ΕΝΟΤΗΤΑ 3 ΓΡΑΜΜΙΚΕΣ ΛΙΣΤΕΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΝΟΤΗΤΑ 3 ΓΡΑΜΜΙΚΕΣ ΛΙΣΤΕΣ"

Transcript

1 ΕΝΟΤΗΤΑ 3 ΓΡΑΜΜΙΚΕΣ ΛΙΣΤΕΣ 1

2 Αφηρηµ. τύπος δεδοµένων Γραµµική Λίστα Γραµµική λίστα (linear list) ένα σύνολο από n 0 στοιχεία L 0, L 1,..., L n-1 : L 0 είναι το 1ο στοιχείο, 0 < k < n-1 : το στοιχείο L k προηγείται του στοιχείου L k+1 και έπεται του στοιχείου L k-1. L 0 : αρχή (head) L n-1 : τέλος (tail) L : µήκος λίστας ( L = n) < >: κενή λίστα Λειτουργίες: Access(L,j): Επιστρέφει L j ή ένα µήνυµα λάθους αν j < 0 ή j > L -1. Length(L): Επιστρέφει L. Concat(L,L ): (συνένωση) επιστρέφει µία λίστα, το αποτέλεσµα της τοποθέτησης της L µετά την L. MakeEmptyList(): επιστρέφει (δείκτη σε) < >. IsEmptyList(L): επιστρέφει true αν L = < >, false διαφορετικά. 2

3 Είδη Γραµµικών Λιστών Ανάλογα µε θέσεις αποθήκευσης κόµβων : Σειριακή Λίστα: καταλαµβάνει συνεχόµενες θέσεις κύριας µνήµης Συνδεδεµένη Λίστα: οι κόµβοι βρίσκονται σε αποµακρυσµένες θέσεις συνδεδεµένες µεταξύ τους µε δείκτες. Ανάλογα µε πλήθος στοιχείων : Στατικές Λίστες: τo µέγιστο πλήθος στοιχείων είναι εξ αρχής γνωστό (υλοποίηση µε σειριακές λίστες). υναµικές Λίστες: το µέγιστο πλήθος στοιχείων δεν είναι γνωστό. Επιτρέπεται η επέκταση ή η συρρίκνωση της λίστας κατά την εκτέλεση του προγράµµατος (υλοποίηση µε συνδεδεµένες λίστες). Ειδικοί τύποι λιστών Στοίβα Ουρά 3

4 Αφηρηµ. τύπος δεδοµένων Στοίβα (Stack) Εισαγωγή και ιαγραφή στοιχείων στο ένα της άκρο, την κορυφή. Λειτουργίες Top_Element(S): επιστρέφει το στοιχείο στην κορυφή της S Pop(S): (λειτουργία απώθησης) διαγραφή και επιστροφή του στοιχείου στην κορυφή της S Push(x,S): (λειτουργία ώθησης) εισαγωγή του στοιχείου x στην κορυφή της στοίβας MakeEmptyStack(): επιστρέφει (δείκτη σε) < >. IsEmptyStack(S): επιστρέφει true αν S = 0, διαφορετικά false. Η µέθοδος επεξεργασίας των δεδοµένων στοίβας λέγεται «Τελευταίο Μέσα Πρώτο Έξω» (Last In First Out, LIFO). 4

5 Αφηρηµ. τύπος δεδοµένων Ουρά (Queue) Εισαγωγή στοιχείων στο ένα άκρο της και ιαγραφή στοιχείων στο άλλο. Λειτουργίες Enqueue(x,Q): Εισαγωγή x στο τέλος της Q (αντίστοιχα, Concat(Q, <x>)). Dequeue(Q): ιαγραφή & επιστροφή του στοιχείου στην αρχή της Q (δηλ., Q = < Q 0,, Q Q -1 > το Q 0 επιστρέφεται). Front_Element(Q): επιστρέφει το στοιχείο Q 0. MakeEmptyQueue(): επιστρέφει (δείκτη σε) < >. IsEmptyQueue(Q): επιστρέφει true αν Q = 0, false διαφορετικά. Η µέθοδος επεξεργασίας των δεδοµένων ουράς λέγεται «Πρώτο Μέσα Πρώτο Έξω» ( First In First Out, FIFO). 5

6 Υλοποίηση Σειριακών Γραµµικών Λιστών Στατικές Στοίβες Με χρήση ενός µονοδιάστατου πίνακα. S = <S 0,, S n-1 > η στοίβα & A[0 N-1] ο πίνακας, n N Α[j] = S j Η στοίβα καταλαµβάνει το τµήµα A[0 n-1]. A[n-1] : στοιχείο στην κορυφή της στοίβας A[0] : χαµηλότερο στοιχείο της στοίβας Η στοίβα υλοποιείται ως µια δοµή (struct στη C) µε πεδία τον πίνακα Datum και τον ακέραιο Length (µέγεθος στοίβας). S: δείκτης σε στοίβα info: τύπος στοιχείων του πίνακα Datum της S. S->Length == 0: άδεια στοίβα S->Length == N: γεµάτη στοίβα Εάν πρόκειται να χειριστούµε µία µόνον στοίβα, η στοίβα µπορεί να υλοποιηθεί χρησιµοποιώντας έναν ακέραιο Length και έναν πίνακα Datum (και όχι ως δοµή µε 2 πεδία): int Length; info Datum[0..N-1]; Στην απλούστερη έκδοση, οι 2 αυτές µεταβλητές είναι καθολικές. Ωστόσο, ΕΝ ΣΥΝΙΣΤΑΤΑΙ! 6

7 Υλοποίηση Λειτουργιών Στοίβας: Απλά void MakeEmptyStack(void) Length = 0; boolean IsEmptyStack(void) /* return (Length == 0) */ if (Length == 0) return 1; else return 0; info Top_Element(void) if (IsEmptyStack()) then error; else (return(datum[length 1])); Πολυπλοκότητα Χρόνου MakeEmptyStack(): Θ(1) IsEmptyStack(): Θ(1) Top_Element(): Θ(1) Συνολικός Απαιτούµενος Χώρος Μνήµης Ανεξάρτητα από το πλήθος στοιχείων: Ν 7

8 Υλοποίηση Λειτουργιών Στοίβας: Απλά info Pop(void) if (Length == 0) return error else x = Top_Element(); Length = Length 1; return x; void Push(info x) if (Length == N) then error else Datum[Length] = x; Length = Length + 1; Πολυπλοκότητα Χρόνου Pop(): Θ(1) Push(): Θ(1) 8

9 Υλοποίηση Λειτουργιών Στοίβας: µε δοµή µε πεδία Length και Datum[ ] pointer MakeEmptyStack(int N) pointer S; /* προσωρινός δείκτης */ S = new_struct(stack); /* malloc() */ S->Datum = new_struct(array of size N); S->Length = 0; S->MaxSize = N; return S; boolean IsEmptyStack(pointer S) /* return (S->Length == 0) */ if (S->Length == 0) return 1; else return 0; info Top_Element(pointer S) if (IsEmptyStack(S)) then error; else (return(s->datum[s->length 1])); Πολυπλοκότητα Χρόνου MakeEmptyStack(), IsEmptyStack(), Top_Element(): Θ(1) Συνολικός Απαιτούµενος Χώρος Μνήµης Ανεξάρτητα από το πλήθος στοιχείων: µέγεθος πίνακα Datum 9

10 Υλοποίηση Λειτουργιών Στοίβας info Pop(pointer S) if (S->Length == 0) return error else x = Top_Element(S); S->Length = S->Length 1; return x; void Push(info x, pointer S) if (S->Length == S->MaxSize) then error else S->Datum[S->Length] = x; S->Length = S->Length + 1; Πολυπλοκότητα Χρόνου Pop(): Θ(1) Push(): Θ(1) 10

11 Πολλαπλή Στοίβα ύο ή περισσότερες στοίβες που υλοποιούνται σε συνεχόµενες θέσεις µνήµης. Παράδειγµα 1: ύο Στοίβες Stack[0 n-1]: πίνακας που αποθηκεύει τις λίστες Η 1 η στοίβα ξεκινάει από τη θέση Stack[0] και αναπτύσσεται προς τα δεξιά, ενώ η 2 η στοίβα ξεκινάει από τη θέση Stack[n-1] και αναπτύσσεται προς τα αριστερά. 11

12 Πολλαπλή Στοίβα (συνέχ.) Παράδειγµα 2: n Στοίβες Η πολλαπλή στοίβα χωρίζεται σε n ίσα τµήµατα. Καλύτερη Υλοποίηση n-πολλαπλής Στοίβας ι-κατευθυνόµενη Πολλαπλή Στοίβα 12

13 Στατική Ουρά Q: ουρά, δοµή µε τρία πεδία: Q->Datum: πίνακας A µε στοιχεία Q->Front: θέση F πρώτου στοιχείου Q->Length: συνολικό πλήθος n στοιχείων Κυκλική Στατική Ουρά x 0,, x n-1 : στοιχεία ουράς A[F], A[(F+1) mod N], A[(F+2) mod N],, A[(F+n-1) mod N]: θέσεις στις οποίες είναι αποθηκευµένα τα x 0,, x n-1. 13

14 Υλοποίηση Λειτουργιών Κυκλικής Ουράς pointer MakeEmptyQueue(int N) pointer Q; /* temporary pointer */ Q = new_struct(queue); /* malloc() */ Q->Datum = new_struct(array of size N); Q->Front = 0; Q->Length = 0; Q->MaxSize = N; return Q; boolean IsEmptyQueue(pointer Q) return (Q->Length == 0); info Front_Element(pointer Q) If IsEmptyQueue(Q) then error; else return (Q->Datum[Q->Front]); Πολυπλοκότητα (ίδια µε την υλοποίηση στοίβας) Χρόνος εκτέλεσης κάθε λειτουργίας: Θ(1) Χρησιµοποιούµενος χώρος µνήµης: µέγεθος πίνακα Datum 14

15 Υλοποίηση Λειτουργιών Κυκλικής Ουράς (Q->Front + Q->Length) mod N info Dequeue(pointer Q) if IsEmptyQueue(Q) then error; else x = Q->Datum[Q->Front]; Q->Front = (Q->Front+1) mod Q->MaxSize; Q->Length = Q->Length 1; return x; procedure Enqueue(info x, pointer Q) N = Q->MaxSize if (Q->Length == N) then error; else Q->Datum[(Q->Front + Q->Length) mod N] = x Q->Length = Q->Length+1 15

16 Συνδεδεµένες Γραµµικές Λίστες Στοίβα ως Συνδεδεµένη Λίστα S: δείκτης σε δοµή (τύπου Node) µε πεδία : next: δείκτης στο επόµενο στοιχείο της στοίβας data: πληροφορία αποθηκευµένη στο στοιχείο Υλοποίηση Λειτουργιών pointer MakeEmptyStack() return NULL; boolean IsEmptyStack(pointer S) return (S == NULL); info Top_Element(pointer S) if IsEmptyStack(S) then error; else return S->data; Χρόνος εκτέλεσης κάθε λειτουργίας: Θ(1) 16

17 Υλοποίηση Λειτουργιών Συνδεδεµένης Στοίβας P->next void Push(info x, pointer S) pointer P; /* προσωρινός δείκτης */ P = new_struct(node); /* malloc() */ P->data = x; P->next = S; S = P; /* Αυτό στην C δεν έχει το επιθυµητό αποτέλεσµα! */ Απαιτούµενος χρόνος: Θ(1) 17

18 Υλοποίηση Λειτουργιών Συνδεδεµένης Στοίβας S->next S=S->next info Pop(pointer S) if (IsEmptyStack(S)) then error; else x = Top_Element(S); S = S->next; /* Στην C δεν έχει το επιθυµ.αποτέλεσµα! */ return x; Απαιτούµενος Χρόνος: Θ(1) Extra µνήµη (για δείκτες): n (όπου n: # στοιχείων) 18

19 Ουρά ως Συνδεδεµένη Λίστα: Απλά Ουρά: 2 δείκτες (Front και Back) που δείχνουν σε δοµή (τύπου Node) 2 πεδίων: next: δείκτης στο επόµενο στοιχείο της στοίβας data: πληροφορία αποθηκευµένη στο στοιχείο Στην απλούστερη περίπτωση οι Front, Back είναι καθολικές µεταβλητές ( ΕΝ ΣΥΝΙΣΤΑΤΑΙ!). Υλοποίηση Λειτουργιών Ουράς void MakeEmptyQueue(void) Front = Back = NULL; boolean IsEmptyQueue(void) return (Front == NULL); info Front_Element(void) if (IsEmptyQueue()) then error; else return (Front->data); 19

20 Υλοποίηση Λειτουργιών Ουράς: Απλά Back->next void Enqueue(info x) pointer P; /* προσωρινός δείκτης */ P = new_struct(node); /* malloc() */ P->data = x; P->next = NULL; if (IsEmptyQueue()) then Front = P; else Back->next = P; Back = P; 20

21 Υλοποίηση Λειτουργιών Ουράς: Απλά Front->next info Dequeue(void) if (IsEmptyQueue()) then error; else x = Front->data; Front = Front->next; if (Front == NULL) then Back = NULL; return x; 21

22 Ουρά ως Συνδεδεµένη Λίστα: πιο σύνθετα Q Ουρά Q: δοµή (τύπου Queue) µε 2 δείκτες Q->Front και Q->Back που δείχνουν σε δοµή (τύπου Node) 2 πεδίων: data: πληροφορία αποθηκευµένη στο στοιχείο next: δείκτης στο επόµενο στοιχείο της στοίβας Υλοποίηση Λειτουργιών Ουράς pointer MakeEmptyQueue(void) pointer Q; /* προσωρινός δείκτης */ Q = new_struct(queue); /* malloc() */ Q->Front = Q->Back = NULL; return Q; boolean IsEmptyQueue(pointer Q) return (Q->Front == NULL); info Front_Element(pointer Q) if (IsEmptyQueue(Q)) then error; else return (Q->Front->data); 22

23 Υλοποίηση Λειτουργιών Ουράς πιο σύνθετα Q->Back->Next Q Q void Enqueue(info x, pointer Q) pointer P; /* προσωρινός δείκτης */ P = new_struct(node); /* malloc() */ P->data = x; P->next = NULL; if (IsEmptyQueue(Q)) then Q->Front = P; else Q->Back->next = P; Q->Back = P; 23

24 Υλοποίηση Λειτουργιών Ουράς πιο σύνθετα Q->Front- Q Q info Dequeue(pointer Q) if (IsEmptyQueue(Q)) then error; else x = Q->Front->data; Q->Front = Q->Front->next; if (Q->Front == NULL) then Q->Back = NULL; return x; Πολυπλοκότητα: Θ(1) 24

25 Συνδεδεµένες Λίστες Έστω ότι κάθε στοιχείο της λίστας έχει δύο πεδία: έναν ακέραιο num και τον δείκτη next. L : δείκτης στο πρώτο στοιχείο της λίστας Εισαγωγή σε Λίστα (στην αρχή) void ListInsert(int x) } pointer p; p = new_struct(node); p->num = x; p->next = L; L = p; Αναζήτηση σε Λίστα boolean ListSearch(int x) { /* 1 εάν x βρίσκεται στη λίστα και 0 εάν όχι */ } pointer p = L; while (p!= NULL && p->num!= x) p = p->next; return (p!= NULL); Άσκηση: Υλοποιήστε την Delete(). 25

26 Συνδεδεµένες Λίστες Εφαρµογές Παράσταση πολυωνύµων a n x n + a n-1 x n a 1 x + a 0 Χρήση λίστας για την αποθήκευση των συντελεστών και των αντίστοιχων βαθµών. Κόµβος Φρουρός Ειδικός κόµβος (τελευταίος πάντα στη λίστα) Ένας δείκτης δείχνει µόνιµα σε αυτόν τον κόµβο. Βοηθάει στην εκτέλεση Αναζήτησης ή Αναζήτησηςκαι-Εισαγωγής (εισαγωγή µόνον εάν η τιµή δεν είναι στη λίστα). Κατά την αναζήτηση τιµής: η προς αναζήτηση τιµή αρχικά αποθηκεύεται στον κόµβο φρουρό εκτελείται διάσχιση της λίστας και αναζήτηση της τιµής αν η τιµή βρεθεί στον κόµβο φρουρό, η τιµή αυτή δεν υπάρχει στη λίστα. Σε τι µας βοηθάει ο κόµβος φρουρός? 26

27 2 ο Παράδειγµα Εφαρµογής Συνδεδεµένων Λιστών: Αραιοί Πίνακες Μονοδιάστατοι πίνακες Αποθήκευση των µη-µηδενικών στοιχείων σε µια λίστα. Προσπέλαση ενός στοιχείου απαιτεί χρόνο ανάλογο του πλήθους των µη-µηδενικών στοιχείων στον πίνακα. ιδιάστατοι πίνακες Αποθήκευση των µη-µηδενικών στοιχείων σε µια λίστα ανά γραµµή και ανά στήλη, π.χ., για

28 Εισαγωγή Στοιχείου σε Ταξινοµηµένη Λίστα Ο κάθε κόµβος µιας ταξινοµηµένης (σε φθίνουσα διάταξη) λίστας περιέχει: num: αποθηκευµένος ακέραιος στον κόµβο next: δείκτης στον επόµενο κόµβο της λίστας L: δείκτης στο πρώτο στοιχείο της λίστας Πρόβληµα προς επίλυση Εισαγωγή νέου στοιχείου στη λίστα, έτσι ώστε η λίστα να εξακολουθήσει να είναι ταξινοµηµένη. k: προς εισαγωγή ακέραιος υσκολία µε την εισαγωγή στοιχείου σε απλά συνδεδεµένη ταξινοµηµένη λίστα: Είναι δυνατή η εισαγωγή ενός κόµβου µόνο ως επόµενου σε κάποιον δεδοµένο κόµβο και όχι ως προηγούµενου. 28

29 Εισαγωγή Στοιχείου σε Λίστα Ταξινοµηµένη κατά Φθίνουσα σειρά Λύση Χρήση ενός βοηθητικού δείκτη P (που δείχνει στον προηγούµενο από τον τρέχοντα κόµβο). ptr void LLInsert(integer k, pointer L) pointer C, P, ptr; /* προσωρινοί δείκτες */ C = L; P = NULL; while (C!= NULL) and (C->Num > k) do P = C; C = C->next; if (C!= NULL) and (C->Num == k) then return; ptr = new_struct(node); /* malloc */ ptr->num = k; if (P == NULL) then L = ptr; /* στην αρχή */ else P->next = ptr; ptr->next = C; 29

30 ιάσχιση Λίστας Παράδειγµα 1 Έστω λίστα που περιέχει λέξεις και είναι λεξικογραφικά ταξινοµηµένη. εδοµένης λέξης w, βρείτε την δεξιότερη λέξη στη λίστα που προηγείται αλφαβητικά της λέξης x και τελειώνει µε τα ίδια 4 τελευταία γράµµατα όπως η a. Π.χ., αν x = Νοέµβριος και a = Οκτώβριος και L = <Απρίλιος, Αύγουστος, εκέµβριος, Ιανουάριος, Ιούλιος, Ιούνιος, Μάιος, Μάρτιος, Νοέµβριος, Οκτώβριος, Σεπτέµβριος, Φεβρουάριος>. H απάντηση θα πρέπει να είναι: Ιανουάριος 30

31 Πιθανοί Αλγόριθµοι Αλγόριθµος 1 1) ιασχίζουµε τη λίστα προς τα εµπρός µέχρι να βρούµε τη δεξιότερη λέξη «µικρότερη» από τη λέξη Νοέµβριος (στο παράδειγµα τη λέξη Μάρτιος ), και κρατάµε δείκτες σε αυτόν και στους προηγούµενους κόµβους. Ελέγχουµε τους κόµβους που προέκυψαν στο προηγούµενο βήµα (από δεξιά προς τα αριστερά) και βρίσκουµε την πρώτη λέξη που τελειώνει σε -ριος. L = <Απρίλιος, Αύγουστος, εκέµβριος, Ιανουάριος, Ιούλιος, Ιούνιος, Μάιος, Μάρτιος, Νοέµβριος, Οκτώβριος, Σεπτέµβριος, Φεβρουάριος>. 31

32 Αλγόριθµος 2 ιασχίζουµε τη λίστα προς τα εµπρός κρατώντας έναν δεύτερο (βοηθητικό) δείκτη στο τελευταίο στοιχείο που είδαµε να τελειώνει σε -ριος. Ψευδοκώδικας function FindLast(pointer L, string x, string a): string /*βρες λεξικ.-µεγαλύτερη λέξη στην L πριν την x, τα τελευταία 4 γράµµατα της οποίας είναι ίδια µε αυτά της a */ /* return NULL εάν δεν υπάρχει τέτοια λέξη */ P = NULL; C = L; while (C!= NULL) and (C->string < x) do if (C->string και a έχουν ίδια 4 τελ. γράµµατα) then P = C; C = C->next; If (P == NULL) then return NULL; else return P->string; Πως θα συγκρίνατε την πολυπλοκότητα των δύο αλγορίθµων? 32

33 Αλγόριθµος 3 1) ιασχίζουµε τη λίστα προς τα εµπρός µέχρι να βρούµε την πρώτη αλφαβητικά ίση ή «µεγαλύτερη» λέξη από τη λέξη Νοέµβριος (στο παράδειγµα τη λέξη Μάρτιος ), αντιστρέφοντας τους δείκτες σύνδεσης. 2) Ακολουθούµε τους δείκτες προς τα πίσω (που προέκυψαν από την αντιστροφή δεικτών) αντιστρέφοντάς τους και πάλι, βρίσκουµε την πρώτη λέξη που τελειώνει σε -ριος, και συνεχίζουµε την αντιστροφή δεικτών µέχρι την αρχή της λίστας. L = <Απρίλιος, Αύγουστος, εκέµβριος, Ιανουάριος, Ιούλιος, Ιούνιος, Μάιος, Μάρτιος, Νοέµβριος, Οκτώβριος, Σεπτέµβριος, Φεβρουάριος>. 33

34 Μέθοδος Αναστροφής εικτών Λίστας Λειτουργίες StartTraversal(L): P Q NULL L Forward(P,Q): Back(P,Q): temp Q temp->next P Q Q->next P temp temp P temp->next Q P P->next Q temp 34

35 Παράδειγµα 2 (κίνηση προς τα εµπρός και προς τα πίσω) Έστω ότι κάθε κόµβος έχει τα εξής πεδία: string: λέξη next: δείκτης στον επόµενο κόµβο ίδονται µια λέξη x της λίστας και ένας αριθµός n. Να βρεθεί η λέξη που προηγείται της x κατά n θέσεις στη λίστα. L = <Απρίλιος, Αύγουστος, εκέµβριος, Ιανουάριος, Ιούλιος, Ιούνιος, Μάιος, Μάρτιος, Νοέµβριος, Οκτώβριος, Σεπτέµβριος, Φεβρουάριος>. Αλγόριθµος Αναζήτηση της x στη λίστα µε ταυτόχρονη κράτηση δεικτών προς τα πίσω. Οπισθοδρόµηση κατά n θέσεις στη λίστα. Η λύση µε χρήση επιπλέον δεικτών προς τα πίσω είναι ακριβή σε µνήµη!!!! Γιατί? Υπάρχει λύση φθηνή σε µνήµη? 35

36 ιπλά Συνδεδεµένες Λίστες Οι κόµβοι µιας διπλά συνδεδεµένης λίστας περιέχουν δείκτες και προς τα εµπρός και προς τα πίσω και άρα διασχίσεις και προς τις δύο κατευθύνσεις είναι εύκολα υλοποιήσιµες. 36

37 Λειτουργίες ιπλά Συνδεδεµένης Λίστας Εισαγωγή κόµβου στον οποίο δείχνει ο P µετά τον κόµβο στον οποίο δείχνει ο Q: void DoublyLinkedInsert(pointer P,Q) P > P > Q > QP > Pr ev Next Next Next > Pr ev Q Q > P P Next ιαγραφή από τη λίστα κόµβου που δείχνεται από τον P void DoublyLinkedDelete(pointer P) P > P > Pr ev > Next Next > Pr ev P > P > Next Pr ev Ισχύει για διπλά συνδεδεµένη λίστα µε κόµβο Header. Τι γίνεται εάν δεν υπάρχει κόµβος Header? Πολυπλοκότητα? 37

38 Εφαρµογές Σειριακών Γραµµικών Στοιβών Αναδροµή Παράδειγµα: Υπολογισµός του n! = 1 2 n Αναδροµική Λύση integer factorial(integer n) if (n == 0) then return 1; else return (n * factorial(n-1)); Μη Αναδροµική Λύση integer factorial(integer n) integer j, product; j = n; product = 1; while (j > 0) product = j * product; j = j-1; return product; 38

IsEmptyList(L): επιστρέφει true αν L = < >, false

IsEmptyList(L): επιστρέφει true αν L = < >, false ΕΝΟΤΗΤΑ 3 ΓΡΑΜΜΙΚΕΣ ΛΙΣΤΕΣ Ορισµός Γραµµικές Λίστες Γραµµική λίστα (linear list) είναι ένα σύνολο από n 0 κόµβους L 0, L 1,..., L n-1, όπου το στοιχείο L 0 είναι το πρώτο στοιχείο (ή ο πρώτος κόµβος),

Διαβάστε περισσότερα

Ενότητα 2 Στοίβες Ουρές - Λίστες. ΗΥ240 - Παναγιώτα Φατούρου 1

Ενότητα 2 Στοίβες Ουρές - Λίστες. ΗΥ240 - Παναγιώτα Φατούρου 1 Ενότητα 2 Στοίβες Ουρές - Λίστες ΗΥ240 - Παναγιώτα Φατούρου 1 Λίστες Γραµµική λίστα (linear list) είναι ένα σύνολο από n 0 στοιχεία ή κόµβους L 1,..., L n, τα οποία είναι διατεταγµένα µε γραµµική σειρά.

Διαβάστε περισσότερα

Στοίβες Ουρές - Λίστες

Στοίβες Ουρές - Λίστες Ενότητα 3 Στοίβες Ουρές - Λίστες ΗΥ240 - Παναγιώτα Φατούρου 1 Λίστες Γραµµική λίστα (linear list) είναι ένα σύνολο από n 0 στοιχεία ή κόµβους L 1,..., L n, τα οποία είναι διατεταγµένα µε γραµµική σειρά.

Διαβάστε περισσότερα

Ενότητα 2 Στοίβες Ουρές - Λίστες

Ενότητα 2 Στοίβες Ουρές - Λίστες Ενότητα 2 Στοίβες Ουρές - Λίστες ΗΥ240 - Παναγιώτα Φατούρου 1 Λίστες Γραµµική λίστα (linear list) είναι ένα σύνολο από n 0 στοιχεία ή κόµβους e 1,..., e n, τα οποία είναι διατεταγµένα µε γραµµική σειρά.

Διαβάστε περισσότερα

Ενότητα 2 Στοίβες Ουρές - Λίστες

Ενότητα 2 Στοίβες Ουρές - Λίστες Ενότητα 2 Στοίβες Ουρές - Λίστες ΗΥ240 - Παναγιώτα Φατούρου 1 Λίστες Γραµµική λίστα (linear list) είναι ένα σύνολο από έστω n 0 στοιχεία ή κόµβους, e 1,..., e n, τα οποία είναι διατεταγµένα µε γραµµική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 2η: Στοίβες Ουρές - Λίστες Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 2η: Στοίβες Ουρές - Λίστες Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 2η: Στοίβες Ουρές - Λίστες Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 2 Στοίβες Ουρές - Λίστες ΗΥ240 - Παναγιώτα Φατούρου 2 Λίστες

Διαβάστε περισσότερα

Βασικές Δομές Δεδομένων

Βασικές Δομές Δεδομένων Βασικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Διαδοχική και Δυναμική Χορήγηση

Διαβάστε περισσότερα

Βασικές οµές εδοµένων

Βασικές οµές εδοµένων Βασικές οµές εδοµένων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Αφηρηµένοι Τύποι εδοµένων Οι ΑΤ Στοίβα και Ουρά Υλοποίηση των ΑΤ Στοίβα και Ουρά µε ιαδοχική και υναµική Χορήγηση Μνήµης

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 8: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Στατική Δέσμευση

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #11

ιαφάνειες παρουσίασης #11 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης

Διαβάστε περισσότερα

Υλοποίηση Λειτουργιών Στοίβας Απλά(1/2)

Υλοποίηση Λειτουργιών Στοίβας Απλά(1/2) Υλοποίηση Λειτουργιών Στοίβας Απλά(1/2) void MakeEmptyStack(void) Length = 0; for (i=0; i < N; i++) Infos[i] = ; /* initialize */ int IsEmptyStack(void) if (Length == 0) return 1; return 0; info Top(void)

Διαβάστε περισσότερα

Διάλεξη 9: Αφηρημένοι Τύποι Δεδομένων. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 9: Αφηρημένοι Τύποι Δεδομένων. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 9: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) -Οι ΑΤΔ Στοίβα και Ουρά -Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Στατική

Διαβάστε περισσότερα

Τηλ , Fax: , URL:

Τηλ , Fax: , URL: Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ Παναγιώτα Φατούρου faturu@cs.uoi.gr Tµήµα Πληροφορικής, Πανεπιστήµιο Ιωαννίνων, Τ.Θ. 1186, Γραφείο Α26, Τηλ. +30 26510 98808, Fax: +30 26510 98890,

Διαβάστε περισσότερα

Τηλ , Fax: , URL:

Τηλ , Fax: , URL: Τµήµα Πληροφορικής Πανεπιστήµιο Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ Παναγιώτα Φατούρου faturu@cs.uoi.gr Τµήµα Πληροφορικής, Πανεπιστήµιο Ιωαννίνων, Τ.Θ. 1186, Γραφείο Α26, Τηλ. +30 26510 98808, Fax: +30 26510 98890,

Διαβάστε περισσότερα

Ενότητα 2: Στοίβες Ουρές - Λίστες Ασκήσεις και Λύσεις

Ενότητα 2: Στοίβες Ουρές - Λίστες Ασκήσεις και Λύσεις Ενότητα 2: Στοίβες Ουρές - Λίστες Ασκήσεις και Λύσεις Άσκηση 1 Έστω ότι μια βιβλιοθήκη σας παρέχει πρόσβαση σε στοίβες ακεραίων. Η βιβλιοθήκη σας επιτρέπει να ορίσετε μια στοίβα και να καλέσετε τις 5 βασικές

Διαβάστε περισσότερα

Ενότητα 2: Στοίβες Ουρές - Λίστες Ασκήσεις και Λύσεις

Ενότητα 2: Στοίβες Ουρές - Λίστες Ασκήσεις και Λύσεις Ενότητα 2: Στοίβες Ουρές - Λίστες Ασκήσεις και Λύσεις Άσκηση 1 Έστω ότι µια βιβλιοθήκη σας παρέχει πρόσβαση σε στοίβες ακεραίων. Η βιβλιοθήκη σας επιτρέπει να ορίσετε µια στοίβα και να καλέσετε τις 5 βασικές

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 6: Εφαρμογή Συνδεδεμένων Λιστών: Αλφαβητικό ευρετήριο κειμένου- Υλοποίηση ΑΤΔ Στοίβα και Ουρά με δείκτες

Δομές Δεδομένων. Ενότητα 6: Εφαρμογή Συνδεδεμένων Λιστών: Αλφαβητικό ευρετήριο κειμένου- Υλοποίηση ΑΤΔ Στοίβα και Ουρά με δείκτες Ενότητα 6: Εφαρμογή Συνδεδεμένων Λιστών: Αλφαβητικό ευρετήριο κειμένου- Υλοποίηση ΑΤΔ Στοίβα και Ουρά με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Στοίβες Ουρές Στοίβες: Βασικές Έννοιες. Ουρές: Βασικές Έννοιες. Βασικές Λειτουργίες. Παραδείγματα. Στοίβες Δομή τύπου LIFO: Last In - First Out (τελευταία εισαγωγή πρώτη

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 3 ο. Συνδεδεµένες Λίστες. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 3 ο. Συνδεδεµένες Λίστες. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 3 ο Συνδεδεµένες Λίστες Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ανασκόπηση ΟΑΤ λίστα Ακολουθιακή λίστα Συνδεδεµένη λίστα

Διαβάστε περισσότερα

Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων

Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά ΕΠΛ231 Δομές Δεδομένων

Διαβάστε περισσότερα

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 2 Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα

Διαβάστε περισσότερα

Διάλεξη 11: Φροντιστήριο για Στοίβες. Διδάσκων: Παναγιώτης Ανδρέου. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ.

Διάλεξη 11: Φροντιστήριο για Στοίβες. Διδάσκων: Παναγιώτης Ανδρέου. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. Διάλεξη 11: Φροντιστήριο για Στοίβες Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 1 ΑΤΔ Στοίβα- Πράξεις Θυμηθείτε τον ΑΤΔ στοίβα με τις πράξεις του: MakeEmptyStack()

Διαβάστε περισσότερα

Στοίβες με Δυναμική Δέσμευση Μνήμης

Στοίβες με Δυναμική Δέσμευση Μνήμης ΕΠΛ 231 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ 10/02/10 Παύλος Αντωνίου Στοίβες με Δυναμική Δέσμευση Μνήμης Στοίβα: Στοίβα είναι μια λίστα που έχει ένα επιπλέον περιορισμό. Ο περιορισμός είναι ότι οι εισαγωγές

Διαβάστε περισσότερα

Συλλογές, Στοίβες και Ουρές

Συλλογές, Στοίβες και Ουρές Συλλογές, Στοίβες και Ουρές Σε πολλές εφαρμογές μας αρκεί η αναπαράσταση ενός δυναμικού συνόλου με μια δομή δεδομένων η οποία δεν υποστηρίζει την αναζήτηση οποιουδήποτε στοιχείου. Συλλογή (bag) : Επιστρέφει

Διαβάστε περισσότερα

Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Υλοποίηση Λιστών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμές Απλά και Διπλά Συνδεδεμένες Λίστες Κυκλικές Απλά και Διπλά Συνδεδεμένες Λίστες Τεχνικές Μείωσης Μνήμης ΕΠΛ 231 Δομές

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 9: Στοίβες:Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθεί η χρήση στοιβών στις εξής εφαρμογές: Υλοποίηση Στοιβών με Δυναμική Δέσμευση Μνήμης Εφαρμογή Στοιβών 1: Αναδρομικές συναρτήσεις Εφαρμογή

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Λίστες Λίστες - Απλά Συνδεδεμένες Λίστες - Διπλά Συνδεδεμένες Λίστες Είδη Γραμμικών Λιστών Σειριακή Λίστα Καταλαμβάνει συνεχόμενες θέσεις κύριας μνήμης Συνδεδεμένη Λίστα Οι κόμβοι βρίσκονται σε απομακρυσμένες

Διαβάστε περισσότερα

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 9 οµές εδοµένων σε C Γιώργος Γιαγλής Περίληψη Κεφαλαίου 9 οµές εδοµένων υναµικές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 2 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 2: Στοίβες Ουρές - Λίστες Ασκήσεις και Λύσεις Άσκηση 1 Έστω ότι µια

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 3 1. Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή 2. Δυναμικές είναι οι δομές που αποθηκεύονται σε συνεχόμενες θέσεις μνήμης 3. Ένας πίνακας

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 10: Στοίβες:Υλοποίηση& Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση Στοιβών με Δυναμική Δέσμευση Μνήμης - Εφαρμογή Στοιβών 1: Αναδρομικές συναρτήσεις - Εφαρμογή

Διαβάστε περισσότερα

Τηλ , Fax: , URL:

Τηλ , Fax: , URL: Τµήµα Πληροφορικής Πανεπιστήµιο Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ Παναγιώτα Φατούρου faturu@cs.uoi.gr Τµήµα Πληροφορικής, Πανεπιστήµιο Ιωαννίνων, Τ.Θ. 1186, Γραφείο Α26, Τηλ. +30 26510 98808, Fax: +30 26510 98890,

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος εδοµένα οµές δεδοµένων και αλγόριθµοι Τα δεδοµένα είναι ακατέργαστα γεγονότα. Η συλλογή των ακατέργαστων δεδοµένων και ο συσχετισµός τους δίνει ως αποτέλεσµα την πληροφορία. Η µέτρηση, η κωδικοποίηση,

Διαβάστε περισσότερα

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Άσκηση 1 Ο ζητούμενος ΑΤΔ μπορεί να υλοποιηθεί ως μια ακολουθία από στοιχεία τύπου window συνοδευόμενη από τις πράξεις: MakeNewWindow(L,w) Destroy(L,w) SwitchTo(L,w)

Διαβάστε περισσότερα

Τηλ , Fax: , URL:

Τηλ , Fax: , URL: Τµήµα Πληροφορικής Πανεπιστήµιο Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ Παναγιώτα Φατούρου faturu@cs.uoi.gr Τµήµα Πληροφορικής, Πανεπιστήµιο Ιωαννίνων, Τ.Θ. 1186, Γραφείο Α26, Τηλ. +30 26510 98808, Fax: +30 26510 98890,

Διαβάστε περισσότερα

Θεωρητικό Μέρος. int rec(int n) { int n1, n2; if (n <= 5) then return n; else { n1 = rec(n-5); n2 = rec(n-3); return (n1+n2); } }

Θεωρητικό Μέρος. int rec(int n) { int n1, n2; if (n <= 5) then return n; else { n1 = rec(n-5); n2 = rec(n-3); return (n1+n2); } } Πανεπιστήµιο Ιωαννίνων, Τµήµα Πληροφορικής 2 Νοεµβρίου 2005 Η/Υ 432: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκού Έτους 2005-2006 Παναγιώτα Φατούρου Ηµεροµηνία Παράδοσης 1 ο Σετ Ασκήσεων Θεωρητικό Μέρος:

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 7: Άλλες παραλλαγές Συνδεδεμένων Λιστών-Παράσταση Αραιού Πολυωνύμου με Συνδεδεμένη Λίστα. Καθηγήτρια Μαρία Σατρατζέμη

Δομές Δεδομένων. Ενότητα 7: Άλλες παραλλαγές Συνδεδεμένων Λιστών-Παράσταση Αραιού Πολυωνύμου με Συνδεδεμένη Λίστα. Καθηγήτρια Μαρία Σατρατζέμη Ενότητα 7: Άλλες παραλλαγές Συνδεδεμένων Λιστών-Παράσταση Αραιού Πολυωνύμου με Συνδεδεμένη Λίστα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα

Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ενότητα 7: Αφαίρεση δεδόμενων Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Βασικές δοµές δεδοµένων. Ορολογία λιστών. 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας

Βασικές δοµές δεδοµένων. Ορολογία λιστών. 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας ΚΕΦΑΛΑΙΟ 8: Αφηρηµένοι τύποι δεδοµένων 8.1 οµές δεδοµένων (data structures) 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας Αδόµητα δεδοµένα οδός Ζέας

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Να γίνει περιγραφή της δομής δεδομένων Στοίβα. Στη δομή δεδομένων στοίβα τα δεδομένα στοιβάζονται το ένα πάνω στο άλλο. Σχηματικά οι λεπτομέρειες μιας δομής δεδομένων στοίβας μπορούν

Διαβάστε περισσότερα

Οι δομές δεδομένων στοίβα και ουρά

Οι δομές δεδομένων στοίβα και ουρά Καθηγητής Πληροφορικής Απαγορεύεται η αναπαραγωγή των σημειώσεων χωρίς αναφορά στην πηγή Βίντεο: https://youtu.be/j8petzztqty Οι δομές δεδομένων στοίβα και ουρά Εισαγωγή Στα πλαίσια του μαθήματος της Ανάπτυξης

Διαβάστε περισσότερα

#2 Αλγόριθµοι, οµές εδοµένων και Πολυπλοκότητα

#2 Αλγόριθµοι, οµές εδοµένων και Πολυπλοκότητα #2 Αλγόριθµοι, οµές εδοµένων και Πολυπλοκότητα ηµήτρης Ν. Σερπάνος Εργαστήριο Συστηµάτων Υπολογιστών Τµήµα Ηλεκτρολόγων Μηχ. & Τεχνολογίας Υπολογιστών Αλγόριθµοι, οµές εδοµένων και Πολυπλοκότητα Αλγόριθµοι:

Διαβάστε περισσότερα

Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον υποδειγματική διδασκαλία Κεφ. 3 Δομές Δεδομένων & αλγόριθμοι

Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον υποδειγματική διδασκαλία Κεφ. 3 Δομές Δεδομένων & αλγόριθμοι Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον υποδειγματική διδασκαλία Κεφ. 3 Δομές Δεδομένων & αλγόριθμοι Αραποστάθης Μάριος Καθηγητής Πληροφορικής Πειραματικού Λυκείου Βαρβακείου http://users.sch.gr/mariosarapostathis

Διαβάστε περισσότερα

Insert(K,I,S) Delete(K,S)

Insert(K,I,S) Delete(K,S) ΕΝΟΤΗΤΑ 5 ΣΥΝΟΛΑ & ΛΕΞΙΚΑ Φατούρου Παναγιώτα 1 Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενα από έναν αριθµό και

Διαβάστε περισσότερα

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ

ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ Τα δεδομένα (data) είναι η αφαιρετική αναπαράσταση της πραγματικότητας και συνεπώς μία απλοποιημένη όψη της. Η συλλογή των ακατέργαστων δεδομένων και ο συσχετισμός

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη Μάθηµα 4 ο. Στοίβα. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη Μάθηµα 4 ο. Στοίβα. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 4 ο Στοίβα Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ανασκόπηση Αφηρηµένος Τύπος εδοµένων Στοίβα Υλοποίηση µε Πίνακα Υλοποίηση

Διαβάστε περισσότερα

2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ

2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ 2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ Προκειμένου να επιτευχθεί η «ακριβής περιγραφή» ενός αλγορίθμου, χρησιμοποιείται κάποια γλώσσα που μπορεί να περιγράφει σειρές ενεργειών με τρόπο αυστηρό,

Διαβάστε περισσότερα

Βασικές Έννοιες Δοµών Δεδοµένων

Βασικές Έννοιες Δοµών Δεδοµένων Δοµές Δεδοµένων Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλήµατος του ευσταθούς ταιριάσµατος Βασικές Έννοιες

Διαβάστε περισσότερα

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Άσκηση 1 Υπάρχουν διάφοροι τρόποι για να υλοποιήσουμε πράξεις ουράς για την προτεινόμενη εγγραφή. To πρόβλημα που δημιουργείται με οποιαδήποτε από αυτές είναι ότι είναι

Διαβάστε περισσότερα

Οι λίστες, χάνοντας τα πλεονεκτήματα των πινάκων, λύνουν προβλήματα που παρουσιάζουν οι πίνακες

Οι λίστες, χάνοντας τα πλεονεκτήματα των πινάκων, λύνουν προβλήματα που παρουσιάζουν οι πίνακες Δομές δεδομένων Πίνακες Οι πίνακες είναι το πιο απλό «μέσο» αποθήκευσης ομοειδούς πληροφορίας. Χρησιμοποιούν ακριβώς όση μνήμη χρειάζεται για την αποθήκευση της πληροφορίας Επιτρέπουν την προσπέλαση άμεσα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΟ 3ο: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΜΕΡΟΣ 2 ο : ΣΤΟΙΒΑ & ΟΥΡΑ ΙΣΤΟΣΕΛΙΔΑ ΜΑΘΗΜΑΤΟΣ: http://eclass.sch.gr/courses/el594100/ ΣΤΟΙΒΑ 2 Μια στοίβα

Διαβάστε περισσότερα

Ταξινομώντας τον πίνακα σε φθίνουσα σειρά ως προς τις πωλήσεις, μπορούμε να δούμε ποιοι ήταν οι καλύτεροι πωλητές. Ζωή Μάνος Δημήτρης Κατερίνα Γιάννα Πωλήσεις Μαρτίου Πωλητής Πωλήσεις (χιλιάδες κουτιά)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 2: Στοίβες Εισαγωγή-Υλοποίηση ΑΤΔ Στοίβα με Πίνακα-Εφαρμογή Στοίβας: Αντίστροφη Πολωνική Γραφή. Καθηγήτρια Μαρία Σατρατζέμη

Δομές Δεδομένων. Ενότητα 2: Στοίβες Εισαγωγή-Υλοποίηση ΑΤΔ Στοίβα με Πίνακα-Εφαρμογή Στοίβας: Αντίστροφη Πολωνική Γραφή. Καθηγήτρια Μαρία Σατρατζέμη Ενότητα 2: Στοίβες Εισαγωγή-Υλοποίηση ΑΤΔ Στοίβα με Πίνακα-Εφαρμογή Στοίβας: Αντίστροφη Πολωνική Γραφή Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Τύποι Δεδομένων και Απλές Δομές Δεδομένων. Παύλος Εφραιμίδης V1.0 ( )

Τύποι Δεδομένων και Απλές Δομές Δεδομένων. Παύλος Εφραιμίδης V1.0 ( ) Τύποι Δεδομένων και Απλές Δομές Δεδομένων Παύλος Εφραιμίδης V1.0 (2014-01-13) Απλές Δομές Δεδομένων Στην ενότητα αυτή θα γνωρίσουμε ορισμένες απλές Δομές Δεδομένων και θα τις χρησιμοποιήσουμε για την αποδοτική

Διαβάστε περισσότερα

Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες

Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Απλές Λίστες CS100, 2015-2016 1 / 10 Δομές δεδομένων Ορισμός:

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Ουρές Ουρές Περίληψη Η ΟυράΑΔΤ Υλοποίηση με κυκλικό πίνακα Αυξανόμενη Ουρά βασισμένη σε πίνακα Interface ουράς στην C++ Η Ουρά ADT Η ΑΔΤ Ουρά αποθηκεύει αυθαίρετα αντικείμενα Οι εισαγωγές και διαγραφές

Διαβάστε περισσότερα

υναµικές οµές εδοµένων

υναµικές οµές εδοµένων υναµικές οµές εδοµένων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: υναµικές οµές εδοµένων Γενικά υναµική έσµευση Μνήµης οµή τύπου structure αυτοαναφορικές δοµές Η δήλωση typedef στη C Αναπαράσταση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών Ακαδηµαϊκό έτος 2010 2011, Χειµερινό εξάµηνο Ασκήσεις Επανάληψης Ενδιάµεσης

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δοµών δεδοµένων 8.4 Μια σύντοµη µελέτη περίπτωσης 8.5 Προσαρµοσµένοι τύποι δεδοµένων 1 Βασικές δοµές

Διαβάστε περισσότερα

Φροντιστήριο 4 Σκελετοί Λύσεων

Φροντιστήριο 4 Σκελετοί Λύσεων Φροντιστήριο 4 Σκελετοί Λύσεων Άσκηση 1 Υποθέτουμε πως οι λίστες είναι υλοποιημένες χρησιμοποιώντας τις πιο κάτω δομές. typedef struct Node{ type data; struct node *next; node; node *top; list; Υλοποιούμε

Διαβάστε περισσότερα

Σύνοψη Προηγούμενου. Λίστες (Lists) Συνδεδεμένες Λίστες: Εισαγωγή (1/2) Συνδεδεμένες Λίστες. Ορέστης Τελέλης

Σύνοψη Προηγούμενου. Λίστες (Lists) Συνδεδεμένες Λίστες: Εισαγωγή (1/2) Συνδεδεμένες Λίστες. Ορέστης Τελέλης Σύνοψη Προηγούμενου Λίστες (Lists) Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς Στοίβες (Stacks) : στην κορυφή της στοίβας ( ) από την κορυφή της στοίβας ( ) Ουρές

Διαβάστε περισσότερα

Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εύρεση, εισαγωγή, διαγραφή) - Σύγκριση Συνδεδεμένων Λιστών με Πίνακες

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη Μάθηµα 5 ο. Ουρά. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη Μάθηµα 5 ο. Ουρά. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ οµηµένος Προγραµµατισµός Ανοιξη 5 Μάθηµα 5 ο Ουρά Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ανασκόπηση Αφηρηµένος Τύπος εδοµένων Ουρά Υλοποίηση µε Κυκλικό Πίνακα Υλοποίηση

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 14 η Διαχείριση Μνήμης και Δομές Δεδομένων Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί

Διαβάστε περισσότερα

4. Συνδεδεμένες Λίστες

4. Συνδεδεμένες Λίστες Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 4. Συνδεδεμένες Λίστες 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 10/11/2016 Εισαγωγή

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 5: Δείκτες και Δυναμική Δέσμευση- Αποδέσμευση Μνήμης στη C/ Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με δείκτες /Ένα πακέτο για τον ΑΤΔ Συνδεδεμένη Λίστα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:

Διαβάστε περισσότερα

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

Φροντιστήριο 4 Σκελετοί Λύσεων

Φροντιστήριο 4 Σκελετοί Λύσεων Φροντιστήριο 4 Σκελετοί Λύσεων 1. Ο ζητούμενος ΑΤΔ μπορεί να υλοποιηθεί ως εξής: (i) Διαδοχική χορήγηση μνήμης Υποθέτουμε ότι οι λίστες μας έχουν μέγιστο μέγεθος max και χρησιμοποιούμε τη δομή type elements[max];

Διαβάστε περισσότερα

διεύθυνση πρώτου στοιχείου διεύθυνση i-οστού στοιχείου T t[n]; &t[0] είναι t &t[i] είναι t + i*sizeof(t)

διεύθυνση πρώτου στοιχείου διεύθυνση i-οστού στοιχείου T t[n]; &t[0] είναι t &t[i] είναι t + i*sizeof(t) Προγραµµατισµός Ι (ΗΥ120) ιάλεξη 18: ιασυνδεµένες οµές - Λίστες ιασυνδεδεµένες δοµές δεδοµένων Η µνήµη ενός πίνακα δεσµεύεται συνεχόµενα. Η πρόσβαση στο i-οστό στοιχείο είναι άµεσηκαθώς η διεύθυνση του

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #5 (β)

ιαφάνειες παρουσίασης #5 (β) ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ http://www.softlab.ntua.gr/~nickie/courses/progtech/ ιδάσκοντες: Γιάννης Μαΐστρος (maistros@cs.ntua.gr) Στάθης Ζάχος (zachos@cs.ntua.gr) (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης

Διαβάστε περισσότερα

Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα

Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Λίστες -Υλοποίηση ταξινομημένης λίστας με δυναμική δέσμευση μνήμης ΕΠΛ035

Διαβάστε περισσότερα

Προγραμματισμός Ι. Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ακ. Έτος Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Προγραμματισμός Ι. Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ακ. Έτος Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Προγραμματισμός Ι Δομές Δεδομένων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2009-2010 Δομές Δεδομένων Μια δομή δεδομένων είναι μια συλλογή δεδομένων με κάποιες

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 10: Λίστες Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εύρεση, εισαγωγή, διαγραφή) Σύγκριση Συνδεδεμένων Λιστών με Πίνακες

Διαβάστε περισσότερα

Απλές Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες απλές Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλή

Απλές Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες απλές Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλή Απλές Δοµές Δεδοµένων Απλές Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες απλές Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλήµατος του ευσταθούς ταιριάσµατος

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 8: C++ ΒΙΒΛΙΟΗΚΗ STL, ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Δομές Δεδομένων ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δομές

Διαβάστε περισσότερα

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες)

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 13-1 Περιεχόμενο

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 3: Ουρές Εισαγωγή-Υλοποίηση ΑΤΔ Ουρά με πίνακα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής.

Δομές Δεδομένων. Ενότητα 3: Ουρές Εισαγωγή-Υλοποίηση ΑΤΔ Ουρά με πίνακα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Ενότητα 3: Ουρές Εισαγωγή-Υλοποίηση ΑΤΔ Ουρά με πίνακα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

Δομές δεδομένων (2) Αλγόριθμοι

Δομές δεδομένων (2) Αλγόριθμοι Δομές δεδομένων (2) Αλγόριθμοι Παράγωγοι τύποι (struct) σύνοψη προηγουμένων Πίνακες: πολλές μεταβλητές ίδιου τύπου Παράγωγοι τύποι ή Δομές (struct): ομαδοποίηση μεταβλητών διαφορετικού τύπου struct Student

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 3. Στοίβες & Ουρές 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 19/10/2017 Ανακεφαλαίωση:

Διαβάστε περισσότερα

Προγραµµατισµός Ι (ΗΥ120)

Προγραµµατισµός Ι (ΗΥ120) Προγραµµατισµός Ι (ΗΥ120) Διάλεξη 15: Διασυνδεµένες Δοµές - Λίστες Δοµές δεδοµένων! Ένα τυπικό πρόγραµµα επεξεργάζεται δεδοµένα Πώς θα τα διατάξουµε? 2 Τι λειτουργίες θέλουµε να εκτελέσουµε? Πώς θα υλοποιήσουµε

Διαβάστε περισσότερα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 3. Στοίβες & Ουρές 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 4/11/2016 Ανακεφαλαίωση:

Διαβάστε περισσότερα

Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες)

Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 15-1 Περιεχόμενο

Διαβάστε περισσότερα

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής Αναδροµή Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής 1 Αναδροµή Βασική έννοια στα Μαθηµατικά και στην Πληροφορική.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS)

ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS) ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS) Ταχεία Αναζήτηση Σε πίνακα: δυαδική αναζήτηση (binary search) σε ταξινοµηµένο πίνακα O(log n) Σε δένδρο: αναζήτηση σε ισοζυγισµένο δένδρο O(log n) Σε λίστα: Μπορούµε

Διαβάστε περισσότερα

Διάλεξη 08: Λίστες ΙΙ Κυκλικές Λίστες

Διάλεξη 08: Λίστες ΙΙ Κυκλικές Λίστες ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 08: Λίστες ΙΙ Κυκλικές Λίστες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Κυκλικές Απλά Συνδεδεμένες Λίστες - Κυκλικές Διπλά Συνδεδεμένες

Διαβάστε περισσότερα

ENOTHTA 3 ΟΜΕΣ Ε ΟΜΕΝΩΝ

ENOTHTA 3 ΟΜΕΣ Ε ΟΜΕΝΩΝ ENOTHTA ΟΜΕΣ Ε ΟΜΕΝΩΝ Ανάπτυξη Εφαρµογών, Αλέξης Μπράιλας,, 000 . ΠΙΝΑΚΕΣ Ανάπτυξη Εφαρµογών, Αλέξης Μπράιλας,, 000 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ εδοµένα Αλγόριθµοι + οµές εδοµένων = Προγράµµατα Πίνακες Στοίβα και Ουρά

Διαβάστε περισσότερα

Ενότητα 7 Ουρές Προτεραιότητας

Ενότητα 7 Ουρές Προτεραιότητας Ενότητα Ουρές Προτεραιότητας ΗΥ4 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type). Έστω

Διαβάστε περισσότερα

Στοίβες - Ουρές. Στοίβα (stack) Γιάννης Θεοδωρίδης, Νίκος Πελέκης, Άγγελος Πικράκης Τµήµα Πληροφορικής

Στοίβες - Ουρές. Στοίβα (stack) Γιάννης Θεοδωρίδης, Νίκος Πελέκης, Άγγελος Πικράκης Τµήµα Πληροφορικής Στοίβες - Ουρές Γιάννης Θεοδωρίδης, Νίκος Πελέκης, Άγγελος Πικράκης Τµήµα Πληροφορικής οµές εδοµένων 1 Στοίβα (stack) οµή τύπουlifo: Last In - First Out (τελευταία εισαγωγή πρώτη εξαγωγή) Περιορισµένος

Διαβάστε περισσότερα