Paper Reference. Advanced/Advanced Subsidiary. Thursday 9 June 2005 Morning Time: 1 hour 30 minutes

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Paper Reference. Advanced/Advanced Subsidiary. Thursday 9 June 2005 Morning Time: 1 hour 30 minutes"

Transcript

1 Centre No. Candidate No. Paper Reference Paper Reference(s) 6683/01 Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Thursday 9 June 2005 Morning Time: 1 hour 30 minutes Surname Signature Materials required for examination Items included with question papers Mathematical Formulae (Lilac or Green) Nil Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI 89, TI 92, Casio CFX 9970G, Hewlett Packard HP 48G. Initial(s) Examiner s use only Team Leader s use only Question Number Blank Instructions to Candidates In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature. Check that you have the correct question paper. You must write your answer for each question in the space following the question. Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy. Information for Candidates A booklet Mathematical Formulae and Statistical Tables is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 7 questions in this question paper. The total for this question paper is 75. There are 20 pages in this question paper. Any pages are indicated. Advice to Candidates You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the examiner. Answers without working may gain no credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy Edexcel Limited. Printer s Log. No. N20910A W850/R6683/ /7/3/3/2/6/3/ *N20910A0120* Total Turn over

2 1. The scatter diagrams below were drawn by a student. y Diagram A v Diagram B t Diagram C x u s The student calculated the value of the product moment correlation coefficient for each of the sets of data. The values were Write down, with a reason, which value corresponds to which scatter diagram. (6) 2 *N20910A0220*

3 Question 1 continued Q1 (Total 6 marks) *N20910A0320* 3 Turn over

4 2. The following table summarises the distances, to the nearest km, that 134 examiners travelled to attend a meeting in London. Distance (km) Number of examiners (a) Give a reason to justify the use of a histogram to represent these data. (b) Calculate the frequency densities needed to draw a histogram for these data. (DO NOT DRAW THE HISTOGRAM) (1) (2) (c) Use interpolation to estimate the median Q 2, the lower quartile Q 1, and the upper quartile Q 3 of these data. (4) The mid-point of each class is represented by x and the corresponding frequency by f. Calculations then give the following values Σfx = and Σfx 2 = (d) Calculate an estimate of the mean and an estimate of the standard deviation for these data. (4) One coefficient of skewness is given by Q3 2Q2 + Q1. Q Q 3 1 (e) Evaluate this coefficient and comment on the skewness of these data. (f) Give another justification of your comment in part (e). (4) (1) 4 *N20910A0420*

5 Question 2 continued *N20910A0520* 5 Turn over

6 Question 2 continued 6 *N20910A0620*

7 Question 2 continued Q2 (Total 16 marks) *N20910A0720* 7 Turn over

8 3. A long distance lorry driver recorded the distance travelled, m miles, and the amount of fuel used, f litres, each day. Summarised below are data from the driver s records for a random sample of 8 days. The data are coded such that x = m 250 and y = f 100. Σx = 130 Σy = 48 Σxy = 8880 S xx = (a) Find the equation of the regression line of y on x in the form y = a + bx. (b) Hence find the equation of the regression line of f on m. (c) Predict the amount of fuel used on a journey of 235 miles. (6) (3) (1) 8 *N20910A0820*

9 Question 3 continued Q3 (Total 10 marks) *N20910A0920* 9 Turn over

10 4. Aeroplanes fly from City A to City B. Over a long period of time the number of minutes delay in take-off from City A was recorded. The minimum delay was 5 minutes and the maximum delay was 63 minutes. A quarter of all delays were at most 12 minutes, half were at most 17 minutes and 75% were at most 28 minutes. Only one of the delays was longer than 45 minutes. An outlier is an observation that falls either 1.5 (interquartile range) above the upper quartile or 1.5 (interquartile range) below the lower quartile. (a) On the graph paper opposite draw a box plot to represent these data. (b) Comment on the distribution of delays. Justify your answer. (7) (2) (c) Suggest how the distribution might be interpreted by a passenger who frequently flies from City A to City B. (1) 10 *N20910A01020*

11 Question 4 continued *N20910A01120* (Total 10 marks) Q4 11 Turn over

12 5. The random variable X has probability function kx, x = 1, 2, 3, P( X = x) = kx ( + 1), x= 4, 5, where k is a constant. (a) Find the value of k. (b) Find the exact value of E(X). (c) Show that, to 3 significant figures, Var(X) = (d) Find, to 1 decimal place, Var(4 3X). (2) (2) (4) (2) 12 *N20910A01220*

13 Question 5 continued *N20910A01320* 13 Turn over

14 Question 5 continued 14 *N20910A01420*

15 Question 5 continued Q5 (Total 10 marks) *N20910A01520* 15 Turn over

16 6. A scientist found that the time taken, M minutes, to carry out an experiment can be modelled by a normal random variable with mean 155 minutes and standard deviation 3.5 minutes. Find (a) P(M > 160). (b) P(150 M 157). (c) the value of m, to 1 decimal place, such that P(M m) = (3) (4) (4) 16 *N20910A01620*

17 Question 6 continued Q6 (Total 11 marks) *N20910A01720* 17 Turn over

18 7. In a school there are 148 students in Years 12 and 13 studying Science, Humanities or Arts subjects. Of these students, 89 wear glasses and the others do not. There are 30 Science students of whom 18 wear glasses. The corresponding figures for the Humanities students are 68 and 44 respectively. A student is chosen at random. Find the probability that this student (a) is studying Arts subjects, (b) does not wear glasses, given that the student is studying Arts subjects. (4) (2) Amongst the Science students, 80% are right-handed. Corresponding percentages for Humanities and Arts students are 75% and 70% respectively. A student is again chosen at random. (c) Find the probability that this student is right-handed. (3) (d) Given that this student is right-handed, find the probability that the student is studying Science subjects. (3) 18 *N20910A01820*

19 Question 7 continued *N20910A01920* 19 Turn over

20 Question 7 continued Q7 (Total 12 marks) TOTAL FOR PAPER: 75 MARKS END 20 *N20910A02020*

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

Διαβάστε περισσότερα

Paper Reference R. Statistics S1 Advanced/Advanced Subsidiary. Tuesday 10 June 2014 Morning Time: 1 hour 30 minutes

Paper Reference R. Statistics S1 Advanced/Advanced Subsidiary. Tuesday 10 June 2014 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6683/01R Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Tuesday 10 June 2014 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical

Διαβάστε περισσότερα

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6666/01 Edexcel GCE Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical

Διαβάστε περισσότερα

Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary

Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Centre No. Candidate No. Paper Reference(s) 6683/01 Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Friday 20 May 2011 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference

Διαβάστε περισσότερα

physicsandmathstutor.com

physicsandmathstutor.com physicsandmathstutor.com Centre No. Candidate No. physicsandmathstutor.com Paper Reference 6 6 8 3 0 1 Paper Reference(s) 6683/01 Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Thursday 9 June

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding

Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Thursday 24 May 2007 Morning Time: 45 minutes

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding

Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Friday 18 June 2010 Morning Time: 45 minutes

Διαβάστε περισσότερα

Paper Reference. Modern Greek Paper 1 Listening and Responding. Friday 15 May 2009 Afternoon Time: 45 minutes (+5 minutes reading time)

Paper Reference. Modern Greek Paper 1 Listening and Responding. Friday 15 May 2009 Afternoon Time: 45 minutes (+5 minutes reading time) Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Friday 15 May 2009 Afternoon Time: 45 minutes

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level. Friday 14 May 2010 Afternoon Time: 3 hours

Paper Reference. Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level. Friday 14 May 2010 Afternoon Time: 3 hours Centre No. Candidate No. Paper Reference 7 6 1 5 0 1 Surname Signature Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level Friday 14 May 2010 Afternoon Time: 3 hours Initial(s)

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Core Mathematics C34

Core Mathematics C34 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C34 Advanced Tuesday 21 June 2016 Morning Time: 2 hours 30 minutes

Διαβάστε περισσότερα

Core Mathematics C12

Core Mathematics C12 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C12 Advanced Subsidiary Wednesday 25 May 2016 Morning Time: 2 hours

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 6 3 1 7 7 7 6 4 0 6 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 October/November 2013 Candidates answer

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 0 5 1 0 3 4 8 7 8 5 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 May/June 2013 Candidates answer on the

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level. Monday 11 January 2010 Afternoon Time: 3 hours

Paper Reference. Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level. Monday 11 January 2010 Afternoon Time: 3 hours Centre No. Candidate No. Paper Reference 7 6 1 5 0 1 Surname Signature Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level Monday 11 January 2010 Afternoon Time: 3 hours Initial(s)

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding. Thursday 22 May 2008 Afternoon Time: 55 minutes

Paper Reference. Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding. Thursday 22 May 2008 Afternoon Time: 55 minutes Centre No. Candidate No. Paper Reference 1 7 7 6 0 3 Surname Signature Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding Thursday 22 May 2008 Afternoon Time: 55 minutes

Διαβάστε περισσότερα

Core Mathematics C34

Core Mathematics C34 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C34 Advanced Friday 12 June 2015 Morning Time: 2 hours 30 minutes You

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2517291414* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2013 1 hour 30 minutes

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding. Friday 18 June 2010 Morning Time: 55 minutes

Paper Reference. Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding. Friday 18 June 2010 Morning Time: 55 minutes Centre No. Candidate No. Paper Reference 1 7 7 6 0 3 Surname Signature Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding Friday 18 June 2010 Morning Time: 55 minutes Materials

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

43603H. (NOV1243603H01) WMP/Nov12/43603H. General Certificate of Secondary Education Higher Tier November 2012. Unit 3 10 11 H

43603H. (NOV1243603H01) WMP/Nov12/43603H. General Certificate of Secondary Education Higher Tier November 2012. Unit 3 10 11 H Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Higher Tier November 2012 Pages 3 4 5 Mark Mathematics

Διαβάστε περισσότερα

*2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009

*2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009 1 hour 30 minutes

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 6511/01 Edexcel GCE Modern Greek Advanced Subsidiary/Advanced Unit 1 Reading and Writing

Paper Reference. Paper Reference(s) 6511/01 Edexcel GCE Modern Greek Advanced Subsidiary/Advanced Unit 1 Reading and Writing Centre No. Candidate No. Surname Paper Reference(s) 6511/01 Edexcel GCE Modern Greek Advanced Subsidiary/Advanced Unit 1 Reading and Writing Wednesday 23 May 2007 Afternoon Time: 3 hours Materials required

Διαβάστε περισσότερα

Modern Greek Extension

Modern Greek Extension Centre Number 2017 HIGHER SCHOOL CERTIFICATE EXAMINATION Student Number Modern Greek Extension Written Examination General Instructions Reading time 10 minutes Working time 1 hour and 50 minutes Write

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Candidate Number. General Certificate of Secondary Education Higher Tier November 2013

Candidate Number. General Certificate of Secondary Education Higher Tier November 2013 Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Pages Mark General Certificate of Secondary Education Higher Tier November 2013 3 4 5 Mathematics

Διαβάστε περισσότερα

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *4358398658* GREEK 0543/04 Paper 4 Writing May/June 2015 1 hour Candidates answer on the Question

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding. Thursday 24 May 2007 Morning Time: 55 minutes

Paper Reference. Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding. Thursday 24 May 2007 Morning Time: 55 minutes Centre No. Candidate No. Paper Reference 1 7 7 6 0 3 Surname Signature Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding Thursday 24 May 2007 Morning Time: 55 minutes

Διαβάστε περισσότερα

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education GREEK 0543/04 Paper 4 Writing For Examination from 2015 SPECIMEN PAPER Candidates answer on the Question

Διαβάστε περισσότερα

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της

Διαβάστε περισσότερα

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *3148288373* GREEK 0543/04 Paper 4 Writing May/June 2016 1 hour Candidates answer on the Question

Διαβάστε περισσότερα

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *8175930111* GREEK 0543/04 Paper 4 Writing May/June 2017 1 hour Candidates answer on the Question

Διαβάστε περισσότερα

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *1880009435* GREEK 0543/04 Paper 4 Writing May/June 2018 1 hour Candidates answer on the Question

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

London Examinations GCE

London Examinations GCE Centre No. Candidate No. Paper Reference 7 6 1 5 0 1 Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level Tuesday 15 May 2007 Afternoon Time: 3 hours Surname Signature Initial(s)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Advanced Unit 2: Understanding, Written Response and Research

Advanced Unit 2: Understanding, Written Response and Research Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Greek Advanced Unit 2: Understanding, Written Response and Research Thursday 9 June 2011 Morning Time: 3 hours Paper

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Paper Reference. Modern Greek Paper 3 Reading and Responding. Friday 15 May 2009 Afternoon Time: 55 minutes

Paper Reference. Modern Greek Paper 3 Reading and Responding. Friday 15 May 2009 Afternoon Time: 55 minutes Centre No. Candidate No. Paper Reference 1 7 7 6 0 3 Surname Signature Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding Friday 15 May 2009 Afternoon Time: 55 minutes

Διαβάστε περισσότερα

PHYA1. General Certificate of Education Advanced Subsidiary Examination June 2012. Particles, Quantum Phenomena and Electricity

PHYA1. General Certificate of Education Advanced Subsidiary Examination June 2012. Particles, Quantum Phenomena and Electricity Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 1 For this paper you must have: l a pencil and a ruler l a calculator l a Data

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education GREEK 0543/03 Paper 3 Speaking and Listening Role Play Booklet One For Examination from 2011

Διαβάστε περισσότερα

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin. Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.

Διαβάστε περισσότερα

Date Morning/Afternoon Time allowed: 1 hour 30 minutes

Date Morning/Afternoon Time allowed: 1 hour 30 minutes *0000000000* GCSE (9 1) Mathematics J560/06 Paper 6 (Higher Tier) Practice Paper Date Morning/Afternoon Time allowed: 1 hour 30 minutes You may use: A scientific or graphical calculator Geometrical instruments

Διαβάστε περισσότερα

Mathematics (Linear) 43652H. General Certificate of Secondary Education Higher Tier June 2012. Paper 2. Wednesday 13 June 2012 9.00 am to 11.

Mathematics (Linear) 43652H. General Certificate of Secondary Education Higher Tier June 2012. Paper 2. Wednesday 13 June 2012 9.00 am to 11. Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Higher Tier June 2012 Pages 2 3 4 5 Mark Mathematics

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

PHYA1 (JAN12PHYA101) General Certificate of Education Advanced Subsidiary Examination January 2012. Particles, Quantum Phenomena and Electricity TOTAL

PHYA1 (JAN12PHYA101) General Certificate of Education Advanced Subsidiary Examination January 2012. Particles, Quantum Phenomena and Electricity TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 1 For this paper you must have: l a pencil and a ruler l a calculator l a Data

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

GCSE MATHEMATICS (LINEAR) Higher Tier Paper 2. Morning (NOV H01) Materials. Instructions. Information. Advice PMT

GCSE MATHEMATICS (LINEAR) Higher Tier Paper 2. Morning (NOV H01) Materials. Instructions. Information. Advice PMT Please write clearly in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature GCSE H MATHEMATICS (LINEAR) Higher Tier Paper 2 Friday 4 November 2016 Materials For this

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Read each question carefully before you start to answer it. Try to answer every question. Check your answers if you have time at the end.

Read each question carefully before you start to answer it. Try to answer every question. Check your answers if you have time at the end. Write your name here Surname Other names Pearson Edexcel International GCSE Centre Number Modern Greek Candidate Number Monday 22 June 2015 Morning Time: 3 hours You do not need any other materials. Paper

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Modern Greek *P40075A0112* P40075A. Edexcel International GCSE. Monday 3 June 2013 Morning Time: 3 hours. Instructions. Information.

Modern Greek *P40075A0112* P40075A. Edexcel International GCSE. Monday 3 June 2013 Morning Time: 3 hours. Instructions. Information. Write your name here Surname Other names Edexcel International GCSE Centre Number Modern Greek Candidate Number Monday 3 June 2013 Morning Time: 3 hours You do not need any other materials. Paper Reference

Διαβάστε περισσότερα

Nuclear Physics 5. Name: Date: 8 (1)

Nuclear Physics 5. Name: Date: 8 (1) Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Modern Greek *P40074A0112* P40074A. Edexcel International GCSE. Thursday 31 May 2012 Morning Time: 3 hours. Instructions. Information.

Modern Greek *P40074A0112* P40074A. Edexcel International GCSE. Thursday 31 May 2012 Morning Time: 3 hours. Instructions. Information. Write your name here Surname Other names Edexcel International GCSE Centre Number Modern Greek Candidate Number Thursday 31 May 2012 Morning Time: 3 hours You do not need any other materials. Paper Reference

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Advanced Unit 2: Understanding, Written Response and Research

Advanced Unit 2: Understanding, Written Response and Research Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Greek Advanced Unit 2: Understanding, Written Response and Research Tuesday 18 June 2013 Afternoon Time: 3 hours Paper

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

Wednesday 20 May 2015 Afternoon

Wednesday 20 May 2015 Afternoon Oxford Cambridge and RSA Wednesday 20 May 2015 Afternoon LEVEL 3 CERTIFICATE ENGINEERING H865/01 Mathematical Techniques and Applications for Engineers * 5 1 0 8 5 0 0 8 2 4 * Candidates answer on the

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

PHYA1 (JUN13PHYA101) General Certificate of Education Advanced Subsidiary Examination June 2013. Particles, Quantum Phenomena and Electricity TOTAL

PHYA1 (JUN13PHYA101) General Certificate of Education Advanced Subsidiary Examination June 2013. Particles, Quantum Phenomena and Electricity TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 1 For this paper you must have: l a pencil and a ruler l a calculator l a Data

Διαβάστε περισσότερα

Advanced Unit 2: Understanding, Written Response and Research

Advanced Unit 2: Understanding, Written Response and Research Write your name here Surname Other names Pearson Edexcel GCE Centre Number Candidate Number Greek Advanced Unit 2: Understanding, Written Response and Research Thursday 11 June 2015 Afternoon Time: 3 hours

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications: UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences EECS 150 Fall 2001 Prof. Subramanian Midterm II 1) You are implementing an 4:1 Multiplexer that has the following specifications:

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Enthalpy data for the reacting species are given in the table below. The activation energy decreases when the temperature is increased.

Enthalpy data for the reacting species are given in the table below. The activation energy decreases when the temperature is increased. Q1.This question is about the reaction given below. O(g) + H 2O(g) O 2(g) + H 2(g) Enthalpy data for the reacting species are given in the table below. Substance O(g) H 2O(g) O 2(g) H 2(g) ΔH / kj mol

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *6301456813* GREEK 0543/03 Paper 3 Speaking Role Play Card One 1 March 30

Διαβάστε περισσότερα

1999 MODERN GREEK 2 UNIT Z

1999 MODERN GREEK 2 UNIT Z STUDENT NUMBER CENTRE NUMBER HIGHER SCHOOL CERTIFICATE EXAMINATION 1999 MODERN GREEK 2 UNIT Z (55 Marks) Time allowed Two hours (Plus 5 minutes reading time) DIRECTIONS TO CANDIDATES Write your Student

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Physics (Specification A & B) PHY6T/Q11/test

Physics (Specification A & B) PHY6T/Q11/test Centre Number Surname Candidate Signature Candidate Number Other Names Notice to Candidate. The work you submit for assessment must be your own. If you copy from someone else or allow another candidate

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα IPHO_42_2011_EXP1.DO Experimental ompetition: 14 July 2011 Problem 1 Page 1 of 5 1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα Για ένα πυκνωτή χωρητικότητας ο οποίος είναι μέρος

Διαβάστε περισσότερα

Advanced Subsidiary Paper 1: Understanding and Written Response. Wednesday 24 January 2018 Morning Time: 2 hours 30 minutes

Advanced Subsidiary Paper 1: Understanding and Written Response. Wednesday 24 January 2018 Morning Time: 2 hours 30 minutes Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Greek Advanced Subsidiary Paper 1: Understanding and Written Response Wednesday 24 January

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα