμητική επίλυση για t = 3 Πιθανότητα κλάσης Μέση τιμή κλάσης t 1 ω 0 t = i=0 L 1 ω 1 t = i=t p i = = p i = = μ 0 t = 1 t 1 ω 0 (t) ip i = = i=0 μ 1 t = 1 L 1 ω 1 (t) ip i = = i=t
41 Μέθοδος κατωφλίωσης του Otsu Παράδειγμα Αριθμητική επίλυση για t = 3 Διασπορά κλάσης σ 2 0 t = 1 t 1 ω 0 (t) i μ 0 (t) 2 p i i=0 = = σ 2 1 t = 1 L 1 ω 1 (t) i μ 1 (t) 2 p i i=t = = Συνολική διασπορά εντός κλάσεων σ W t = ω 0 t σ 0 2 t +ω 1 t σ 1 2 t = =
42 Μέθοδος κατωφλίωσης του Otsu Παράδειγμα Υπολογισμός για όλα τα t T = 1 T = 2 T = 3 T = 4 T = 5 w 0 t m 0 (t) s 0 (t) w 1 (t) m 1 (t) s 1 t s W (t) Grayscale εικόνα Binary εικόνα
43 Μέθοδος κατωφλίωσης του Otsu Ταχύτερη παραλλαγή αλγορίθμου Ο υπολογισμός του κατωφλίου T μπορεί να υπολογιστεί μέσω της διασποράς μεταξύ των κλάσεων. Συνολική διασπορά της εικόνας Διασπορά μεταξύ των κλάσεων όπου σ 2 = σ W 2 + σ B 2 σ B 2 t = ω 0 t μ 0 t μ 2 + ω 1 t μ 1 t μ 2 σ B 2 t = ω 0 (t)ω 1 (t) μ 0 t μ 1 t μ = ω 0 t μ 0 t + ω 1 t μ 1 t = ip i Το κατώφλι T αντιστοιχεί στην τιμή του t που μεγιστοποιεί την διασπορά μεταξύ κλάσεων σ B t T = argmax t σ B t L 1 i=0 2
44 Μέθοδος κατωφλίωσης του Otsu Παράδειγμα Υπολογισμός για όλα τα t μέσω της διασποράς μεταξύ κλάσεων T = 1 T = 2 T = 3 T = 4 T = 5 w 0 t m 0 (t) w 1 (t) m 1 (t) s W (t) s B (t) Συνολική διασπορά σ 2 = σ W 2 + σ B 2 = Grayscale εικόνα Binary εικόνα
45 Προσαρμοσμένη κατωφλίωση Υπολογισμός του κατωφλίου βάσει της τοπικής πληροφορίας Εφαρμογή σε εικόνες όπου η καθολική κατωφλίωση παράγει μη ικανοποιητικά αποτελέσματα, π.χ. εικόνες με μεταβλητό θόρυβο, ανομοιόμορφη φωτεινότητα υποβάθρου, τοπικά χαμηλή αντίθεση κ.α. Το κατώφλι φωτεινότητας για κάθε pixel x i της εικόνας I υπολογίζεται από τις τιμές των pixel σε ένα παράθυρο R i γύρω από το x i. Grayscale εικόνα Μέθοδος Otsu Οι τιμές φωτεινότητας που αντιστοιχούν στο κείμενο και στο υπόβαθρο επικαλύπτονται
46 Προσαρμοσμένη κατωφλίωση Τεχνικές Μέση ή ενδιάμεση τιμή Το κατώφλι t επιλέγεται ως η μέση ή ενδιάμεση τιμή των pixel του παραθύρου: t i = mean R i C Ή t i = median R i C Ενδιάμεση graylevel τιμή Το κατώφλι επιλέγεται ως η ενδιάμεση τιμή των pixel του παραθύρου: t i = min R i + max R i 2 C Η σταθερά C έχει 0 ή θετική τιμή. Για τιμές πχ. 5 ή 10 βελτιώνει τα αποτελέσματα σε περιοχές της εικόνας με ομοιογενή φωτεινότητα.
47 Προσαρμοσμένη κατωφλίωση Τεχνικές Μέθοδος Bernsen Έστω η ενδιάμεση τιμή του παραθύρου t i = min R i + max R i 2 Ο χρήστης καθορίζει ένα κατώφλι αντίθεσης k. Εάν max R i min R i k τότε y i = ቊ c 0, c 1, x i < t i x i t i Αλλιώς το παράθυρο θεωρείται ότι αποτελείται από pixel της ίδιας κλάσης οπότε y i = ቊ c 0, t i < 128 c 1, t i 128
Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ
Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα
Digital Image Processing
Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Τμηματοποίηση εικόνας Τμηματοποίηση εικόνας Γενικά Διαμερισμός μιας εικόνας σε διακριτές περιοχές
Κατάτµηση εικόνας σε οµοιόµορφες περιοχές
KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση εικόνας σε οµοιόµορφες περιοχές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη
Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46
Ψηφιακή Επεξεργασία Εικόνας Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση
DIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_05 Τμηματοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τμηματοποίηση εικόνας είναι η διαδικασία με την οποία διαχωρίζεται μία εικόνα σε κατάλληλες περιοχές ή αντικείμενα. Για την τμηματοποίηση
Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Ιωάννης Φαρασλής Τηλ : 24210-74466,
ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ. ( ) 1, αν Ι(i,j)=k hk ( ), διαφορετικά
ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ Αντικείμενο: Εξαγωγή ιστογράμματος εικόνας, απλοί μετασχηματισμοί με αυτό, ισοστάθμιση ιστογράμματος. Εφαρμογή βασικών παραθύρων με την βοήθεια του ΜΑΤLAB
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Ακμές και περιγράμματα Ακμές και περιγράμματα Γενικά Μεγάλο τμήμα της πληροφορίας που γίνεται αντιληπτή
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές βελτίωσης εικόνας
Παρουσίαση Νο. 5 Βελτίωση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 5 Βελτίωση εικόνας Εισαγωγή Η βελτίωση γίνεται σε υποκειμενική βάση Η απόδοση εξαρτάται από την εφαρμογή Οι τεχνικές είναι συνήθως ad hoc Τονίζει
Τηλεπισκόπηση - Φωτοερμηνεία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 10: Ραδιομετρική Ενίσχυση Χωρική Επεξεργασία Δορυφορικών Εικόνων. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας
Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
Μέρος ΙΙ. Τυχαίες Μεταβλητές
Μέρος ΙΙ. Τυχαίες Μεταβλητές Ορισμοί Συναρτήσεις κατανομής πιθανότητας και πυκνότητας πιθανότητας Διακριτές τυχαίες μεταβλητές Ειδικές κατανομές διακριτών τυχαίων μεταβλητών Συνεχείς τυχαίες μεταβλητές
ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ Π. ΑΣΒΕΣΤΑΣ Επ. Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕΙ Αθήνας Email: pasv@teiath.gr ΠΕΡΙΕΧΟΜΕΝΑ Αναπαράσταση εικόνας Ιστόγραμμα Εξισορρόπηση ιστογράμματος Κατωφλίωση
DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης
DIP_04 Σημειακή επεξεργασία ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός μιας τέτοιας τεχνικής μπορεί να είναι: η βελτιστοποίηση της οπτικής εμφάνισης μιας εικόνας όπως την αντιλαμβάνεται ο άνθρωπος, η τροποποίηση
DIP_05 Τµηµατοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_05 Τµηµατοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τµηµατοποίηση εικόνας είναι η διαδικασία µε την οποία διαχωρίζεται µία εικόνα σε κατάλληλες περιοχές ή αντικείµενα. Για την τµηµατοποίηση εικόνας
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Εισαγωγή Τι είναι η εικόνα; Μια οπτική αναπαράσταση με την μορφή μιας συνάρτησης f(x, y) όπου η
Αριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Σε αντίθεση με την διακριτή τυχαία μεταβλητή, μία συνεχής τυχαία μεταβλητή παίρνει μη-αριθμήσιμο (συνεχές) πλήθος τιμών. Δεν μπορούμε να καταγράψουμε το σύνολο των τιμών
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:
Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το
Γραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 22D D σχημάτων (ευθεία
Γραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 2D σχημάτων (ευθεία) Σχεδίαση ευθείας θί με σάρωση (παρουσίαση προβλήματος) σχεδίαση ευθείας AB, με σάρωση, όπου A=(0,1) και B=(5,4) ποιο είναι το επόμενο pixel
Ασκήσεις Επεξεργασίας Εικόνας
Ασκήσεις Επεξεργασίας Εικόνας. Εύρεση στοιχείων μιας περιοχής με ιδιότητα συγκεκριμένης γειτονιάς Άσκηση. Έστω δύο υποσύνολα πίνακα εικόνας S και S2 η οποία φαίνεται στο σχήμα παρακάτω. Για σύνολο τιμών
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,
Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση
ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία
ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ
Ψηφιακή Επεξεργασία Εικόνας-ΚΕΦ. -- ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΤΑΣΕΩΣ Η επεξεργασία εικόνας µέσω του ιστογράµµατος ουσιαστικά αποτελεί µία βασική επεξεργασία εικόνας που ανήκει
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:
DIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_04 Βελτιστοποίηση εικόνας ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός µιας τέτοιας τεχνικής µπορεί να είναι: η βελτιστοποίηση της οπτικής εµφάνισης µιας εικόνας όπως την αντιλαµβάνεται ο άνθρωπος, η τροποποίηση
Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab
ΑΣΚΗΣΗ 8 Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab 1. Περιγραφή του προτύπου DICOM Η ψηφιακή επεξεργασία ιατρικής εικόνας ξεκίνησε παράλληλα με την ανάπτυξη ενός προτύπου για τη μεταφορά
Μάθημα 9 ο. Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 9 ο Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ Εισαγωγή () Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και αντικείμενα. Μία περιοχή αναμένεται να έχει ομοιογενή χαρακτηριστικά
Τυχαίες Μεταβλητές. Ορισμός
Τυχαίες Μεταβλητές Ορισμός Μία τυχαία μεταβλητή (τ.μ.) είναι μία συνάρτηση (ή μία μεταβλητή) η οποία καθορίζει αριθμητικές τιμές σε μία ποσότητα που σχετίζεται με το αποτέλεσμα ενός πειράματος, όπου μία
Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων
Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στην κατάτμηση εικόνας Τεχνικές
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τι κάνει η Στατιστική Στατιστική (Statistics) Μετατρέπει αριθμητικά δεδομένα σε χρήσιμη πληροφορία. Εξάγει συμπεράσματα για έναν πληθυσμό. Τις περισσότερες
ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )
Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.
27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό
ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και
Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων Δειγµατοληψία και Κβαντισµός: Μια εικόνα (µπορεί να) είναι συνεχής τόσο ως προς τις συντεταγµένες x, y όσο και ως προς το πλάτος. Για να τη µετατρέψουµε
Μοντέλα και Τεχνικές Αξιολόγησης. Ενεργειακών και Περιβαλλοντικών Πολιτικών
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Μοντέλα
Β. Γάτος, Ψηφιακή Επεξεργασία και Αναγνώριση Εγγράφων
Κεφάλαιο 2 Δυαδική μετατροπή 2.1 Γενικά για την δυαδική μετατροπή Η δυαδική μετατροπή των εικόνων (binarizaion - hresholding) είναι το πρώτο βήμα των περισσοτέρων συστημάτων ανάλυσης και επεξεργασίας εγγράφων
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 5.1: Εισαγωγή 5.2: Πιθανότητες 5.3: Τυχαίες Μεταβλητές καθ. Βασίλης Μάγκλαρης
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
Λογική Σχεδίαση Ψηφιακών Συστημάτων
Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδικοί Αριθμοί Η γενική αναπαράσταση ενός οποιουδήποτε
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ 1.1 ΕΙΣΑΓΩΓΗ 1.1 1.2 ΤΙ ΕΙΝΑΙ ΜΙΑ ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ 1.2 1.3 ΠΛΗΘΟΣ BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.4 1.4 ΕΥΚΡΙΝΕΙΑ ΕΙΚΟΝΑΣ 1.5 1.5 ΕΠΙΠΕ Α BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.8 1.6 Η ΦΥΣΗ ΤΟΥ ΧΡΩΜΑΤΟΣ
Μάθημα 9 ο. Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 9 ο Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ Εισαγωγή () Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και αντικείμενα. Μία περιοχή αναμένεται να έχει ομοιογενή χαρακτηριστικά
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επεξεργασία Ιατρικών Εικόνων
ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011. Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών.
1 ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011 2 Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών. Ενδεδειγμένες και αξιόπιστες μέθοδοι αποτύπωσης Εμπειρικές Τοπογραφικές
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Μαθηματική μορφολογία Μαθηματική μορφολογία Γενικά Παρέχει εργαλεία για την επεξεργασία εικόνας
DIP_01 Εισαγωγή στην ψηφιακή εικόνα. ΤΕΙ Κρήτης
DIP_01 Εισαγωγή στην ψηφιακή εικόνα ΤΕΙ Κρήτης Πληροφορίες Μαθήματος ιαλέξεις Πέμπτη 12:15 15:00 Αιθουσα Γ7 ιδάσκων:. Κοσμόπουλος Γραφείο: Κ23-0-15 (ισόγειο( κλειστού γυμναστηρίου) Ωρες γραφείου Τε 16:00
Κεφάλαιο 6 Ιστογράμματα δορυφορικών εικόνων
Κεφάλαιο 6 Ιστογράμματα δορυφορικών εικόνων Κωνσταντίνος Γ. Περάκης Σύνοψη Μία γενική επισκόπηση με εστίαση στη χρήση των ιστογραμμάτων στην Τηλεπισκόπηση και περιγραφές ειδικών εικόνων με τα χαρακτηριστικά
Συμπίεση Πολυμεσικών Δεδομένων
Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας
Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 7 ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Ανάγκες που καλύπτονται Εξοικονόμηση μνήμης Ελάττωση χρόνου και εύρους
Θεωρία Αποφάσεων ο. 4 Φροντιστήριο. Λύσεις των Ασκήσεων
Θεωρία Αποφάσεων ο Φροντιστήριο Λύσεις των Ασκήσεων Άσκηση Έστω ένα πρόβλημα ταξινόμησης μιας διάστασης με δύο κατηγορίες, όπου για κάθε κατηγορία έχουν συλλεχθεί τα παρακάτω δεδομένα: D = {, 2,,,,7 }
Βιοϊατρική τεχνολογία
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοϊατρική τεχνολογία Ενότητα 3: Επεξεργασία σημείων Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ
Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι
Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη συμπίεση εικόνας Μη απωλεστικες
i μιας μεταβλητής Χ είναι αρνητικός αριθμός
ΕΡΩΤΗΣΕΙΣ Σ Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακoλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
Ανάπτυξη και Σχεδίαση Λογισμικού
Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Εκφράσεις και Λίγες Εντολές Οι εκφράσεις της C Τελεστές Απλές και σύνθετες εντολές Εντολές ελέγχου (επιλογής) Εισαγωγή σε
Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων
Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται οι βασικές έννοιες της στατιστικής ανάλυσης των μετρήσεων που υπόκεινται σε τυχαία σφάλματα. Παρουσιάζεται μέσω
1.4 Αριθμητική υπολογιστών και σφάλματα
Γ. Γεωργίου, Αριθμητική Ανάλυση 1.4 Αριθμητική υπολογιστών και σφάλματα Στην παράγραφο αυτή καλύπτουμε πρώτα γενικά το θέμα της αριθμητικής υπολογιστών και στην συνέχεια διαπραγματευόμαστε την έννοια του
ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
Πανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον Άρεως, Βόλος
ΔΙΑΧΕΙΡΙΣΗ ΓΛΩΣΣΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ. Πολυκριτήρια Ανάλυση Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΔΙΑΧΕΙΡΙΣΗ
Digital Image Processing
Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική
Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).
Νίκος Σούρµπης - - Γιώργος Βαρβαδούκας ΘΕΜΑ ο Α. α) ίνεται η συνάρτηση F()=f()+g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F ()=f ()+g (). β)να γράψετε στο τετράδιό σας τις παραγώγους
Στατιστικοί πίνακες. Δημιουργία κλάσεων
Στατιστικοί πίνακες Δημιουργία κλάσεων Τι είναι οι κλάσεις; Κλάσεις είναι ημιανοικτά διαστήματα της μορφής [α i, b i ), τα οποία είναι ταυτόχρονα και διαδοχικά, έτσι ώστε να μην υπάρχει κάποια τιμή του
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Αριθμητικά Συστήματα. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Αριθμητικά Συστήματα Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Αριθμητικά Συστήματα Δεκαδικό Σύστημα: Βάση το 10, ψηφία 10 και συντελεστές
Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου
Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΜΕ ΧΡΗΣΗ MATLAB ΑΘΑΝΑΣΙΑ ΚΟΛΟΒΟΥ (Ε.Τ.Ε.Π.) 2012 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ο σκοπός αυτού
Κωδικοποίηση εικόνων κατά JPEG
Κωδικοποίηση εικόνων κατά JPEG Εισαγωγή Προετοιµασία της εικόνας ρυθµός Ακολουθιακός απωλεστικός ρυθµός Εκτεταµένος απωλεστικός ρυθµός Μη απωλεστικός ρυθµός Ιεραρχικός ρυθµός Τεχνολογία Πολυµέσων 09-1
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ
Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις
2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση
ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ ΥΠΟΛΟΓΙΣΜΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ (4 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το
0 x < (x + 2) 2 x < 1 f X (x) = 1 x < ( x + 2) 1 x < 2 0 x 2
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες-Χειµερινό Εξάµηνο 6-7 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 9 Επιµέλεια : Γιαννόπουλος Μιχάλης Ασκηση Εστω X συνεχής Τ.Μ. µε Συνάρτηση Πυκνότητας
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Επεξεργασία στο πεδίο της συχνότητας Φασματικές τεχνικές Γενικά Τεχνικές αναπαράστασης και ανάλυσης
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης ούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και ιοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 11: Εφαρμογές DFT Ταχύς Μετασχηματισμός Fourier (FFT) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Διακριτός Μετασχηματισμός Fourier Υπολογισμός Γραμμικής Συνέλιξης
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7-8 Μπεϋζιανή εκτίμηση - συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Δυαδικές τ.μ. κατανομή Bernoulli : Εκτίμηση ML: Εκτίμηση Bayes για εκ των προτέρων
Τεχνολογία Πολυμέσων. Ενότητα # 11: Κωδικοποίηση εικόνων: JPEG Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 11: Κωδικοποίηση εικόνων: JPEG Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου
Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας
Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες
Ιωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εισαγωγή Σχηματισμός Εικόνας
( ) 2. χρόνος σε min. 2. xa x. x x v
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Μ. ΤΕΤΑΡΤΗ 8 ΑΠΡΙΛΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Σχολικό βιβλίο
Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή
Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26
Βουτσκοπούλου Ευαγγελία
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΝΑΠΤΥΞΗ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΤΜΗΜΑΤΟΠΟΙΗΣΗ (SEGMENTATION) ΨΗΦΙΑΚΗΣ ΕΙΚΟΝΑΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων 2018-2019 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος- Γεωργία Φουτσιτζή Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος