Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary
|
|
- Θάλεια Μιχαλολιάκος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Centre No. Candidate No. Paper Reference(s) 6683/01 Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Friday 20 May 2011 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae (Pink) Paper Reference Surname Signature Items included with question papers Nil Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them. Initial(s) Examiner s use only Team Leader s use only Question Number Blank Instructions to Candidates In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer to each question in the space following the question. Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy. Information for Candidates A booklet Mathematical Formulae and Statistical Tables is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g.. There are 8 questions in this question paper. The total mark for this paper is 75. There are 24 pages in this question paper. Any pages are indicated. Advice to Candidates You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy Edexcel Limited. Printer s Log. No. P38164A W850/R6683/ /3/3 *P38164A0124* Total Turn over
2 1. On a particular day the height above sea level, x metres, and the mid-day temperature, y C, were recorded in 8 north European towns. These data are summarised below S = y = 181 y = 4305 S = xx 2 xy (a) Find S yy (b) Calculate, to 3 significant figures, the product moment correlation coefficient for these data. (c) Give an interpretation of your coefficient. (1) A student thought that the calculations would be simpler if the height above sea level, h, x was measured in kilometres and used the variable h = instead of x (d) Write down the value of S hh (1) (e) Write down the value of the correlation coefficient between h and y. (1) 2 *P38164A0224*
3 Question 1 continued Q1 (Total 7 marks) *p38164a0324* 3 Turn over
4 2. The random variable X ~ N( μ, 5 2 ) and P( X 23) = (a) Find the value of (μ. (4) (b) Write down the value of P( μ < X < 23). (1) 4 *P38164A0424*
5 Question 2 continued Q2 (Total 5 marks) *p38164a0524* 5 Turn over
6 3. The discrete random variable Y has probability distribution y P(Y = y) a b 0.3 c where a, b and c are constants. The cumulative distribution function F(y) of Y is given in the following table y F(y) d 1.0 where d is a constant. (a) Find the value of a, the value of b, the value of c and the value of d. (5) (b) Find P(3Y + 2 8). 6 *P38164A0624*
7 Question 3 continued Q3 (Total 7 marks) *p38164a0724* 7 Turn over
8 4. Past records show that the times, in seconds, taken to run 100 m by children at a school can be modelled by a normal distribution with a mean of and a standard deviation of 1.60 A child from the school is selected at random. (a) Find the probability that this child runs 100 m in less than 15 s. (3) On sports day the school awards certificates to the fastest 30% of the children in the 100 m race. (b) Estimate, to 2 decimal places, the slowest time taken to run 100 m for which a child will be awarded a certificate. (4) 8 *P38164A0824*
9 Question 4 continued Q4 (Total 7 marks) *p38164a0924* 9 Turn over
10 5. A class of students had a sudoku competition. The time taken for each student to complete the sudoku was recorded to the nearest minute and the results are summarised in the table below. Time Mid-point, x Frequency, f (You may use f 2 x = ) (a) Write down the mid-point for the 9-12 interval. (b) Use linear interpolation to estimate the median time taken by the students. (c) Estimate the mean and standard deviation of the times taken by the students. (1) (5) The teacher suggested that a normal distribution could be used to model the times taken by the students to complete the sudoku. (d) Give a reason to support the use of a normal distribution in this case. (1) On another occasion the teacher calculated the quartiles for the times taken by the students to complete a different sudoku and found Q = 8.5 Q = 13.0 Q = (e) Describe, giving a reason, the skewness of the times on this occasion. 10 *P38164A01024*
11 Question 5 continued *p38164a01124* 11 Turn over
12 Question 5 continued 12 *P38164A01224*
13 Question 5 continued Q5 (Total 11 marks) *p38164a01324* 13 Turn over
14 6. Jake and Kamil are sometimes late for school. The events J and K are defined as follows J = the event that Jake is late for school K = the event that Kamil is late for school P( J ) = 0.25, P( J K) = 0.15 and P( J K ) = 0.7 On a randomly selected day, find the probability that (a) at least one of Jake or Kamil are late for school, (b) Kamil is late for school. (1) Given that Jake is late for school, (c) find the probability that Kamil is late. (3) The teacher suspects that Jake being late for school and Kamil being late for school are linked in some way. (d) Determine whether or not J and K are statistically independent. (e) Comment on the teacher s suspicion in the light of your calculation in (d). (1) 14 *P38164A01424*
15 Question 6 continued *p38164a01524* 15 Turn over
16 Question 6 continued 16 *P38164A01624*
17 Question 6 continued Q6 (Total 9 marks) *p38164a01724* 17 Turn over
18 7. A teacher took a random sample of 8 children from a class. For each child the teacher recorded the length of their left foot, f cm, and their height, h cm. The results are given in the table below. f h ff hh ) (You may use f = 186 h = 1085 S = 39.5 S = fh = (a) Calculate S fh (b) Find the equation of the regression line of h on f in the form h= a+ bf. Give the value of a and the value of b correct to 3 significant figures. (5) (c) Use your equation to estimate the height of a child with a left foot length of 25 cm. (d) Comment on the reliability of your estimate in (c), giving a reason for your answer. The left foot length of the teacher is 25 cm. (e) Give a reason why the equation in (b) should not be used to estimate the teacher s height. (1) 18 *P38164A01824*
19 Question 7 continued *p38164a01924* 19 Turn over
20 Question 7 continued 20 *P38164A02024*
21 Question 7 continued Q7 (Total 12 marks) *p38164a02124* 21 Turn over
22 8. A spinner is designed so that the score S is given by the following probability distribution. s P(S = s) p (a) Find the value of p. (b) Find E(S). (c) Show that (d) Find Var(S). 2 E( S ) = 9.45 Tom and Jess play a game with this spinner. The spinner is spun repeatedly and S counters are awarded on the outcome of each spin. If S is even then Tom receives the counters and if S is odd then Jess receives them. The first player to collect 10 or more counters is the winner. (e) Find the probability that Jess wins after 2 spins. (f) Find the probability that Tom wins after exactly 3 spins. (4) (g) Find the probability that Jess wins after exactly 3 spins. (3) 22 *P38164A02224*
23 Question 8 continued *p38164a02324* 23 Turn over
24 Question 8 continued Q8 END (Total 17 marks) TOTAL FOR PAPER: 75 MARKS 24 *P38164A02424*
Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae
Paper Reference R. Statistics S1 Advanced/Advanced Subsidiary. Tuesday 10 June 2014 Morning Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference(s) 6683/01R Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Tuesday 10 June 2014 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical
physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference(s) 6666/01 Edexcel GCE Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical
Paper Reference. Advanced/Advanced Subsidiary. Thursday 9 June 2005 Morning Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference 6 6 8 3 0 1 Paper Reference(s) 6683/01 Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Thursday 9 June 2005 Morning Time: 1 hour 30 minutes Surname Signature
Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes
Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference
Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding
Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Thursday 24 May 2007 Morning Time: 45 minutes
Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding
Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Friday 18 June 2010 Morning Time: 45 minutes
Paper Reference. Modern Greek Paper 1 Listening and Responding. Friday 15 May 2009 Afternoon Time: 45 minutes (+5 minutes reading time)
Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Friday 15 May 2009 Afternoon Time: 45 minutes
Paper Reference. Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level. Friday 14 May 2010 Afternoon Time: 3 hours
Centre No. Candidate No. Paper Reference 7 6 1 5 0 1 Surname Signature Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level Friday 14 May 2010 Afternoon Time: 3 hours Initial(s)
physicsandmathstutor.com
physicsandmathstutor.com Centre No. Candidate No. physicsandmathstutor.com Paper Reference 6 6 8 3 0 1 Paper Reference(s) 6683/01 Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Thursday 9 June
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Core Mathematics C34
Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C34 Advanced Tuesday 21 June 2016 Morning Time: 2 hours 30 minutes
Core Mathematics C34
Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C34 Advanced Friday 12 June 2015 Morning Time: 2 hours 30 minutes You
Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Core Mathematics C12
Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C12 Advanced Subsidiary Wednesday 25 May 2016 Morning Time: 2 hours
Paper Reference. Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level. Monday 11 January 2010 Afternoon Time: 3 hours
Centre No. Candidate No. Paper Reference 7 6 1 5 0 1 Surname Signature Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level Monday 11 January 2010 Afternoon Time: 3 hours Initial(s)
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 6 3 1 7 7 7 6 4 0 6 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 October/November 2013 Candidates answer
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 0 5 1 0 3 4 8 7 8 5 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 May/June 2013 Candidates answer on the
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2517291414* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2013 1 hour 30 minutes
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Paper Reference. Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding. Thursday 22 May 2008 Afternoon Time: 55 minutes
Centre No. Candidate No. Paper Reference 1 7 7 6 0 3 Surname Signature Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding Thursday 22 May 2008 Afternoon Time: 55 minutes
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *4358398658* GREEK 0543/04 Paper 4 Writing May/June 2015 1 hour Candidates answer on the Question
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education GREEK 0543/04 Paper 4 Writing For Examination from 2015 SPECIMEN PAPER Candidates answer on the Question
*2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009 1 hour 30 minutes
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *3148288373* GREEK 0543/04 Paper 4 Writing May/June 2016 1 hour Candidates answer on the Question
Paper Reference. Paper Reference(s) 6511/01 Edexcel GCE Modern Greek Advanced Subsidiary/Advanced Unit 1 Reading and Writing
Centre No. Candidate No. Surname Paper Reference(s) 6511/01 Edexcel GCE Modern Greek Advanced Subsidiary/Advanced Unit 1 Reading and Writing Wednesday 23 May 2007 Afternoon Time: 3 hours Materials required
Paper Reference. Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding. Friday 18 June 2010 Morning Time: 55 minutes
Centre No. Candidate No. Paper Reference 1 7 7 6 0 3 Surname Signature Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding Friday 18 June 2010 Morning Time: 55 minutes Materials
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *8175930111* GREEK 0543/04 Paper 4 Writing May/June 2017 1 hour Candidates answer on the Question
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *1880009435* GREEK 0543/04 Paper 4 Writing May/June 2018 1 hour Candidates answer on the Question
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Modern Greek Extension
Centre Number 2017 HIGHER SCHOOL CERTIFICATE EXAMINATION Student Number Modern Greek Extension Written Examination General Instructions Reading time 10 minutes Working time 1 hour and 50 minutes Write
Paper Reference. Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding. Thursday 24 May 2007 Morning Time: 55 minutes
Centre No. Candidate No. Paper Reference 1 7 7 6 0 3 Surname Signature Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding Thursday 24 May 2007 Morning Time: 55 minutes
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Candidate Number. General Certificate of Secondary Education Higher Tier November 2013
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Pages Mark General Certificate of Secondary Education Higher Tier November 2013 3 4 5 Mathematics
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
PHYA1. General Certificate of Education Advanced Subsidiary Examination June 2012. Particles, Quantum Phenomena and Electricity
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 1 For this paper you must have: l a pencil and a ruler l a calculator l a Data
Paper Reference. Modern Greek Paper 3 Reading and Responding. Friday 15 May 2009 Afternoon Time: 55 minutes
Centre No. Candidate No. Paper Reference 1 7 7 6 0 3 Surname Signature Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding Friday 15 May 2009 Afternoon Time: 55 minutes
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
43603H. (NOV1243603H01) WMP/Nov12/43603H. General Certificate of Secondary Education Higher Tier November 2012. Unit 3 10 11 H
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Higher Tier November 2012 Pages 3 4 5 Mark Mathematics
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016
Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Advanced Unit 2: Understanding, Written Response and Research
Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Greek Advanced Unit 2: Understanding, Written Response and Research Thursday 9 June 2011 Morning Time: 3 hours Paper
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education GREEK 0543/03 Paper 3 Speaking and Listening Role Play Booklet One For Examination from 2011
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.
Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
PHYA1 (JAN12PHYA101) General Certificate of Education Advanced Subsidiary Examination January 2012. Particles, Quantum Phenomena and Electricity TOTAL
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 1 For this paper you must have: l a pencil and a ruler l a calculator l a Data
*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)
C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it
HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
London Examinations GCE
Centre No. Candidate No. Paper Reference 7 6 1 5 0 1 Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level Tuesday 15 May 2007 Afternoon Time: 3 hours Surname Signature Initial(s)
Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is
Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³
Wednesday 20 May 2015 Afternoon
Oxford Cambridge and RSA Wednesday 20 May 2015 Afternoon LEVEL 3 CERTIFICATE ENGINEERING H865/01 Mathematical Techniques and Applications for Engineers * 5 1 0 8 5 0 0 8 2 4 * Candidates answer on the
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Advanced Unit 2: Understanding, Written Response and Research
Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Greek Advanced Unit 2: Understanding, Written Response and Research Tuesday 18 June 2013 Afternoon Time: 3 hours Paper
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Advanced Unit 2: Understanding, Written Response and Research
Write your name here Surname Other names Pearson Edexcel GCE Centre Number Candidate Number Greek Advanced Unit 2: Understanding, Written Response and Research Thursday 11 June 2015 Afternoon Time: 3 hours
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Nuclear Physics 5. Name: Date: 8 (1)
Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)
Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Προσδοκώμενα αποτελέσματα Περιεχόμενο Ενδεικτικές δραστηριότητες
Read each question carefully before you start to answer it. Try to answer every question. Check your answers if you have time at the end.
Write your name here Surname Other names Pearson Edexcel International GCSE Centre Number Modern Greek Candidate Number Monday 22 June 2015 Morning Time: 3 hours You do not need any other materials. Paper
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
PHYA1 (JUN13PHYA101) General Certificate of Education Advanced Subsidiary Examination June 2013. Particles, Quantum Phenomena and Electricity TOTAL
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 1 For this paper you must have: l a pencil and a ruler l a calculator l a Data
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
Modern Greek *P40075A0112* P40075A. Edexcel International GCSE. Monday 3 June 2013 Morning Time: 3 hours. Instructions. Information.
Write your name here Surname Other names Edexcel International GCSE Centre Number Modern Greek Candidate Number Monday 3 June 2013 Morning Time: 3 hours You do not need any other materials. Paper Reference
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What
Physics (Specification A & B) PHY6T/Q11/test
Centre Number Surname Candidate Signature Candidate Number Other Names Notice to Candidate. The work you submit for assessment must be your own. If you copy from someone else or allow another candidate
1999 MODERN GREEK 2 UNIT Z
STUDENT NUMBER CENTRE NUMBER HIGHER SCHOOL CERTIFICATE EXAMINATION 1999 MODERN GREEK 2 UNIT Z (55 Marks) Time allowed Two hours (Plus 5 minutes reading time) DIRECTIONS TO CANDIDATES Write your Student
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006
ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Αναερόβια Φυσική Κατάσταση
Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής
UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:
UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences EECS 150 Fall 2001 Prof. Subramanian Midterm II 1) You are implementing an 4:1 Multiplexer that has the following specifications:
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Enthalpy data for the reacting species are given in the table below. The activation energy decreases when the temperature is increased.
Q1.This question is about the reaction given below. O(g) + H 2O(g) O 2(g) + H 2(g) Enthalpy data for the reacting species are given in the table below. Substance O(g) H 2O(g) O 2(g) H 2(g) ΔH / kj mol
Modern Greek *P40074A0112* P40074A. Edexcel International GCSE. Thursday 31 May 2012 Morning Time: 3 hours. Instructions. Information.
Write your name here Surname Other names Edexcel International GCSE Centre Number Modern Greek Candidate Number Thursday 31 May 2012 Morning Time: 3 hours You do not need any other materials. Paper Reference