Ασφάλεια Πληροφοριακών Συστημάτων
|
|
- Οινώνη Βαμβακάς
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας
2 Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το C Προσπαθούμε να βρούμε το K έτσι ώστε να πάρουμε το Μ Τεχνικές: Στατιστικές μέθοδοι Brutal force
3 Μέσος χρόνος που απαιτείται για εξαντλητική αναζήτηση κλειδιών
4 Στατιστικές μέθοδοι (μέθοδοι μετατόπισης /αντικατάστασης) Έλεγχος Kasiski: προσπαθεί να προσδιορίσει το μέγεθος του κλειδιού από το C. Βήματα: 1. Εξετάζουμε εάν μία ακολουθία χαρακτήρων εμφανίζεται στο C 2 ή περισσότερες φορές. 2. Υποθέτουμε ότι η ίδια ακολουθία χαρακτήρων κρυπτογραφήθηκε από το ίδιο κλειδί. Άρα η απόσταση μεταξύ των δύο ακολουθιών είναι πολλαπλάσια του μήκους του κλειδιού.
5 Έλεγχος Kasiski Η τεχνική αυτή βασίστηκε στην παρακάτω παρατήρηση Μ= AΛΛΟ Κ=Β (μετάθεση 1 θέση δεξιά) Άρα C= BMMΠ Παρατηρούμε ότι στο C υπάρχουν 2 ίδιοι χαρακτήρες. Εφόσον η κωδικοποίηση έγινε με αντικατάσταση (δηλ. δεν άλλαξε η θέση των αρχικών χαρακτήρων), τότε τα 2 Μ αντιστοιχούν στον ίδιο αρχικό χαρακτήρα. Επειδή η απόστασή τους είναι 1, τότε μάλλον το κλειδί έχει μήκος 1.
6 Έλεγχος Kasiski-Σημασία της τεχνικής Η τεχνική δεν υπολογίζει το κλειδί αλλά κάνει κάτι εξίσου σημαντικό: υπολογίζει το πιθανό μήκος. Στη συνέχεια με τεχνικές στατιστικής ανάλυσης ή brute force αποκαλύπτεται το κλειδί. -> η γνώση του μήκους του κλειδιού μειώνει σημαντικά το μέγεθος των υπολογισμών που θα πρέπει να γίνουν και άρα το χρόνο που απαιτείται
7 Έλεγχος Kasiski-Σημασία της τεχνικής Αν θέλουμε να μπούμε στο σύστημα, θα πρέπει να δοκιμάσουμε χιλιάδες κωδικούς διαφορετικού μήκους. Αν ξέρουμε ότι ο κωδικός έχει μήκος 5 χαρακτήρες, τότε δοκιμάζουμε μόνο 5ψήφιους κωδικούς.
8 Έλεγχος Kasiski - Παράδειγμα Δίνεται το C= UWZAKPRUWZLZAKZT. Ποια τα πιθανά μήκη του κλειδιού; (Ελέγχουμε καταρχήν για επαναλήψεις 3-γραμμάτων. Αν δεν βρούμε 2-γραμμάτων κτλ.) UWZAKPRUWZLZAKZT 1.Βρίσκουμε τα UWZ, AK. 2. Υπολογίζουμε τις αποστάσεις των αρχικών γραμμάτων τους UWZ: 8-1=7 AK: 13-4=9 3. Οι αποστάσεις είναι πολλαπλάσια του μήκους του κλειδιού. Άρα βρίσκω ποιοι αριθμοί διαιρούν ακριβώς και τις δύο αποστάσεις. 7: 1,7 9: 1,3,9 4. Οι κοινοί διαιρέτες είναι τα πιθανά μήκη του κλειδιού: εδώ μόνο το 1. Άρα το μήκος του κλειδιού είναι 1
9 Ο αλγόριθμος RSA Ο RSA είναι ένας κρυπταλγόριθμος ασύμμετρου κλειδιού, το όνομα του οποίου προέρχεται από τους δημιουργούς του, Ron Rivest, Adi Shamir and Len Adleman. Επιτρέπει όχι μόνο την κωδικοποίηση μηνυμάτων αλλά μπορεί επίσης να χρησιμοποιηθεί και ως ψηφιακή υπογραφή. Ο RSA βασίζεται στην δυσκολία παραγοντοποίησης μεγάλων πρώτων αριθμών (σήμερα, συνήθως της τάξης των 1024 με 2048 bit). Χρησιμοποιούνται δυο κλειδιά, ένα δημόσιο κατά τη διάρκεια της κρυπτογράφησης και ένα κρυφό (ιδιωτικό) για την αποκρυπτογράφηση.
10 Ο αλγόριθμος RSA- Δημιουργία κλειδιών ΜΚΔ Μπορούμε τώρα να δημοσιεύσουμε το πρώτο κλειδί, δίνοντας έτσι τη δυνατότητα σε οποιονδήποτε να μας στείλει κρυπτογραφημένα μηνύματα που μόνο εμείς (χάρη στο κρυφό κλειδί) μπορούμε να αποκρυπτογραφήσουμε.
11 Κρυπτογράφηση Το κρυπτογραφημένο μήνυμα υπολογίζεται με τον εξής τρόπο: Για να κρυπτογραφηθεί ο αποστολέας έχει το δημόσιο κλειδί.
12 Αποκρυπτογράφηση M= C d mod n
13 Κάποιες λεπτομέρειες a b(mod n) σχέση ισοτιμίας του α, b modn δηλ. το a-b είναι ένα ακέραιο πολλαπλάσιο του n. Π.χ (mod 2) γιατί 38-14=24=2* (mod 12) γιατί 38-2=36=3*12.
14 Παράδειγμα Έστω το μήνυμα Μ=2. Να κρυπτογραφηθεί με τον αλγόριθμο RSA εάν p=5 και q=11. Λύση: 1. Υπολογίζουμε το n=p*q=5*11=55 2. Yπολογίζουμε το φ(n)=(p-1)(q-1)=4*10=40 3. Eπιλέγουμε e=7, έτσι ώστε ο ΜΚΔ του φ(n) και του e να είναι το 1. Πράγματι, ΜΚΔ(40,7)=1 Το δημόσιο κλειδί είναι το {n,e}={55,7}
15 Παράδειγμα 4. Iσχύει: d*e 1 (mod φ(n)) d*7 1(mod 40) (Σχέση ισοτιμίας) d*7-1 πολλαπλάσιο του 40. Υπάρχει δηλ. ακέραιος k για τον οποίο ισχύει: d*7-1 = k * 40 d= k * Η διαίρεση θα πρέπει να μην έχει υπόλοιπο. Δοκιμάζουμε: k=1, d= 41/7 δεν διαιρείται ακριβώς. k=2, d=81/7 k=4, d=161/7=23. Άρα d=23 και το ιδιωτικό κλειδί {n,d}={55,23}
16 Κωδικοποίηση C= M e (modn)=2 7 mod55=128mod55=18 Aποκωδικοποίηση: M= C d mod n=18 23 mod55=2 Αν το Μ ήταν Μ=234, κωδικοποιούμε κάθε ψηφίο ξεχωριστά (το 2, το 3 και το 4.)
17 Πλεονεκτήματα/Μειονεκτήματα Όσο πιο μεγάλο το Ν -> μεγαλύτερη ασφάλεια δυσκολία στον υπολογισμό p,q Γίνεται αργός ο αλγόριθμος Τα p,q πρέπει να έχουν μεγάλη διαφορά μεταξύ τους! Αλλιώς p N και το p,q μπορούν να υπολογιστούν 512bit RSA σπάει σε λίγες εβδομάδες! Προτείνεται μέγεθος 1024 bits.
18 Ασκήσεις 1. Δίνεται το μήνυμα Μ= AENAO και το κλειδί Κ=ABΓ. Κρυπτογραφήστε το με τη μέθοδο της πολύ-αλφαβητικής αντικατάστασης (με αντικατάσταση προς τα αριστερά.)
19 Λύση Μ= A E N A O Κ= A B Γ Α Β C= Α Η Π Α Ρ Γιατί Α-> 1 θέση αριστερά Β-> 2 θέσεις Γ-> 3 θέσεις
20 Άσκηση 2 2. Δίνεται το μήνυμα M= ΑΣΦΑΛΕΙΑ ΤΕΛΟΣ. Κρυπτογραφήστε το με την απλή μέθοδο της μετάθεσης όπου Κ=4. Α Λ Τ Σ Σ Ε Ε Ε -> Φ Ι Λ Ε Α Α Ο Ε C= AΛΤΣΣΕΕΕΦΙΛΕΑΑΟΕ
21 Άσκηση 3 3. Δίνεται το μήνυμα Μ= Ποιο είναι το κρυπτογραφημένο μήνυμα εάν χρησιμοποιηθεί o Κωδικοποιητής Vernam; Χρησιμοποιείστε ως κλειδί K, τη 8-bit δυαδική αναπαράσταση του 13.
22 Λύση 8-bit δυαδική αναπαράσταση του 13: > (8+4+1=13) Άρα: Μ= Κ= ΧΟR C=
23 Άσκηση 4 4. Δίνεται το μήνυμα M= ΣΗΜΕΡΑ ΑΥΡΙΟ ΚΑΙ ΕΧΘΕΣ ΟΛΕΣ. Κρυπτογραφήστε σε πολλαπλή μετάθεση έχοντας υπόψην ότι το πλήθος των στοιχείων κάθε στήλης είναι 5 και Κα=
24 Άσκηση 5 5. Δίνεται το κρυπτογραφημένο μήνυμα C= ERDFGERFJKELJGTKLAIOEFDFGKLA. Ποια είναι τα πιθανά μήκη του κλειδιού σύμφωνα με τη μέθοδο Kasiski;
25 Λύση ERDFGERFJKELJGTKLAIOGERDFGΝ KLA Αποστάσεις: GER: 21-5=16, διαιρείται από:1,2,4,8,16 ΚLA: 28-16=12, διαιρείται από:1,2,3,4,6,12 Κοινοί διαιρέτες: 1,2,4. Άρα αυτά είναι τα πιθανά μήκη του κλειδιού.
26 Άσκηση 6 6. Στον αλγόριθμο RSA, δίνονται τα p, q και το μήνυμα Μ=23. Υπολογίστε το δημόσιο και το ιδιωτικό κλειδί και περιγράψτε τη διαδικασία κρυπτογράφησης και αποκρυπτογράφησης. Δίνονται p=4,q=10.
27 Λύση 1. Υπολογίζουμε το n=p*q= 4*10=40 2. Υπολογίζουμε το φ(n)=(p-1)(q-1)=3*9=27 3. Επιλέγουμε e: ΜΚΔ(e,φ(n))=1, δηλ. ΜΚΔ(e,27)=1. Επιλέγω e=7 Το 27 διαιρείται από: 1,3,9,27 Το 7 διαιρείται από: 1,7. Άρα ΜΚΔ(7,27)=1. Το e=7 είναι ορθή επιλογή
28 Λύση Το δημόσιο κλειδί είναι το {n,e}={40,7} Iσχύει: d*e 1 (mod φ(n)) d*7 1(mod 27) d*7-1 πολλαπλάσιο του 27. Υπάρχει δηλ. ακέραιος k για τον οποίο ισχύει: d*7-1 = k * 27 d= k* Η διαίρεση θα πρέπει να μην έχει υπόλοιπο. Δοκιμάζουμε: k=1, d= 28/7 δεν διαιρείται ακριβώς. k=2, d=55/7 k=8, d=217/7=31. Άρα d= και το ιδιωτικό κλειδί {n,d}={40,31}
29 Λύση Κωδικοποίηση Μ=23, το δημόσιο κλειδί είναι το {n,e}={40,7} M=M 1 M 2 =2 3 2: C 1 = M e 1 mod n =2 7 mod 40 = 128 mod 40= 8 3: C 2 = M 2 e mod n =3 7 mod 40 = 2187 mod 40= 27. Άρα C=C 1 C 2 =827
30 Παράδειγμα RSA Αρχικό κείμενο = Κρυπτογράφηση = με υπόλοιπο το 66 Κρυπτογράφημα Αποκρυπτογράφηση = x = x με υπόλοιπο το 19 Αρχικό κείμενο 19 KU = 5, 119 KR = 77, 119
31 Ψηφιακές Υπογραφές- Βασικές Αρχές Η Ψηφιακή Υπογραφή είναι ένα μαθηματικό σύστημα χρησιμοποιείται για την απόδειξη της γνησιότητας ενός ψηφιακού μηνύματος ή εγγράφου. 1. Πιστοποιεί τον αποστολέα 2. Ότι το μύνημα δεν παραποιήθηκε κατά τη μετάδοση Μέθοδοι Ψηφιακής Υπογραφής Κρυπτογραφική συνάρτηση κετατεμαχισμού (hash function)-> σύνοψη Ασσύμετρη κρυπτογραφία -> κρυπτογράφηση/αποκρυπτογράφηση σύνοψης
32 Εφαρμογές Έχουν νομική υπόσταση! Χρησιμοποιούνται αντί για τις χειρόγραφες Μπορούν να συμπεριλάβουν και την ημερομηνία! Ο υπογράφων δεν μπορεί να αρνηθεί ότι υπέγραψε! Η ψηφιακή υπογραφή μπορεί να προστεθεί σε οποιαδήποτε ακολουθία bits: Ηλεκτρονικά έγγραφα (doc, xls, pdf, bmp,jpeg, tiff)
33 Ψηφιακή Υπογραφή
34 Μέρη του Αλγορίθμου
35 Πάροχος υπηρεσιών πιστοποίησης Ένα πρόβλημα με τις ψηφιακές υπογραφές είναι ότι δεν γνωρίζουμε αν το δημόσιο κλειδί (κατά την διάρκεια ελέγχου της υπογραφής) που έχουμε ανήκει σε αυτόν που ισχυρίζεται ότι είναι! Πάροχος Υπηρεσιών Πιστοποίησης: οργανισμός-οντότητα ο οποίος πιστοποιεί την σχέση ενός ανθρώπου με το δημόσιο κλειδί του. εμπνέει εμπιστοσύνη γιατί είναι η αρχή η οποία εκδίδει ψηφιακά πιστοποιητικά. Τα ψηφιακά πιστοποιητικά ταυτοποιούν ένα δημόσιο κλειδί με τον δικαιούχο του. Επισυνάπτεται στο έγγραφο μαζί με την ψηφιακή υπογραφή και το ψηφιακό πιστοποιητικό του δημόσιου κλειδιού.
36 Ανάλυση Βημάτων- Αποστολή Ένα μήνυμα υπογράφεται ως εξής: Ο Αποστολέας περνά το μήνυμα από ένα Hash Function δίνει αποτέλεσμα μια σειρά χαρακτήρων Α (message digest), είναι πάντα ίδιου μήκους ασχέτως με το μήκος του μηνύματος. Η σειρά χαρακτήρων Α κρυπτογραφείται με το ιδιωτικό κλειδί του Αποστολέα σε Α Το Α ( Ψηφιακή Υπογραφή) στέλνεται μαζί με το μήνυμα (χωρίς το σώμα του μηνύματος να είναι αναγκαστικά κρυπτογραφημένο).
37 Ανάλυση Βημάτων- Παραλαβή Ο Παραλήπτης παίρνει το μήνυμα μαζί με την Ψηφιακή υπογραφή Α. Περνά το μήνυμα από την ίδια Hash Function με αποτέλεσμα μια σειρά χαρακτήρων Β. Με το δημόσιο του κλειδί αποκρυπτογραφεί την Α σε Α. Αν τα Α και Β είναι τα ίδια το μήνυμα δεν έχει αλλοιωθεί.
38 Hash Function H συνάρτηση δέχεται ως είσοδο το μήνυμα Παράγει έναν μοναδικό αριθμό ανεξαρτήτως μεγέθους μηνύματος!
39 Λογισμικό ΨΥ PGP! Pretty Good Privacy (1991)
40 Aσφάλεια Δικτύων Βασικές Έννοιες
Ασφάλεια Πληροφοριακών Συστηµάτων
Ασφάλεια Πληροφοριακών Συστηµάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 3η Δρ. A. Στεφανή Τµ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Ψηφιακές Υπογραφές- Βασικές Αρχές Η Ψηφιακή Υπογραφή είναι ένα µαθηµατικό
Ασφάλεια Πληροφοριακών Συστηµάτων
Ασφάλεια Πληροφοριακών Συστηµάτων Ασφάλεια Υπολογιστών Διάλεξη 1η Δρ. Β. Βασιλειάδης Τµ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Πληροφορίες για το Μάθηµα Διαλέξεις: Κάθε Δευτέρα 11:00-13:00 Ιστότοπος
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη
ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3
ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 Η Aσύμμετρη Kρυπτογραφία ή Κρυπτογραφία Δημοσίου Κλειδιού χρησιμοποιεί δύο διαφορετικά κλειδιά για την κρυπτογράφηση και αποκρυπτογράφηση. Eπινοήθηκε στο τέλος της δεκαετίας
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ Ορισµός τριών στόχων ασφάλειας - Εµπιστευτικότητα, ακεραιότητα και διαθεσιµότητα Επιθέσεις Υπηρεσίες και Τεχνικές
Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα
ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ
ΤΕΙ Κρήτης ΕΠΠ Εργαστήριο Ασφάλεια Πληροφοριακών Συστηµάτων ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρητης Τµηµα Εφαρµοσµενης Πληροφορικης Και Πολυµεσων Fysarakis Konstantinos, PhD kfysarakis@staff.teicrete.gr Εισαγωγή
κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας
κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας ιδιότητες ασϕάλειας ιδιότητες ασϕάλειας αγαθών Εμπιστευτικότητα (Confidentiality)
Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA
Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Κρυπτογραφία Δημόσιου Κλειδιού -RSA 1 Κρυπτογραφία Δημόσιου Κλειδιού - Ιστορία Ηνωμένες Πολιτείες 1975: Ο Diffie οραματίζεται
Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας
Ηλεκτρονικό εμπόριο HE 7 Τεχνολογίες ασφάλειας Πρόκληση ανάπτυξης ασφαλών συστημάτων Η υποδομή του διαδικτύου παρουσίαζε έλλειψη υπηρεσιών ασφάλειας καθώς η οικογένεια πρωτοκόλλων TCP/IP στην οποία στηρίζεται
Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται
Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός
Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA Τον Απρίλιο του 977 οι Ρόναλντ Ρίβεστ, Άντι Σαµίρ και Λέοναρντ Άντλεµαν, ερευνητές στο Ινστιτούτο Τεχνολογίας της Μασσαχουσέτης (ΜΙΤ) µετά από ένα χρόνο προσπαθειών
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές
Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative
Κρυπτογραφία. Εργαστηριακό μάθημα 1
Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,
Αλγόριθµοι δηµόσιου κλειδιού
Αλγόριθµοι δηµόσιου κλειδιού Αλγόριθµοι δηµόσιου κλειδιού Ηδιανοµή του κλειδιού είναι ο πιο αδύναµος κρίκος στα περισσότερα κρυπτογραφικά συστήµατα Diffie και Hellman, 1976 (Stanford Un.) πρότειναν ένα
Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος
Οι διαφάνειες έχουν βασιστεί στο βιβλίο «Εισαγωγή στην επιστήμη των υπολογιστών» του B. Forouzanκαι Firoyz Mosharraf(2 η έκδοση-2010) Εκδόσεις Κλειδάριθμος Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου
Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές
ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές Ψηφιακά Πιστοποιητικά Υποδομή δημόσιου κλειδιού (Public Key Infrastructure
project RSA και Rabin-Williams
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών project RSA και Rabin-Williams Στοιχεία Θεωρίας Αριθμών& Εφαρμογές στην Κρυπτογραφία Ονοματεπώνυμο Σπουδαστών: Θανάσης Ανδρέου
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Συναρτήσεις Κατακερματισμού και Πιστοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο
Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. Συναρτήσεις Κατακερματισμού
ΤΕΙ ΚΡΗΤΗΣ ΤΜΉΜΑ ΜΗΧΑΝΙΚΏΝ ΠΛΗΡΟΦΟΡΙΚΉΣ Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Συναρτήσεις Κατακερματισμού Ο όρος συνάρτηση κατακερματισμού (hash function) υποδηλώνει ένα μετασχηματισμό που παίρνει
Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα
Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Ενότητα 5: ΚΡΥΠΤΟΓΡΑΦΗΣΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος
ρ. Κ. Σ. Χειλάς, ίκτυα Η/Υ ΙΙΙ, Τ.Ε.Ι. Σερρών, 2007
Ψηφιακές υπογραφές Ψηφιακές υπογραφές Υπάρχει ανάγκη αντικατάστασης των χειρόγραφων υπογραφών µε ψηφιακές (ΨΥ) Αυτές πρέπει να διαθέτουν τα εξής χαρακτηριστικά: Ο παραλήπτης πρέπει να είναι σε θέση να
Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού
Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού Μ. Αναγνώστου 13 Νοεμβρίου 2018 Συναρτήσεις κατακερματισμού Απλές συναρτήσεις κατακερματισμού Κρυπτογραφικές συναρτήσεις κατακερματισμού Secure
Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις)
Κρυπτογραφία Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Εύρεση αντίστροφου αριθμού Mod n Έχουμε ήδη δει ότι πολύ συχνά συναντάμε την ανάγκη να βρούμε τον αντίστροφο ενός αριθμού a modulo n, δηλαδή
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος ttouskas@aueb.gr
Πρώτοι αριθμοί και κρυπτογραφικός αλγόριθμος RSA. Άριστος Χαραλάμπους, Δημήτρης Χαραλάμπους, Νικόλας Παρασκευάς
Πρώτοι αριθμοί και κρυπτογραφικός αλγόριθμος RSA Άριστος Χαραλάμπους, Δημήτρης Χαραλάμπους, Νικόλας Παρασκευάς Πρώτοι Αριθμοί Πρώτος αριθμός ονομάζεται ένας φυσικός αριθμός (δηλ. θετικός ακέραιος) μεγαλύτερος
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 8 η Βασίλης Στεφανής Περιεχόμενα Τι είναι κρυπτογραφία Ιστορική αναδρομή Αλγόριθμοι: Καίσαρα Μονοαλφαβιτικοί Vigenere Vernam Κρυπτογραφία σήμερα Κρυπτογραφία Σκοπός Αποστολέας
Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ
Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 θα εξετάσουμε τα ακόλουθα εργαλεία κρυπτογραφίας: ψηφιακές υπογραφές κατακερματισμός (hashing) συνόψεις μηνυμάτων μ (message digests) ψευδοτυχαίοι
Ασφάλεια Υπολογιστικών Συστηµάτων
Ορισµοί Κρυπτογράφηση: η διεργασία µετασχηµατισµού ενός µηνύµατος µεταξύ ενός αποστολέα και ενός παραλήπτη σε µια ακατανόητη µορφή ώστε αυτό να µην είναι αναγνώσιµο από τρίτους Αποκρυπτογράφηση: η διεργασία
1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών;
1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; Η ακεραιότητα δεδομένων(data integrity) Είναι η ιδιότητα που μας εξασφαλίζει ότι δεδομένα
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο
ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία
ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 6: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κεφάλαιο 21. Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων
Κεφάλαιο 21 Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων Κρυπτογράφηση δημόσιου κλειδιού RSA Αναπτύχθηκε το 1977 από τους Rivest, Shamir και Adleman στο MIT Ο πιο γνωστός και ευρέως
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο. Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος 1 ΠΕΡΙΕΧΟΜΕΝΑ Ψηφιακές Υπογραφές Ασύμμετρης Κρυπτογραφίας Συστήματα ψηφιακής υπογραφής με αυτοανάκτηση Συστήματα
Αριθμοθεωρητικοί Αλγόριθμοι
Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Κατάλογος Περιεχομένων ΕΙΣΑΓΩΓΉ ΣΤΟ CRYPTOOL... 3 DOWNLOADING CRYPTOOL... 3 ΜΗΧΑΝΙΣΜΟΊ ΚΑΙ ΑΛΓΌΡΙΘΜΟΙ ΚΡΥΠΤΟΓΡΑΦΊΑΣ ΣΤΟ CRYPTOOL...
Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου 11η Διάλεξη: Ασφάλεια στο Web
Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου 11η Διάλεξη: Ασφάλεια στο Web Δρ. Απόστολος Γκάμας Λέκτορας (407/80) gkamas@uop.gr Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου Διαφάνεια 1 1 Εισαγωγικά Βασικές
Ασφάλεια ικτύων (Computer Security)
Ασφάλεια ικτύων (Computer Security) Τι Εννοούµε µε τον Όρο Ασφάλεια ικτύων; Ασφάλεια Μόνο ο αποστολέας και ο προοριζόµενος παραλήπτης µπορούν να διαβάσουν και να κατανοήσουν ένα µήνυµα. Ο αποστολέας το
Δραστηριότητες σχετικά με κρυπτογραφία και ελέγχους ισοτιμίας
Δραστηριότητες σχετικά με κρυπτογραφία και ελέγχους ισοτιμίας Δραστηριότητα 6: Κωδικοί και κρυπτογραφία Το αντικείμενο της δραστηριότητας αυτής είναι η κατανόηση από την πλευρά των μαθητών μερικών στοιχειωδών
Ασφάλεια Υπολογιστικών Συστημάτων
Ασφάλεια Υπολογιστικών Συστημάτων Ενότητα 3: Κρυπτογραφία δημόσιου κλειδιού Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ
ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Ο στόχος της υβριδικής μεθόδου είναι να αντισταθμίσει τα μειονεκτήματα της συμμετρικής
Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές
Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο
Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)
Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο
KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ
KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 10 : Ασφάλεια. Δρ. Γκόγκος Χρήστος
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 10 : Ασφάλεια Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής
W i. Subset Sum Μια παραλλαγή του προβλήματος knapsack είναι το πρόβλημα Subset Sum, το οποίο δεν λαμβάνει υπόψιν την αξία των αντικειμένων:
6/4/2017 Μετά την πρόταση των ασύρματων πρωτοκόλλων από τους Diffie-Hellman το 1976, το 1978 προτάθηκε ένα πρωτόκολλο από τους Merkle-Hellman το οποίο βασίστηκε στο ότι δεν μπορούμε να λύσουμε γρήγορα
Ασφάλεια Υπολογιστικών Συστημάτων
Ασφάλεια Υπολογιστικών Συστημάτων Ενότητα 4: Pretty Good Privacy (PGP) Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές. ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να
Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να Ορισμός κρυπτογραφίας Με τον όρο κρυπτογραφία, αναφερόμαστε στη μελέτη μαθηματικών τεχνικών
Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές
ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές Φυσαράκης Κων/νος, PhD kfysarakis@staff.teicrete.gr Ψηφιακά Πιστοποιητικά Εισαγωγή
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος
7. O κβαντικός αλγόριθμος του Shor
7. O κβαντικός αλγόριθμος του Shor Σύνοψη Ο κβαντικός αλγόριθμος του Shor μπορεί να χρησιμοποιηθεί για την εύρεση της περιόδου περιοδικών συναρτήσεων και για την ανάλυση ενός αριθμού σε γινόμενο πρώτων
Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. PGP (Pretty Good Privacy)
Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων PGP (Pretty Good Privacy) Εισαγωγή Το λογισμικό Pretty Good Privacy (PGP), το οποίο σχεδιάστηκε από τον Phill Zimmerman, είναι ένα λογισμικό κρυπτογράφησης
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο 2015 1 ΤΙ ΕΙΝΑΙ Η ΚΡΥΠΤΟΛΟΓΙΑ?
Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση
Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού
Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας
Κρυπτογραφία Έλεγχος πρώτων αριθών-παραγοντοποίηση Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία
Σύγχρονη Κρυπτογραφία
Σύγχρονη Κρυπτογραφία 50 Υπάρχουν μέθοδοι κρυπτογράφησης πρακτικά απαραβίαστες Γιατί χρησιμοποιούμε λιγότερο ασφαλείς μεθόδους; Η μεγάλη ασφάλεια κοστίζει σε χρόνο και χρήμα Πολλές φορές θυσιάζουμε ασφάλεια
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman
ΨΗΦΙΑΚΗ ΥΠΟΓΡΑΦΗ. Απόστολος Πλεξίδας Προϊστάµενος της ιεύθυνσης ιαφάνειας & Ηλεκτρονικής ιακυβέρνησης της Περιφέρεια Κεντρικής Μακεδονίας
ΨΗΦΙΑΚΗ ΥΠΟΓΡΑΦΗ Προϊστάµενος της ιεύθυνσης ιαφάνειας & Ηλεκτρονικής ιακυβέρνησης της Περιφέρεια Κεντρικής Μακεδονίας 1 ΠΕΡΙΕΧΟΜΕΝΑ Hλεκτρονική υπογραφή, τι είναι, τρόπος λειτουργίας Χειρογραφη Ηλεκτρονική
Κρυπτογραφία. Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις)
Κρυπτογραφία Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις) Έστω ότι το κλειδί είναι ένας πίνακας 2 x 2. Αυτό σημαίνει ότι: Σπάμε το μήνυμα σε ζευγάρια γραμμάτων Κάθε γράμμα το αντιστοιχούμε σε έναν αριθμό
Τεχνική Ανάλυση των η-υπογραφών & των η-πιστοποιητικών
ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ Ε2 : «Ηλεκτρονικές Υπογραφές & Ηλεκτρονικά Πιστοποιητικά Ταυτοποίησης» (Τεχνική & Νομική Ανάλυση) Μέρος Β: Τεχνική Ανάλυση των η-υπογραφών & των η-πιστοποιητικών Παρουσίαση Νίκος Κυρλόγλου
Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
ΑΣΦΑΛΕΙΑ ΚΑΤΑ ΤΗ ΙΑΚΙΝΗΣΗ ΠΟΛΥΜΕΣΙΚΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
ΑΣΦΑΛΕΙΑ ΚΑΤΑ ΤΗ ΙΑΚΙΝΗΣΗ ΠΟΛΥΜΕΣΙΚΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΡΑΚΤΙΚΟ ΜΕΡΟΣ 4 ης ΕΡΓΑΣΙΑΣ Κλώνη Απόστολου ΠΕΡΙΕΧΟΜΕΝΑ Κρυπτογραφία Ψηφιακές υπογραφές Ψηφιακά πιστοποιητικά Ψηφιακή υδατογραφία 2 Κρυπτογραφία Η επιστήµη
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτοαλγόριθμοι Χρήστος Ξενάκης Θεωρία Πληροφορίας Η Θεωρία πληροφορίας (Shannon 1948 1949) σχετίζεται με τις επικοινωνίες και την ασφάλεια
GPG & ΚΡΥΠΤΟΓΡΑΦΙΑ. Π. Αγγελάτος, Δ. Ζήνδρος
GPG & ΚΡΥΠΤΟΓΡΑΦΙΑ Π. Αγγελάτος, Δ. Ζήνδρος Όσο ξεκινάμε... Κατεβάστε το GPG για το σύστημά σας: Αν έχετε Linux, το έχετε ήδη Αν έχετε Windows, Gpg4win: http://gpg4win.org/ Αν έχετε Mac, GPG Suite: https://gpgtools.org/
El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2
Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:
Ψηφιακές Υπογραφές (Digital Signatures)
Ψηφιακές Υπογραφές (Digital Signatures) 1 Ψηφιακές υπογραφές (Digital signatures) ψηφιακός ( digital ): αποτελείται από ακολουθίες ψηφίων Συμπέρασμα: οτιδήποτε ψηφιακό μπορεί να αντιγραφεί π.χ., αντιγράφοντας
Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος
ΚΡΥΠΤΟΓΡΑΦIΑ Α ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦIΑ Α ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Μαθησιακοί στόχοι, Περίγραμμα θεματικών ενοτήτων και αξιολόγηση των φοιτητών Διδάσκων : Δρ. Αθανάσιος Κούτρας Επίκουρος Καθηγητής Τμήμα Μηχανικών Πληροφορικής
Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας
Διαχείριση και Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κρυπτογραφία Κρυπτογραφία Η Κρυπτογραφία (cryptography) είναι ένας κλάδος της επιστήμης της Κρυπτολογίας (cryptology), η οποία ασχολείται με την μελέτη
Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ
Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ Περιγραφή μαθήματος Η Κρυπτολογία είναι κλάδος των Μαθηματικών, που ασχολείται με: Ανάλυση Λογικών Μαθηματικών
Στοιχεία Θεωρίας Αριθμών
Ε Μ Π Σ Ε Μ & Φ Ε Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Κωστής Γ Διδάσκοντες: Στάθης Ζ Άρης Π 9 Δεκεμβρίου 2011 1 Πιθανές Επιθέσεις στο RSA Υπενθύμιση
ΚΡΥΠΤΟΓΡΑΦΗΣΗ ΔΗΜΟΣΙΟΥ ΚΛΕΙΔΙΟΥ
ΚΡΥΠΤΟΓΡΑΦΗΣΗ ΔΗΜΟΣΙΟΥ ΚΛΕΙΔΙΟΥ Η κρυπτογράφηση δημοσίου κλειδιού (Public Key Cryptography) ή ασύμμετρου κλειδιού (Asymmetric Cryptography) επινοήθηκε στο τέλος της δεκαετίας του 1970 από τους Whitfield
Freedom of Speech. Κρυπτογραφία και ασφαλής ανταλλαγή πληροφοριών στο Internet
Freedom of Speech Κρυπτογραφία και ασφαλής ανταλλαγή πληροφοριών στο Internet Freedom of Speech Ποιός ; & Γιατί ; Τι είναι Ιστορικά Στόχοι Είδη Μοντέρνων Αλγορίθμων Μοντέλα Εμπιστοσύνης 14/03/2012 Freedom
Κρυπτογραφία Δημοσίου Κλειδιού
Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου
ΠΡΟΣΤΑΣΙΑ ΠΡΟΣΩΠΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΣΤΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΘΩΣ ΚΑΙ ΣΤΟ ΔΙΑΔΙΚΤΥΟ
ΠΡΟΣΤΑΣΙΑ ΠΡΟΣΩΠΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΣΤΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΘΩΣ ΚΑΙ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΔΙΑΔΙΚΤΥΟ Το διαδίκτυο προσφέρει: Μετατροπή των δεδομένων σε ψηφιακή - ηλεκτρονική μορφή. Πρόσβαση
Αννα Νταγιου ΑΕΜ: 432. Εξαμηνο 8. Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε.
Αννα Νταγιου ΑΕΜ: 432 Εξαμηνο 8 Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε. Παρόµοια, πληκτρολογήστε την εντολή: openssl ciphers v Ποιοι συµµετρικοί αλγόριθµοι
Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ
Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 Βασικές υπηρεσίες/εφαρμογές κρυπτογραφίες: Confidentiality, Authentication, Integrity, Non- Repudiation Βασικές έννοιες κρυπτογραφίας 2 3
Δίκτυα Υπολογιστών Ενότητα 6: Secure Sockets Layer - SSL
Δίκτυα Υπολογιστών Ενότητα 6: Secure Sockets Layer - SSL Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Συμμετρικά κρυπτοσυστήματα
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Δίκτυα Feistel Σημαντικές
ΕΠΑΝΑΛΗΠΤΙΚΟ ΤΕΣΤ ΣΤΗΝ ΕΝΟΤΗΤΑ
ΕΠΑ.Λ. Άμφισσας Σχολικό Έτος : 2011-2012 Τάξη : Γ Τομέας : Πληροφορικής Μάθημα : ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ Διδάσκων : Χρήστος Ρέτσας Η-τάξη : tiny.cc/retsas-diktya2 ΕΠΑΝΑΛΗΠΤΙΚΟ ΤΕΣΤ ΣΤΗΝ ΕΝΟΤΗΤΑ 8.3.4-8.3.6
Τα μαθηματικά των αρχαίων Ελλήνων στις πιο σύγχρονες μεθόδους κρυπτογράφησης
Τα μαθηματικά των αρχαίων Ελλήνων στις πιο σύγχρονες μεθόδους κρυπτογράφησης Γεώργιος Κοτζάμπασης Εκπαιδευτήρια «Ο Απόστολος Παύλος» georgekotzampasis@gmail.com Επιβλέπων καθηγητής: Λάζαρος Τζήμκας Καθηγητής
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1
Αυθεντικότητα Μηνυμάτων Συναρτήσεις Hash/MAC
Αυθεντικότητα Μηνυμάτων Συναρτήσεις Hash/MAC Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Αυθεντικότητα Μηνυμάτων 1 Αυθεντικότητα Μηνύματος Εφαρμογές Προστασία ακεραιότητας Εξακρίβωση ταυτότητας αποστολέα Μη άρνηση
Ασφάλεια στο Ηλεκτρονικό Επιχειρείν. ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης
Ασφάλεια στο Ηλεκτρονικό Επιχειρείν ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης 1 Κίνδυνοι Η-Ε Μερικοί από τους κινδύνους ενός δικτυακού τόπου Ε-εμπορίου περιλαμβάνουν:
ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους
ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2
ΕΡΓΑΣΙΑ Διδάσκων: Γιώργος Χρυσάνθου Υπεύθυνος Άσκησης: Πύρρος Μπράτσκας Ημερομηνία Ανάθεσης: 3/10/015 Ημερομηνία Παράδοσης: 09/11/015 09:00 π.μ. I.Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση
* * * ( ) mod p = (a p 1. 2 ) mod p.
Θεωρια Αριθμων Εαρινο Εξαμηνο 2016 17 Μέρος Α: Πρώτοι Αριθμοί Διάλεξη 1 Ενότητα 1. Διαιρετότητα: Διαιρετότητα, διαιρέτες, πολλαπλάσια, στοιχειώδεις ιδιότητες. Γραμμικοί Συνδυασμοί (ΓΣ). Ενότητα 2. Πρώτοι
Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων
Βασικά Θέματα Κρυπτογραφίας Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιά Αντικείμενο μελέτης Εφαρμοσμένη Κρυπτογραφία, απαραίτητη για την Ασφάλεια Δικτύων Υπολογιστών Χαρακτηριστικά των
Λειτουργικά Συστήματα (ΗΥ321)
Λειτουργικά Συστήματα (ΗΥ321) Διάλεξη 19: Ασφάλεια Κρυπτογράφηση Βασική ιδέα: Αποθήκευσε και μετάδωσε την πληροφορία σε κρυπτογραφημένη μορφή που «δε βγάζει νόημα» Ο βασικός μηχανισμός: Ξεκίνησε από το
ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ
ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ Η Alice θέλει να στείλει ένα μήνυμα m(plaintext) στον Bob μέσα από ένα μη έμπιστο κανάλι και να μην μπορεί να το