Implementation of Index Calculus Attack for Hyperelliptic Curves of High Genera

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Implementation of Index Calculus Attack for Hyperelliptic Curves of High Genera"

Transcript

1 ,,, HCDLP),, F 3 H : y 2 = x 2g+1 + 1, HCDLP,, g = 74 J H F 3 ) HCDLP J H F 3 ) ) Implementation of Index Calculus Attack for Hyperelliptic Curves of High Genera Yasunori Kobayashi Tsuyoshi Takagi Graduate School of Systems Information Science, Future University Hakodate, 116-2, Kamedanakano-cho, Hakodate, Hokkaido, , Japan. Abstract Recently, pairngs over hyperelliptic curves have been getting more attentions due to novel protocols and their rich algebraic structures. The security of these pairings depends on both the discrete logarithm problem over hyperelliptic curves HCDLP) and that over finite fields. However, there are a few previous works which evaluate the security of the HCDLP with high genus by implementing them on computers. In this paper, we implement an efficient algorithm called index calculus method for solving the HCDLP of high genus hyperelliptic curve H : y 2 = x 2g over F 3. Then we solved the HCDLP over J H F 3 ) of g = 74, J H F 3 ) 2 120, in 2.3 days using Core 2 Quad2.66GHz), Core 2 Quad2.40GHz), and Core 2 Duo3.00GHz). 1 ID [6], [5],,, [19],,,., HCDLP), DLP) F p n DLP [12, 14], [1, 3] HCLDP, HCDLP,, HCDLP, p, q, g, 1994, Adleman [2]. Adleman, L p 2g+1[1/2, c], c 2.181, L N α, c) = exp clog N) α log log N) 1 α ) Flassenberg 1997,, [8]., Flassenberg, 40 Enge 2002,, L q g1/2, 6/ 5) [9]. 2002, Enge Gaudry L q g1/2, 2) [10]., F 3 H :

2 y 2 = x 2g Enge Gaudry [10],. C, gcc gnu mphttp://gmplib.org/) D 1, D 2 J H F p ), J H F p ) = p g + 1, smooth bound B N, D 2 = nd 1 n [0, J H F p ) 1] Z,,, 3, smooth, Cantor-Zassenhaus Lanczos [16], F B) F B) = O3 B ) smooth, exp g log logqg ) 2B )., Core 2 Quad 2.40GHz) 1, Core 2 Quad 2.66GHz) 1, Core 2 Duo 3.00GHz) 1, 3 10 ) g = 74, B = 13, 1.3 F B) = 96, 124,, Core 2 Quad 2.66GHz) J H F 3 ) ) HCDLP, 2, 3 [10] 4, 5, HCDLP 2, p, q = p m, m N, C F q g N C : y 2 = fx), 1), fx) F q [x] F, degf) = 2g + 1, C, m i P m i O, m i N, m i g 2) P i C P i C P i C, O, 2) F q C, J C F q ) Hasse, J C F q ) q 1) 2g J C F q ) q + 1) 2g 3) 2.1 Mumford, Mumford [18], 2) D J C F q ), P i = α i, β i ) F, Ux), V x) F q [x] Uα i ) = 0, V α i ) = β i, Ux) fx) V x) 2, degv ) degu) g, Ux) : monic 4) D 4) [Ux), V x)] F q [x] 2, Mumford D = [Ux), V x)] wtd) = degu), Ux) F q D prime) Mumford D = [Ux), V x)] D = [Ux), V x)] Mumford, Cantor [7] 2.2, r r J C F q ), k r q k 1 k k G 1 = J C F q )[r], G 2 = J C F q k)/rj C F q k), G 3 = F /F ) r q k q k, C Tate 2 1, : G 1 G 2 G 3 Tate η T [4], Ate [13] 2.3 D 1 J C F q ), D 2 D 1, D 2 = αd 1 α {0, 1, 2,, D 1 1}, Hyperelliptic Curves Discrete Logarithm Problem, HCDLP), α α = log D1 D 2 ) 3 Enge Gaudry [10] C F q g D 1 J C F q ), D 2 D 1, D 1, smooth-bound B N, log D1 D 2 ) 1), 2), 3) 3

3 3.1,, smooth-bound B N F B) = {D J C F q ) D : prime, wtd) B} 5), F B) F q [x] n νn), νn) = n 1 k n µk)q n/k [17]., µk) degu) < g Ux) F q [x], 4) V x) F q [x], X 2 fx) mod Ux)), degx) < degu) X F q [x], Ux), F q degu) X 2 = fx) mod Ux)), F q {a F q dega) < degu)},, 1/2, F B) 1 2 B νn) n=1, k 2 q n/k q n/2, q n µk)q n/k = q n + µk)q n/k k n q n k n,k 2, F B) B q n n=1 2n, 3.2 B-smooth F B) = Oq B ) 6) B-smooth, J C F q ) D B- smooth D = [Ux), V x)], Ux) Ux) = ΠU i x) ci, 4) D D[Ux), V x)] = c i P i, P i = [U i x), V i x)] 7) 7), P i smooth bound B wtp i ) B, D B-smooth, J C F q ) D B- smooth, J C F q ) B-smooth SB) J C F q ) B-smooth Enge Stein ρ > 0, smooth bound B, B = log q L q g1/2, ρ) 8) SB) q g L q g 1/2, 1 ) 2ρ + o1) 9) [11]. L N c, α), N > 0, c [0, 1], α > 0 L N c, α) = expclog N) α log log N) 1 α ), 9) o1), N o1) 0, 8) smooth bound B, J C F q ) D B-smooth, 3), 9) SB)/ J C F q ) L q g 1/2, 1 ) 10) 2ρ 8), 10) B exp g log ) logqg ) 11) 2B 3.3,,. F B) P 1, P 2,, P F B), F B) = {P 1, P 2,, P F B) }, B-smooth D = c i P i SB), v v = c 1, c 2,, c F B)) T, F B) + 1) 1. α, β [0, J C F q ) 1] Z, D = αd 1 + βd 2 2. D B-smooth smooth

4 3. D B-smooth, α, β,v) smooth, D = [Ux), V x)] Ux), B, 10), F B)+1), smooth F B) + 1)/L q g1/2, 1 2ρ )) 1,, L q g 1/2, ρ + 1 ) 2ρ + o1) 12) 3.4,,, F B)+ 1 v 1, v 2,, v F B)+1, v i = c i,1, c i,2,, c i, F B) ) T, F B)) F B) + 1) A A = v 1,, v F B)+1 ) c 1,1 c F B)+1,1 c 1,2 c F B)+1,2 =..... c 1, F B) c F B)+1, F B) v i g A, g, AX = 0 mod J C F q ) 13) F B) + 1) X, ranka) F B) < X ), 13) Z/J C F q ), 13) X Z/J C F q )Z) F B)+1, J C F q ) 1) A, 13) Lanczos [16], Wiedemann [21] Lanczos, )) 1 O F B) 2 ) = O L q g 2, 2ρ 14) 13) X = x 1, x 2,, x F B)+1 ), F B)+1 i=0 x i α i D 1 + βd 2 ) = 0, x i β i )D 2 = x i α i )D 1, log D1 D 2 ) F B)+1 i=0 x i α i log D1 D 2 ) = F B)+1 mod J C F q ) i=0 x i β i 3.5 smooth-bound B 8), 12), 14), 1 L q g 2, ρ + 1 ) ) 1 + L q g 2ρ 2, 2ρ { 1 L q g 2, max ρ + 1 }) 2ρ, 2ρ { } max ρ + 1 2ρ, 2ρ ρ = 1/ 2 2, 4 L q g1/2, 2) 15), [10] 2, F p g H : y 2 = x 2g g + 1, p mod 2g + 1 F 2g+1 p, g, distortion [20], 2. p, g, J H F p ) = p g + 1,, 2, p = 3 1) F p [x], CSS2008 J H F 3 ) Tate [22] 2), g 4.1 C, gcc, gnu mphttp://gmplib.org/)

5 Core 2 Quad Q GHz), 3.25 GB RAM, Windows XP 1, Core 2 Quad2.66 GHz), 4.00 GB RAM, Windows Vista 1, Core 2 Duo3.00 GHz), 4.00 GB RAM, Windows XP , p 3, g, smooth-bound B 2 g, g = 74 J H F 3 ) 2 120, g, g = 26, 56, 74, J H F 3 ) = 3 g , 80, 120 smooth-bound B, 8), 15) B = L p g1/2, 1/ 2), g = 26, 56, 74 B 7,11,13, B, smooth, B = 10, 11, 12, 13, 14, 15, 16, [Ux), V x)] = [Ux), V x)], [Ux), V x)] F B), [Ux), V x)] F B), F B) 1, B, F B) 1 F B) = O3 B ), 6) 1 B F B) 10 4, , , , , , ,090, ,888,320 [Ux), V x)], 4) V x) Ux), F B) [Ux), V x)] Ux), F B) l N, D 1, D 2 J H F 3 ) {D 1, 2D 1, ld 1, D 2, 2D 2, ld 2 } l = 1000 S i, T i J H F 3 ), i = 0, 1, 2, ), D 1, D 2 s, t [0, J H F 3 ) 1] Z, S 0 = sd 1, T 0 = td 2, α i, β i {1, 2,, l}, S i+1 = S i + α i D 1, T i+1 = T i + β i D 2 S i, T i, S i, T i D = S i + T i, smooth D B-smooth D = [Ux), V x)], smooth Cantor-Zassenhaus Ux), distinct degree factorizationddf) B smooth Ux) = ΠU i x) mi, U i F B), m i 0 m i F B), g m i = 0, m i m i = 1 B-smooth D = [Ux), V x)], v = c 1, c 2,, c F B) ) T, m i = 0 i, c i = 0 m i 0 i ax) = V x) mod U i x), ax) 1 0 c i = m i, ax) 1 c i = m i Lanczos., Structured Gaussian EliminationSGE)[15] 13) X, SGE 4.4, 4.2 g, B, 1 10, g = 26, 3 g = 56, 3 g = 74, P rb) smooth,, P rb) = 10,000/10,000 smooth ) ave 1,, ave = 10,000 )/10,000 total,, total = F B) + 1)ave smooth, 11),, 12), DDF B smooth

6 2 g = 26 case J H F 3 ) 2 40 ) B P rb) aveµsec) totalsec) g = 56 case J H F 3 ) 2 80 ) B P rb) avesec) totalhour) g = 74 case J H F 3 ) ) B P rb) avesec) totalday) g = 74, B = 13, g = 74 smooth bound B B = L 3 741/2, 1/ 2) = 13, ) 1.3, ) 2.3 g = 74, B = 13 J H F 3 ) HCDLP 5, F 3 H : y 2 = x 2g+1 + 1, smooth, Cantor-Zassenhaus Lanczos, smooth bound B smooth, exp g log logqg ) 2B, g = 7, B = 13, 120 HCDLP [1] L. M. Adleman, The Function Field Sieve, ANTS-I, LNCS 877, pp , [2] L. M. Adleman, J. DeMarrais and M. D. A. Huang, A Subexponential Algorithm for Discrete Logarithms over the Rational Subgroup of the Jacobians of Large Genus Hyperelliptic Curves over Finite Fields, ANTS- I, LNCS 877, pp.28-40, [3] L. M. Adleman and M. D. A. Huang. Function Field Sieve Method for Discrete Logarithms over Finite Fields, Inform. and Comput., 151, 12, pp.5-16, [4] P. S. L. M. Barreto, S. Galbraith, C. heingeartaigh and M. Scott, Efficient Pairing Computation on Supersingular Abelian Varieties, Designs, Codes and Cryptography, 42, 3, pp , ) [5] D. Boneh, G.D. Crescenzo, R. Ostrovsky and G. Persiano, Public Key Encryption with Keyword Search, EUROCRYPT 2004, LNCS 3027, pp , [6] D. Boneh and M. Franklin, Identity Based Encryption from the Weil Pairing, CRYPTO 2001, LNCS 2139, pp , [7] D.G. Cantor, Computing in the Jacobian of a Hyperelliptic Curve, Math. Comp., 48, 177, pp , [8] R. Flassenberg and S. Paulus, Sieving in Function Fields, Experiment. Math., 8, pp , Preliminary Version: Technical Report, TI-97-13, Darmstadt University of Technology, 1997.) [9] A. Enge, Computing Discrete Logarithm in High- Genus Hyperelliptic Jacobians in Provably Subexponential Time, Math. Comp., 71, pp , [10] A. Enge and P. Gaudry, A General Framework for Subexponential Discrete Logarithm Algorithm, Acta Arith, 102, pp , [11] A. Enge and A. Stein, Smooth Ideals in Hyperelliptic Function Fields, Math. Comp., 71, pp , [12] D. M. Gordon, Discrete Logarithms in GFp) Using the Number Field Sieve, SIAM Journal on Discrete Mathmatics 6, 1, pp , [13] R. Granger, F. Hess, R. Oyono, N. Thériault, and F. Vercauteren, Ate Pairing on Hyperelliptic Curves, EUROCRYPT 2007, LNCS 4515, pp , [14] A. Joux, R. Lercier, N. Smart and F. Vercauteren, The Number Field Sieve in the Medium Prime Case, CRYPTO 2006, LNCS 4117, pp , [15] B. A. LaMacchia and A. M. Odlyzko, Solving Large Sparse Linear Systems over Finite Fields, CRYPTO 90, LNCS 537, pp , [16] C. Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Nat. Bur. Stand, 49, pp.33-53, [17] R. Lidl and H. Niederreiter, Introduction to Finite Field and Their Applications, Cambridge University Press, pp.85-86, [18] D. Mumford, Tata Lectures on Theta II, Birkhaeuser, [19] T. Okamoto and K. Takashima Homomorphic Encryption and Signatures from Vector Decomposition, Pairing 2008, LNCS 5209, pp.57-74, [20] K. Takashima, Efficiently Computable Distortion Maps for Supersingular Curves, ANTS VIII, LNCS 5011, pp , [21] D. H. Wiedemann, Solving Sparse Linear Equations over Finite Fields, IEEE Trans. Information Theory, IT-32, pp.54-62, [22],, Tate, CSS 2008,, pp , HCDLP D 1 = [U 1 x), V 1 x)], D 2 = [U 2 x), V 2 x)], α = log D1 D 2 ), n ax) = n i=0 c ix i, a = c n c n 1 c 1 c 0 U 1 = V 1 = U 2 = V 2 = α =

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

C ab, Algorithms for computations in Jacobian group of C ab curve and their application to discrete-log based public key cryptosystems.

C ab, Algorithms for computations in Jacobian group of C ab curve and their application to discrete-log based public key cryptosystems. C ab Algorithms for computations in Jacobian group of C ab curve and their application to discrete-log based public key cryptosystems Seigo ARITA C ab C ab C ab C ab C ab 1 RSA 2 C 2 (1) [4] [5] 97 9 98

Διαβάστε περισσότερα

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m

Διαβάστε περισσότερα

Quick algorithm f or computing core attribute

Quick algorithm f or computing core attribute 24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute

Διαβάστε περισσότερα

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1

Διαβάστε περισσότερα

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation 3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction

Διαβάστε περισσότερα

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo

Διαβάστε περισσότερα

Simplex Crossover for Real-coded Genetic Algolithms

Simplex Crossover for Real-coded Genetic Algolithms Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by

Διαβάστε περισσότερα

Buried Markov Model Pairwise

Buried Markov Model Pairwise Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi

Διαβάστε περισσότερα

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,

Διαβάστε περισσότερα

Probabilistic Approach to Robust Optimization

Probabilistic Approach to Robust Optimization Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Feasible Regions Defined by Stability Constraints Based on the Argument Principle Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d) 1,a) 2,b) 1,c) 3,d) Quantum-Inspired Evolutionary Algorithm 0-1 Search Performance Analysis According to Interpretation Methods for Dealing with Permutation on Integer-Type Gene-Coding Method based on

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate

Διαβάστε περισσότερα

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1 1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής oard Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Πρόγραµµα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή ιατριβή Τίτλος ιατριβής Masters Thesis Title Ονοµατεπώνυµο Φοιτητή Πατρώνυµο Ανάπτυξη διαδικτυακής

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

ΠΑΝΔΠΙΣΗΜΙΟ ΜΑΚΔΓΟΝΙΑ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ ΣΜΗΜΑΣΟ ΔΦΑΡΜΟΜΔΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

ΠΑΝΔΠΙΣΗΜΙΟ ΜΑΚΔΓΟΝΙΑ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ ΣΜΗΜΑΣΟ ΔΦΑΡΜΟΜΔΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΠΑΝΔΠΙΣΗΜΙΟ ΜΑΚΔΓΟΝΙΑ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ ΣΜΗΜΑΣΟ ΔΦΑΡΜΟΜΔΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΑΝΑΠΣΤΞΗ ΓΤΝΑΜΙΚΗ ΙΣΟΔΛΙΓΑ ΓΙΑ ΣΟ ΓΔΝΙΚΟ ΚΑΣΑΣΗΜΑ ΚΡΑΣΗΗ ΓΡΔΒΔΝΧΝ ΜΔ ΣΗ ΒΟΗΘΔΙΑ PHP MYSQL Γηπισκαηηθή Δξγαζία ηνπ Υξήζηνπ

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

A New Algebraic Method to Search Irreducible Polynomials Using Decimal Equivalents of Polynomials over Galois Field GF(p q )

A New Algebraic Method to Search Irreducible Polynomials Using Decimal Equivalents of Polynomials over Galois Field GF(p q ) A New Algebraic Method to Search Irreducible Polynomials Using Decimal Equivalents of Polynomials over Galois Field GF(p q ) Sankhanil Dey and Ranjan Ghosh 2 Institute of Radio Physics and Electronics

Διαβάστε περισσότερα

A Fast Finite Element Electromagnetic Analysis on Multi-core Processer System

A Fast Finite Element Electromagnetic Analysis on Multi-core Processer System Vol. 3 No. 3 189 198 (Sep. 2010) 1 1 1 2 2 Arnold Folk Winther A Fast Finite Element Electromagnetic Analysis on Multi-core Processer System Takeshi Mifune, 1 Yu Hirotani, 1 Takeshi Iwashita, 1 Toshio

Διαβάστε περισσότερα

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7] Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School

Διαβάστε περισσότερα

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P) ( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j

Διαβάστε περισσότερα

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2.,**3 pp.,,3,.* * +, -. +, -. Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo Kunihiko Shimazaki *, Tsuyoshi Haraguchi, Takeo Ishibe +, -.

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of

Διαβάστε περισσότερα

Applying Markov Decision Processes to Role-playing Game

Applying Markov Decision Processes to Role-playing Game 1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo

Διαβάστε περισσότερα

Arbitrage Analysis of Futures Market with Frictions

Arbitrage Analysis of Futures Market with Frictions 2007 1 1 :100026788 (2007) 0120033206, (, 200052) : Vignola2Dale (1980) Kawaller2Koch(1984) (cost of carry),.,, ;,, : ;,;,. : ;;; : F83019 : A Arbitrage Analysis of Futures Market with Frictions LIU Hai2long,

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

A research on the influence of dummy activity on float in an AOA network and its amendments

A research on the influence of dummy activity on float in an AOA network and its amendments 2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

New Adaptive Projection Technique for Krylov Subspace Method

New Adaptive Projection Technique for Krylov Subspace Method 1 2 New Adaptive Projection Technique for Krylov Subspace Method Akinori Kumagai 1 and Takashi Nodera 2 Generally projection technique in the numerical operation is one of the preconditioning commonly

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Επίκαιρα Θέματα Ηλεκτρονικής Διακυβέρνησης Ονοματεπώνυμο Φοιτητή Σταμάτιος

Διαβάστε περισσότερα

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Schedulability Analysis Algorithm for Timing Constraint Workflow Models CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,

Διαβάστε περισσότερα

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn 2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3 DEWS2007 D3-6 y yy y y y y yy / DC 7313194 341 E-mail: yfktamura,mori,kuroki,kitakamig@its.hiroshima-cu.ac.jp, yymakoto@db.its.hiroshima-cu.ac.jp Newman Newman Newman Newman Newman A Clustering Algorithm

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ Υποβάλλεται στην ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης του Τμήματος Πληροφορικής Εξεταστική Επιτροπή από την Χαρά Παπαγεωργίου

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών ΠΑΝΕΠΙΣΗΜΙΟ ΠΑΣΡΩΝ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΦΑΝΙΚΩΝ ΚΑΙ ΣΕΦΝΟΛΟΓΙΑ ΤΠΟΛΟΓΙΣΩΝ ΣΟΜΕΑ: ΗΛΕΚΣΡΟΝΙΚΗ ΚΑΙ ΤΠΟΛΟΓΙΣΩΝ ΕΡΓΑΣΗΡΙΟ ΗΛΕΚΣΡΟΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Anomaly Detection with Neighborhood Preservation Principle

Anomaly Detection with Neighborhood Preservation Principle 27 27 Workshop on Information-Based Induction Sciences (IBIS27) Tokyo, Japan, November 5-7, 27. Anomaly Detection with Neighborhood Preservation Principle Tsuyoshi Idé Abstract: We consider a task of anomaly

Διαβάστε περισσότερα

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) (  ( 35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä

Διαβάστε περισσότερα

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ). Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ ΔΙΑΤΡΙΒΗ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΔΗΜΗΤΡΙΟΥ Ν. ΠΙΤΕΡΟΥ

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΙΚΗ ΠΑΡΕΜΒΟΛΗ ΚΡΥΠΤΟΓΡΑΦΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ. Γ. Κ. Μελετίου

ΠΟΛΥΩΝΥΜΙΚΗ ΠΑΡΕΜΒΟΛΗ ΚΡΥΠΤΟΓΡΑΦΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ. Γ. Κ. Μελετίου ΠΟΛΥΩΝΥΜΙΚΗ ΠΑΡΕΜΒΟΛΗ ΚΡΥΠΤΟΓΡΑΦΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Γ. Κ. Μελετίου Δομή παρουσίασης (1) (A) Κρυπτογραφικές συναρτήσεις και πολυωνυμική παρεμβολή Οι συναρτήσεις του Διακριτού Λογαρίθμου και Diffie Hellman

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ "ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗΝ ΙΑΤΡΙΚΗ ΚΑΙ ΤΗ ΒΙΟΛΟΓΙΑ" ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System (MIRU2008) 2008 7 SIFT 572-8572 26-12 599-8531 1-1 E-mail: umemoto@ipc.osaka-pct.ac.jp, kise@cs.osakafu-u.ac.jp SIFT 1 ANN 3 1 SIFT 1 Speeding up the Detection of Scale-Space Extrema in SIFT Based on the

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

þÿ ½ Á Å, ˆ»µ½± Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

þÿ ½ Á Å, ˆ»µ½± Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016-08 þÿ µà±³³µ»¼±ä¹º ½ ÀÄž ÄÉ þÿµºà±¹ µåä¹ºî½ - ¹µÁµÍ½ à Äɽ þÿ³½îãµé½

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ i ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΠΑΡΑΓΩΓΗΣ ΜΕΤΑΦΟΡΑΣ ΔΙΑΝΟΜΗΣ ΚΑΙ ΧΡΗΣΙΜΟΠΟΙΗΣΕΩΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

CCA. Simple CCA-Secure Public Key Encryption from Any Non-Malleable ID-based Encryption

CCA. Simple CCA-Secure Public Key Encryption from Any Non-Malleable ID-based Encryption All rights are reserved and copyright of this manuscript belongs to the authors. This manuscript has been published without reviewing and editing as received from the authors: posting the manuscript to

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ Πτυχιακή Εργασία Φοιτητής: ΜIΧΑΗΛ ΖΑΓΟΡΙΑΝΑΚΟΣ ΑΜ: 38133 Επιβλέπων Καθηγητής Καθηγητής Ε.

Διαβάστε περισσότερα

X g 1990 g PSRB

X g 1990 g PSRB e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD FX,a),b),c) Bailey Double-Double [] FMA FMA [6] FX FMA SIMD Single Instruction Multiple Data 5 4.5. [] Bailey SIMD SIMD 8bit FMA (SpMV Sparse matrix and vector product) FX. DD Bailey Double-Double a) em49@ns.kogakuin.ac.jp

Διαβάστε περισσότερα

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Σχολή ασολογίας και Φυσικού Περιβάλλοντος,

Διαβάστε περισσότερα

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator 2008 10 10 :100026788 (2008) 1020076206 (, 400074) :, Inver2over,,, : ; ; ; Inver2over ; : F54015 : A Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Διαβάστε περισσότερα

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα