Βασικές Δομές Δεδομένων
|
|
- Ἑκάβη Βασιλόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Βασικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Διαδοχική και Δυναμική Χορήγηση Μνήμης ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-1
2 Αφηρημένοι Τύποι Δεδομένων Τύπος Δεδομένων: μια συλλογή αντικειμένων με μια κοινή σχέση, μαζί με ένα σύνολο πράξεων για τη δημιουργία και επεξεργασία των αντικειμένων. Αφηρημένος Τύπος Δεδομένων (ΑΤΔ): μαθηματικό μοντέλο που αποτελείται από ένα ή περισσότερα πεδία ορισμού και ένα σύνολο πράξεων για επεξεργασία των πεδίων ορισμού. Όταν μιλούμε για ένα ΑΤΔ μας ενδιαφέρει η προδιαγραφή του και πως θα τον χρησιμοποιήσουμε. Δεν μας ενδιαφέρει ο τρόπος υλοποίησής του μέσα στη μηχανή. (Η υλοποίηση ενός ΑΤΔ μπορεί να αλλάξει χωρίς να επηρεάσει την ορθότητα προγραμμάτων που τον χρησιμοποιούν.) ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-2
3 Αφηρημένοι Τύποι Δεδομένων Παραδείγματα: 1. Οτύποςint μαζί με τις πράξεις +, *, /, =, είναι ένας τύπος δεδομένων. Για να τον χρησιμοποιήσουμε χρειάζεται να γνωρίζουμε το σύνολο των σχετικών πράξεων. O τρόπος αναπαράστασής του στον υπολογιστή δεν μας ενδιαφέρει. 2. Ουρά Προτεραιότητας: ένα σύνολο στοιχείων τύπου key (π.χ. key = (int,int) ) πάνω στο οποίο έχει ορισθεί μια γραμμική διάταξη, συνοδευόμενο από τις πιο κάτω πράξεις. δημιούργησε την άδεια ουρά προτεραιότητας, q, έλεγξε αν η ουρά q είναι άδεια βάλε το στοιχείο k στην ουρά q, αφαίρεσε και επίστρεψε το μικρότερο στοιχείο της q(σύμφωνα με τη γραμμική διάταξη της ουράς). Ένας ΑΤΔ μπορεί να υλοποιηθεί με πολλούς τρόπους, π.χ. μια ουρά προτεραιότητας μπορεί να υλοποιηθεί από δομές λίστας, δενδρικές δομές κλπ. ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-3
4 Λίστες Λίστα: μια ακολουθία στοιχείων Λ = α 1, α 2,..., α n Αναφερόμαστε στα στοιχεία της λίστας ως κόμβους. Με Λ[i] αναφερόμαστε στο i-οστό στοιχείο της λίστας. Μήκος μιας λίστας Λ ονομάζεται ο αριθμός των στοιχείων της και συμβολίζεται ως Λ. Αν Λ = 0 τότε αναφερόμαστε στην κενή λίστα την οποία συμβολίζουμε ως. Συνοδεύοντας λίστες με ένα σύνολο πράξεων μπορούμε να ορίσουμε αφηρημένους τύπους δεδομένων. Χρήσιμες πράξεις περιλαμβάνουν τις πιο κάτω: Δημιουργία λίστας Εισαγωγή νέου κόμβου στη λίστα Εξαγωγή κόμβου από τη λίστα Εύρεση κόμβου με ορισμένη ιδιότητα Διάταξη της λίστας σύμφωνα με κάποια σχέση ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-4
5 Λίστες Οι πιο σημαντικές πράξεις στον ορισμό ενός ΑΤΔ-λίστας είναι η εισαγωγή και η εξαγωγή κόμβων στα άκρα της λίστας. Με βάση την προδιαγραφή αυτών των πράξεων, διακρίνουμε δύο βασικούς τύπους λίστας που έχουν πολλές και σημαντικές εφαρμογές σε κλάδους επιστημών που χρησιμοποιούν υπολογιστικές μεθόδους. Είναιοιακόλουθες: Η στοίβα (stack) που έχει μόνο ένα άκρο προσιτό για εισαγωγές και εξαγωγές κόμβων. Η ουρά (queue) όπου γίνονται εισαγωγές στο ένα άκρο και εξαγωγές από το άλλο. Υπάρχουν και άλλοι ΑΤΔ-λίστας μικρότερης πρακτικής σημασίας, όπως ουρά με δύο άκρα, πολλαπλή στοίβα, κλπ ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-5
6 Στοίβες Ορίζουμε μια στοίβα ως μια λίστα συνοδευόμενη από τις πιο κάτω πράξεις: pop MakeEmptyStack() IsEmptyStack(S) Push(x,S) Pop(S) Top(S) δημιούργησε την κενή στοίβα επέστρεψε τη λογική τιμή που εκφράζει το αν η S είναι κενή εισήγαγε τον κόμβο x στην κορυφή της στοίβας S διέγραψε τον κόμβο κορυφής της S δώσε τον κόμβο κορυφής της S ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-6
7 Στοίβες Οι πράξεις αυτές προδιαγράφονται από τους εξής κανόνες: IsEmptyStack (MakeEmptyStack) = true IsEmptyStack(Push(x,S)) = false Pop(MakeEmptyStack()) = error Pop(Push(x,S)) = S πολιτική LIFO last in, first out Top(MakeEmptyStack()) = error Top(Push(x,S)) = x ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-7
8 Ουρές Από μια ουρά Q πρώτο διαγράφεται το στοιχείο που εισήχθηκε πρώτο στην ουρά. Νέες εισαγωγές γίνονται στο πίσω άκρο. Ορίζουμε μια ουρά ως μια λίστα συνοδευόμενη από τις πιο κάτω πράξεις: MakeEmptyQueue() δημιούργησε την κενή ουρά <> IsEmptyQueue(Q) EnQueue (x,q) DeQueue(Q) Top(Q) επέστρεψε τη λογική τιμή που εκφράζει το αν η Q είναι κενή εισήγαγε τον κόμβο x στην ουρά Q διέγραψε τον κόμβο εξόδου της Q δώσε τον κόμβο εξόδου της Q ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-8
9 Ουρές Οι πράξεις αυτές προδιαγράφονται από τους εξής κανόνες IsEmptyQueue(MakeEmptyQueue()) = true IsEmptyQueue (EnQueue(x,Q)) = false DeQueue(MakeEmptyQueue()) = error πολιτική FIFO first in, first out DeQueue (EnQueue(x,Q)) = if IsEmptyQueue( Q ) then Q else EnQueue(x, DeQueue(Q)) Top (MakeEmptyQueue ()) = error Top(EnQueue (x,q)) = if IsEmptyQueue( Q ) then x else Top(Q) ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-9
10 Ουρές με Δύο Άκρα ΟΑΤΔ ουρά με δύο άκρα είναι παρόμοιος με το ΑΤΔ ουρά, με τη διαφορά ότι έχει δύο άκρα και επιτρέπει εισαγωγές και εξαγωγές και στα δύο. Μια ουρά δύο άκρων ορίζεται ως μια λίστα συνοδευόμενη από τις πιο κάτω πράξεις: MakeEmptyDeQue(), IsEmptyDeQue(Q) Insert(x, Q) Eject(Q) εισήγαγε το στοιχείο x στομπροστινόάκροτηςq διέγραψε τον κόμβο στο πίσω άκρο της Q EnQueue (x,q) εισήγαγε τον στοιχείο x στο πίσω μέρος της Q. DeQueue(Q) Front(Q) Rear(Q) διέγραψε τον κόμβο στο μπροστινό άκρο της Q δώσε τον κόμβο στο μπροστινό άκρο της Q δώσε τον κόμβο στο πίσω άκρο της Q ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-10
11 Αναπαράσταση Στοίβας ΟΑΤΔ«στοίβα» μπορεί να υλοποιηθούν με διάφορες δομές δεδομένων χρησιμοποιώντας είτε στατική είτε δυναμική χορήγηση μνήμης. 1. Αναπαράσταση Στοίβας με Διαδοχική Χορήγηση Μνήμης Ο πιο απλός τρόπος είναι η χρήση μονοδιάστατου πίνακα. Χρειάζεται να γνωρίζουμε από την αρχή το μήκος της λίστας. Για την παράσταση στοίβας με στοιχεία α 1, α 2,..., α n χρειαζόμαστε ένα πίνακα Α στον οποίο θα αποθηκεύσουμε τα στοιχεία της στοίβας, Α[i-1] = α i. Πρέπει να γνωρίζουμε ανά πάσα στιγμή που βρίσκεται η κορυφή της στοίβας. Έτσι χρησιμοποιούμε μια εγγραφή με δύο πεδία 1. ένα πίνακα Α[0..n-1], και 2. μια μεταβλητή Length τύπου ακέραιος (που συγκρατεί τη θέση εισαγωγής) Length ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-11
12 Αναπαράσταση ΑΤΔ Στοίβα Ο τύπος δεδομένων που χρειάζεται για τη δομή είναι: typedef struct Stack{ type list[size]; int Length; } stack Yλοποίηση πράξεων: MakeEmpty(stack *S){ (*S).Length = 0; } Push(type x, stack *S){ if (*S).Length <size (*S).list[(*S).Length]= x; (*S).Length++; } int IsEmpty(stack *S){ return ((*S).Length == 0); } Pop(stack *S){ if!isempty(s) (*S).Length--; } type Top(stack *S){ if!isempty(s) return (*S).list[(*S).Length-1]; } ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-12
13 Παράδειγμα MakeEmpty (S); Push(3,S); Push(5,S); Push(7,S); Pop(S); Pop(S); Push(2,S); ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-13
14 Αναπαράσταση Ουράς 2. Παράσταση Oυράς σε Διαδοχική Μνήμη Για την παράσταση μιας ουράς με στοιχεία α 0, α 1,..., α n-1 χρειαζόμαστε ένα πίνακα Α στον οποίο θα αποθηκεύσουμε τα στοιχεία της ουράς, Α[i-1] = α i, και δύο δείκτες που προσδιορίζουν τα δύο προσιτά άκρα της ουράς. Έτσι χρησιμοποιούμε μια εγγραφή με τρία πεδία 1. ένα πίνακα Α[n], 2. μια μεταβλητή front, τύπου ακέραιος, που συγκρατεί τη θέση εξόδου, και 3. μια μεταβλητή Length, τύπου ακέραιος, που συγκρατεί τo μέγεθος της ουράς. Length ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-14
15 Αναπαράσταση Ουράς Για λόγους χώρου μνήμης θα πραγματοποιήσουμε την ουρά με μια κυκλική διάταξη των λέξεων της μνήμης. Δηλαδή θα θεωρούμε ότι η περιοχήμνήμηςδεναρχίζειμετηλέξηα[0] και τελειώνει με τη λέξη Α[n-1], αλλά ότι μετά την Α[n-1] ακολουθεί η Α[0]. A[n-1] A[n-2] A[0] A[1]... Έτσι μετά από μια ακολουθία εισαγωγών και εξαγωγών η ουρά μας πιθανόν να έχει την πιο κάτω μορφή όπου θεωρούμε ότι η αρχή της ουράς βρίσκεται στη θέση k και το τέλος της ουράς στη θέση 4. k ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-15
16 Αναπαράσταση Ουράς Ο τύπος δεδομένων που χρειάζεται για τη δομή είναι: typedef struct Queue{ type list[size]; int front; int Length; } queue Yλοποίηση πράξεων: MakeEmpty(queue *Q){ (*Q).Length = (*Q).front = 0; } int IsEmpty(queue *Q){ return ((*Q).Length == 0); } ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-16
17 Αναπαράσταση Ουράς Enqueue(type x, queue *Q){ if ((*Q).Length < size) (*Q).list[(*Q).front (*Q).Length] = x; (*Q).Length++; } Dequeue(queue *Q){ if (!IsEmpty (Q)) (*Q).Length--; (*Q).front = (*Q).front 1; } type Top(queue *Q){ if (!IsEmpty(Q) return (*Q).list[(*Q).front]; } Γράφουμε a b για (a + b)mod size και a b για (a b)mod size ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-17
18 Αναπαράσταση Στοίβας 3. Παράσταση Στοίβας σε Συνδετική Μνήμη Για την παράσταση μιας στοίβας με στοιχεία α 1, α 2,..., α n χρησιμοποιούμε μια συνδεδεμένη λίστα από κόμβους. Κάθε κόμβος αποτελείται από ένα στοιχείο (στοιχεία της στοίβας) και από ένα δείκτη (προς τον επόμενο κόμβο της στοίβας). Η κορυφήτης στοίβας είναι ο πρώτος κόμβος της λίστας, Χρησιμοποιούμε μια μεταβλητή για να φυλάγουμε στοιχεία σχετικά με τη στοίβα π.χ. μέγεθος και δείκτη προς την κορυφή της στοίβας. 3 ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-18
19 Αναπαράσταση Στοίβας Συνεπώς απαιτούνται οι παρακάτω δηλώσεις κόμβων: typedef struct node { type data; struct node *next; } NODE; typedef struct stack { NODE *top; int size; } STACK; Υπολείπεται η υλοποίηση των βασικών πράξεων στοίβας για αναπαράσταση με συνδεδεμένες λίστες. Βασικό ζητούμενο: όλες οι πράξεις να εκτελούνται σε χρόνο Ο(1). ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-19
20 Υλοποίηση πράξεων: Αναπαράσταση Στοίβας int IsEmptyStack(STACK *S) return ((*S).size == 0) Pop(STACK *S) if ((*S).size) > 0) p = (*S).top; (*S).top = (*p).next; free(p); (*S).size--; Push(STACK *S, type x) p = (NODE *)malloc(sizeof(node)); (*p).data = x; (*p).next =(*S).top; (*S).top = p; (*S).size ++; ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-20
21 Αναπαράσταση Ουράς 4. Παράσταση Ουράς σε Συνδετική Μνήμη Όπως και στην περίπτωση της στοίβας, κάθε κόμβος αποτελείται από ένα στοιχείο και ένα δείκτη (που δείχνει προς τον επόμενο κόμβο). Σε αυτή την περίπτωση χρησιμοποιούμε δύο δείκτες για υλοποίηση μιας ουράς, ο κάθε ένας από τους οποίους δείχνει στο κάθε ένα από τα προσιτά άκρα της ουράς. struct queue { int size node *front; node *back; } size front back ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 3-21
Βασικές οµές εδοµένων
Βασικές οµές εδοµένων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Αφηρηµένοι Τύποι εδοµένων Οι ΑΤ Στοίβα και Ουρά Υλοποίηση των ΑΤ Στοίβα και Ουρά µε ιαδοχική και υναµική Χορήγηση Μνήµης
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 8: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Στατική Δέσμευση
Διάλεξη 9: Αφηρημένοι Τύποι Δεδομένων. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 9: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) -Οι ΑΤΔ Στοίβα και Ουρά -Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Στατική
Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων
Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά ΕΠΛ231 Δομές Δεδομένων
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 2 Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα
Διάλεξη 11: Φροντιστήριο για Στοίβες. Διδάσκων: Παναγιώτης Ανδρέου. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ.
Διάλεξη 11: Φροντιστήριο για Στοίβες Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 1 ΑΤΔ Στοίβα- Πράξεις Θυμηθείτε τον ΑΤΔ στοίβα με τις πράξεις του: MakeEmptyStack()
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 9: Στοίβες:Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθεί η χρήση στοιβών στις εξής εφαρμογές: Υλοποίηση Στοιβών με Δυναμική Δέσμευση Μνήμης Εφαρμογή Στοιβών 1: Αναδρομικές συναρτήσεις Εφαρμογή
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 10: Στοίβες:Υλοποίηση& Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση Στοιβών με Δυναμική Δέσμευση Μνήμης - Εφαρμογή Στοιβών 1: Αναδρομικές συναρτήσεις - Εφαρμογή
Στοίβες με Δυναμική Δέσμευση Μνήμης
ΕΠΛ 231 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ 10/02/10 Παύλος Αντωνίου Στοίβες με Δυναμική Δέσμευση Μνήμης Στοίβα: Στοίβα είναι μια λίστα που έχει ένα επιπλέον περιορισμό. Ο περιορισμός είναι ότι οι εισαγωγές
Ενότητα 2 Στοίβες Ουρές - Λίστες. ΗΥ240 - Παναγιώτα Φατούρου 1
Ενότητα 2 Στοίβες Ουρές - Λίστες ΗΥ240 - Παναγιώτα Φατούρου 1 Λίστες Γραµµική λίστα (linear list) είναι ένα σύνολο από n 0 στοιχεία ή κόµβους L 1,..., L n, τα οποία είναι διατεταγµένα µε γραµµική σειρά.
Στοίβες Ουρές - Λίστες
Ενότητα 3 Στοίβες Ουρές - Λίστες ΗΥ240 - Παναγιώτα Φατούρου 1 Λίστες Γραµµική λίστα (linear list) είναι ένα σύνολο από n 0 στοιχεία ή κόµβους L 1,..., L n, τα οποία είναι διατεταγµένα µε γραµµική σειρά.
Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:
Υλοποίηση Λιστών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμές Απλά και Διπλά Συνδεδεμένες Λίστες Κυκλικές Απλά και Διπλά Συνδεδεμένες Λίστες Τεχνικές Μείωσης Μνήμης ΕΠΛ 231 Δομές
Ενότητα 2 Στοίβες Ουρές - Λίστες
Ενότητα 2 Στοίβες Ουρές - Λίστες ΗΥ240 - Παναγιώτα Φατούρου 1 Λίστες Γραµµική λίστα (linear list) είναι ένα σύνολο από έστω n 0 στοιχεία ή κόµβους, e 1,..., e n, τα οποία είναι διατεταγµένα µε γραµµική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 2η: Στοίβες Ουρές - Λίστες Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 2η: Στοίβες Ουρές - Λίστες Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 2 Στοίβες Ουρές - Λίστες ΗΥ240 - Παναγιώτα Φατούρου 2 Λίστες
IsEmptyList(L): επιστρέφει true αν L = < >, false
ΕΝΟΤΗΤΑ 3 ΓΡΑΜΜΙΚΕΣ ΛΙΣΤΕΣ Ορισµός Γραµµικές Λίστες Γραµµική λίστα (linear list) είναι ένα σύνολο από n 0 κόµβους L 0, L 1,..., L n-1, όπου το στοιχείο L 0 είναι το πρώτο στοιχείο (ή ο πρώτος κόµβος),
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Άσκηση 1 Ο ζητούμενος ΑΤΔ μπορεί να υλοποιηθεί ως μια ακολουθία από στοιχεία τύπου window συνοδευόμενη από τις πράξεις: MakeNewWindow(L,w) Destroy(L,w) SwitchTo(L,w)
Ενότητα 2 Στοίβες Ουρές - Λίστες
Ενότητα 2 Στοίβες Ουρές - Λίστες ΗΥ240 - Παναγιώτα Φατούρου 1 Λίστες Γραµµική λίστα (linear list) είναι ένα σύνολο από n 0 στοιχεία ή κόµβους e 1,..., e n, τα οποία είναι διατεταγµένα µε γραµµική σειρά.
υναµικές οµές εδοµένων
υναµικές οµές εδοµένων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: υναµικές οµές εδοµένων Γενικά υναµική έσµευση Μνήµης οµή τύπου structure αυτοαναφορικές δοµές Η δήλωση typedef στη C Αναπαράσταση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ
Δομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Στοίβες Ουρές Στοίβες: Βασικές Έννοιες. Ουρές: Βασικές Έννοιες. Βασικές Λειτουργίες. Παραδείγματα. Στοίβες Δομή τύπου LIFO: Last In - First Out (τελευταία εισαγωγή πρώτη
Ενότητα 2: Στοίβες Ουρές - Λίστες Ασκήσεις και Λύσεις
Ενότητα 2: Στοίβες Ουρές - Λίστες Ασκήσεις και Λύσεις Άσκηση 1 Έστω ότι µια βιβλιοθήκη σας παρέχει πρόσβαση σε στοίβες ακεραίων. Η βιβλιοθήκη σας επιτρέπει να ορίσετε µια στοίβα και να καλέσετε τις 5 βασικές
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 10: Λίστες Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εύρεση, εισαγωγή, διαγραφή) Σύγκριση Συνδεδεμένων Λιστών με Πίνακες
ΕΝΟΤΗΤΑ 3 ΓΡΑΜΜΙΚΕΣ ΛΙΣΤΕΣ
ΕΝΟΤΗΤΑ 3 ΓΡΑΜΜΙΚΕΣ ΛΙΣΤΕΣ 1 Αφηρηµ. τύπος δεδοµένων Γραµµική Λίστα Γραµµική λίστα (linear list) ένα σύνολο από n 0 στοιχεία L 0, L 1,..., L n-1 : L 0 είναι το 1ο στοιχείο, 0 < k < n-1 : το στοιχείο L
Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται
Ενότητα 2: Στοίβες Ουρές - Λίστες Ασκήσεις και Λύσεις
Ενότητα 2: Στοίβες Ουρές - Λίστες Ασκήσεις και Λύσεις Άσκηση 1 Έστω ότι μια βιβλιοθήκη σας παρέχει πρόσβαση σε στοίβες ακεραίων. Η βιβλιοθήκη σας επιτρέπει να ορίσετε μια στοίβα και να καλέσετε τις 5 βασικές
Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές)
Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 10-1 Περιεχόμενο Διάλεξης
Δηάιεμε 8: Αθεξεκέλνη Τύπνη Δεδνκέλσλ
Δηάιεμε 8: Αθεξεκέλνη Τύπνη Δεδνκέλσλ Σηελ ελόηεηα απηή ζα κειεηεζνύλ ηα εμήο επηκέξνπο ζέκαηα: Αθηπημένοι Τύποι Δεδομένυν (ΑΤΔ) Οι ΑΤΔ Σηοίβα και Οςπά Υλοποίηζη ηυν ΑΤΔ Σηοίβα και Οςπά με Σηαηική Δέζμεςζη
ιαφάνειες παρουσίασης #11
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης
Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εύρεση, εισαγωγή, διαγραφή) - Σύγκριση Συνδεδεμένων Λιστών με Πίνακες
Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές
Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 2 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 2: Στοίβες Ουρές - Λίστες Ασκήσεις και Λύσεις Άσκηση 1 Έστω ότι µια
Διορθώσεις σελ
Διορθώσεις σελ. 73-74 # Τώρα ο άνθρωπος σκέφτεται έναν αριθμό από 1 έως 1000 Ν = 1000 print Σκέψου έναν αριθμό από το 1 έως το, Ν guesses = 0 found = False first = 1 last = N while not found and guesses
Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Δομές Δεδομένων & Αλγόριθμοι
Ουρές Ουρές Περίληψη Η ΟυράΑΔΤ Υλοποίηση με κυκλικό πίνακα Αυξανόμενη Ουρά βασισμένη σε πίνακα Interface ουράς στην C++ Η Ουρά ADT Η ΑΔΤ Ουρά αποθηκεύει αυθαίρετα αντικείμενα Οι εισαγωγές και διαγραφές
Φροντιστήριο 4 Σκελετοί Λύσεων
Φροντιστήριο 4 Σκελετοί Λύσεων Άσκηση 1 Υποθέτουμε πως οι λίστες είναι υλοποιημένες χρησιμοποιώντας τις πιο κάτω δομές. typedef struct Node{ type data; struct node *next; node; node *top; list; Υλοποιούμε
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 3. Στοίβες & Ουρές 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 19/10/2017 Ανακεφαλαίωση:
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 3. Στοίβες & Ουρές 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 4/11/2016 Ανακεφαλαίωση:
Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα
Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Λίστες -Υλοποίηση ταξινομημένης λίστας με δυναμική δέσμευση μνήμης ΕΠΛ035
ΠΛΗ111. Ανοιξη Μάθηµα 5 ο. Ουρά. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ οµηµένος Προγραµµατισµός Ανοιξη 5 Μάθηµα 5 ο Ουρά Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ανασκόπηση Αφηρηµένος Τύπος εδοµένων Ουρά Υλοποίηση µε Κυκλικό Πίνακα Υλοποίηση
υναµικές οµές εδοµένων (συν.) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα:
υναµικές οµές εδοµένων (συν.) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ταξινοµηµένες Λίστες µε δυναµική δέσµευση µνήµης Αναδροµκές συναρτήσεις ΕΠΛ 12 Αρχές Προγραµµατισµού ΙΙ 1 Λίστες
2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ
2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ Προκειμένου να επιτευχθεί η «ακριβής περιγραφή» ενός αλγορίθμου, χρησιμοποιείται κάποια γλώσσα που μπορεί να περιγράφει σειρές ενεργειών με τρόπο αυστηρό,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών Ακαδηµαϊκό έτος 2010 2011, Χειµερινό εξάµηνο Ασκήσεις Επανάληψης Ενδιάµεσης
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 26: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας -Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΟ 3ο: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΜΕΡΟΣ 2 ο : ΣΤΟΙΒΑ & ΟΥΡΑ ΙΣΤΟΣΕΛΙΔΑ ΜΑΘΗΜΑΤΟΣ: http://eclass.sch.gr/courses/el594100/ ΣΤΟΙΒΑ 2 Μια στοίβα
Συλλογές, Στοίβες και Ουρές
Συλλογές, Στοίβες και Ουρές Σε πολλές εφαρμογές μας αρκεί η αναπαράσταση ενός δυναμικού συνόλου με μια δομή δεδομένων η οποία δεν υποστηρίζει την αναζήτηση οποιουδήποτε στοιχείου. Συλλογή (bag) : Επιστρέφει
Oι βασικές πράξεις (λειτουργίες) που ορίζονται για τον τύπο στοίβα αναφέρονται παρακάτω:
3 ΣTOIBEΣ KAI OYPEΣ 3.1 ΣΤΟΙΒΕΣ Στοίβα (stack) είναι µία λίστα στην οποία νέα στοιχεία µπορούν να προστεθούν και να αφαιρεθούν µόνο από τη µία άκρη της (κορυφή της στοίβας). Συχνά µία στοίβα αναφέρεται
Φροντιστήριο 4 Σκελετοί Λύσεων
Φροντιστήριο 4 Σκελετοί Λύσεων 1. Ο ζητούμενος ΑΤΔ μπορεί να υλοποιηθεί ως εξής: (i) Διαδοχική χορήγηση μνήμης Υποθέτουμε ότι οι λίστες μας έχουν μέγιστο μέγεθος max και χρησιμοποιούμε τη δομή type elements[max];
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Άσκηση 1 Υπάρχουν διάφοροι τρόποι για να υλοποιήσουμε πράξεις ουράς για την προτεινόμενη εγγραφή. To πρόβλημα που δημιουργείται με οποιαδήποτε από αυτές είναι ότι είναι
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 6: Διαχείριση Μνήμης & Δυναμικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυναμικές Δομές Δεδομένων Γενικά Δυναμική Δέσμευση/Αποδέσμευση Μνήμης Δομή τύπου structure
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ Ουρές Προτεραιότητας (Priority Queues) Θεωρούµε ότι τα προς αποθήκευση στοιχεία έχουν κάποια διάταξη (καθένα έχει µια προτεραιότητα). Τα προς αποθήκευση στοιχεία είναι
Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -
ΠΛΗ111. Ανοιξη Μάθηµα 4 ο. Στοίβα. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 4 ο Στοίβα Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ανασκόπηση Αφηρηµένος Τύπος εδοµένων Στοίβα Υλοποίηση µε Πίνακα Υλοποίηση
Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση
Στοίβες - Ουρές. Στοίβα (stack) Γιάννης Θεοδωρίδης, Νίκος Πελέκης, Άγγελος Πικράκης Τµήµα Πληροφορικής
Στοίβες - Ουρές Γιάννης Θεοδωρίδης, Νίκος Πελέκης, Άγγελος Πικράκης Τµήµα Πληροφορικής οµές εδοµένων 1 Στοίβα (stack) οµή τύπουlifo: Last In - First Out (τελευταία εισαγωγή πρώτη εξαγωγή) Περιορισµένος
Δομές Δεδομένων & Αλγόριθμοι
Λίστες Λίστες - Απλά Συνδεδεμένες Λίστες - Διπλά Συνδεδεμένες Λίστες Είδη Γραμμικών Λιστών Σειριακή Λίστα Καταλαμβάνει συνεχόμενες θέσεις κύριας μνήμης Συνδεδεμένη Λίστα Οι κόμβοι βρίσκονται σε απομακρυσμένες
Δομές Δεδομένων. Ενότητα 6: Εφαρμογή Συνδεδεμένων Λιστών: Αλφαβητικό ευρετήριο κειμένου- Υλοποίηση ΑΤΔ Στοίβα και Ουρά με δείκτες
Ενότητα 6: Εφαρμογή Συνδεδεμένων Λιστών: Αλφαβητικό ευρετήριο κειμένου- Υλοποίηση ΑΤΔ Στοίβα και Ουρά με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον υποδειγματική διδασκαλία Κεφ. 3 Δομές Δεδομένων & αλγόριθμοι
Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον υποδειγματική διδασκαλία Κεφ. 3 Δομές Δεδομένων & αλγόριθμοι Αραποστάθης Μάριος Καθηγητής Πληροφορικής Πειραματικού Λυκείου Βαρβακείου http://users.sch.gr/mariosarapostathis
Επιλογές και Κριτήρια Σχεδιασμού ΑΤΔ Ανεξαρτήτως από Γλώσσα Υλοποίησης 24/4/2012
Επιλογές και Κριτήρια Σχεδιασμού ΑΤΔ Ανεξαρτήτως από Γλώσσα Υλοποίησης 24/4/2012 Κύκλος (Ζωής) Λογισμικού (ΑΤΔ) Γενικά Ορισμός ΑΤΔ (Προδιαγραφές) Οργάνωση Δεδομένων Τι κάνει Υλοποίηση Σχεδιασμός (ανεξάρτητος
Διάλεξη 08: Λίστες ΙΙ Κυκλικές Λίστες
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 08: Λίστες ΙΙ Κυκλικές Λίστες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Κυκλικές Απλά Συνδεδεμένες Λίστες - Κυκλικές Διπλά Συνδεδεμένες
Προγραμματισμός Ι. Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ακ. Έτος Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Προγραμματισμός Ι Δομές Δεδομένων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2009-2010 Δομές Δεδομένων Μια δομή δεδομένων είναι μια συλλογή δεδομένων με κάποιες
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Υλοποίηση Λειτουργιών Στοίβας Απλά(1/2)
Υλοποίηση Λειτουργιών Στοίβας Απλά(1/2) void MakeEmptyStack(void) Length = 0; for (i=0; i < N; i++) Infos[i] = ; /* initialize */ int IsEmptyStack(void) if (Length == 0) return 1; return 0; info Top(void)
Δομές Δεδομένων. Ενότητα 2: Στοίβες Εισαγωγή-Υλοποίηση ΑΤΔ Στοίβα με Πίνακα-Εφαρμογή Στοίβας: Αντίστροφη Πολωνική Γραφή. Καθηγήτρια Μαρία Σατρατζέμη
Ενότητα 2: Στοίβες Εισαγωγή-Υλοποίηση ΑΤΔ Στοίβα με Πίνακα-Εφαρμογή Στοίβας: Αντίστροφη Πολωνική Γραφή Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Άσκηση 1 Ξεκινούμε με τον αριθμό μας, n, και αρχίζουμε να τον διαιρούμε με ακέραιους ξεκινώντας με το 2 και προχωρώντας στο 3, 4, 5,. Όταν εντοπίσουμε πως ένας αριθμός
ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ
ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ Τα δεδομένα (data) είναι η αφαιρετική αναπαράσταση της πραγματικότητας και συνεπώς μία απλοποιημένη όψη της. Η συλλογή των ακατέργαστων δεδομένων και ο συσχετισμός
Διάλεξη 08: Λίστες ΙΙ Κυκλικές Λίστες
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 0: Λίστες ΙΙ Κυκλικές Λίστες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Κυκλικές Απλά Συνδεδεμένες Λίστες - Κυκλικές Διπλά Συνδεδεμένες
Σύνοψη Προηγούμενου. Λίστες (Lists) Συνδεδεμένες Λίστες: Εισαγωγή (1/2) Συνδεδεμένες Λίστες. Ορέστης Τελέλης
Σύνοψη Προηγούμενου Λίστες (Lists) Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς Στοίβες (Stacks) : στην κορυφή της στοίβας ( ) από την κορυφή της στοίβας ( ) Ουρές
Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής
Αναδροµή Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής 1 Αναδροµή Βασική έννοια στα Μαθηµατικά και στην Πληροφορική.
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Να γίνει περιγραφή της δομής δεδομένων Στοίβα. Στη δομή δεδομένων στοίβα τα δεδομένα στοιβάζονται το ένα πάνω στο άλλο. Σχηματικά οι λεπτομέρειες μιας δομής δεδομένων στοίβας μπορούν
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί
Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες
Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Απλές Λίστες CS100, 2015-2016 1 / 10 Δομές δεδομένων Ορισμός:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 35: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών Ακαδηµαϊκό έτος 21 211, Χειµερινό εξάµηνο Όλες οι ασκήσεις να δακτυλογραφηθούν
ιαφάνειες παρουσίασης #6 (α)
ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ http://www.softlab.ntua.gr/~nickie/courses/progtech/ ιδάσκοντες: Γιάννης Μαΐστρος (maistros@cs.ntua.gr) Στάθης Ζάχος (zachos@cs.ntua.gr) (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης
ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 4-1
Εφαρμογές στοιβών Στην ενότητα αυτή θα μελετηθεί η χρήση στοιβών στις εξής εφαρμογές: Αναδρομικές συναρτήσεις Ισοζυγισμός Παρενθέσεων Αντίστροφος Πολωνικός Συμβολισμός ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι
Οι δομές δεδομένων στοίβα και ουρά
Καθηγητής Πληροφορικής Απαγορεύεται η αναπαραγωγή των σημειώσεων χωρίς αναφορά στην πηγή Βίντεο: https://youtu.be/j8petzztqty Οι δομές δεδομένων στοίβα και ουρά Εισαγωγή Στα πλαίσια του μαθήματος της Ανάπτυξης
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ενότητα 7: Αφαίρεση δεδόμενων Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 21: Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Εισαγωγή σε δενδρικές δομές δεδομένων, -Ορισμοί και πράξεις - Αναπαράσταση δενδρικών δομών δεδομένων
Δομές Δεδομένων. Ενότητα 3: Ουρές Εισαγωγή-Υλοποίηση ΑΤΔ Ουρά με πίνακα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής.
Ενότητα 3: Ουρές Εισαγωγή-Υλοποίηση ΑΤΔ Ουρά με πίνακα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
ιαφάνειες παρουσίασης #5 (β)
ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ http://www.softlab.ntua.gr/~nickie/courses/progtech/ ιδάσκοντες: Γιάννης Μαΐστρος (maistros@cs.ntua.gr) Στάθης Ζάχος (zachos@cs.ntua.gr) (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης
Τύποι Δεδομένων και Απλές Δομές Δεδομένων. Παύλος Εφραιμίδης V1.0 ( )
Τύποι Δεδομένων και Απλές Δομές Δεδομένων Παύλος Εφραιμίδης V1.0 (2014-01-13) Απλές Δομές Δεδομένων Στην ενότητα αυτή θα γνωρίσουμε ορισμένες απλές Δομές Δεδομένων και θα τις χρησιμοποιήσουμε για την αποδοτική
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο I. Τι γνωρίζετε για τη στοίβα και τι για την ουρά; (Μονάδες 7) Στοίβα (Stack) είναι μια δομή στην οποία
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 7: Διαχείριση Μνήμης,Δυναμικές Δομές Δεδομένων, Αναδρομή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: - Δυναμικές Δομές Δεδομένων Γενικά - Δυναμική Δέσμευση/Αποδέσμευση
Δομές Δεδομένων & Ανάλυση Αλγορίθμων. 3ο Εξάμηνο. Ουρά (Queue) Υλοποίηση της με τη βοήθεια πίνακα. http://aetos.it.teithe.gr/~demos/teaching_gr.
Δομές Δεδομένων & Ανάλυση Αλγορίθμων 3ο Εξάμηνο Ουρά (Queue) Υλοποίηση της με τη βοήθεια πίνακα http://aetos.it.teithe.gr/~demos/teaching_gr.html Δημοσθένης Σταμάτης Τμήμα Μηχανικών Πληροφορικής ATEI ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ. Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής
Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο Υλοποίηση Στοίβας και Ουράς µε Συνδεδεµένες Λίστες http://aetos.it.teithe.gr/~demos/teaching_gr.html Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ATEI ΘΕΣΣΑΛΟΝΙΚΗΣ
ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων
ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δοµών δεδοµένων 8.4 Μια σύντοµη µελέτη περίπτωσης 8.5 Προσαρµοσµένοι τύποι δεδοµένων 1 Βασικές δοµές
Διάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Τοπολογική Ταξινόμηση - Εφαρμογές, Παραδείγματα, Αλγόριθμοι
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου
Δομές Δεδομένων Ενότητα 4
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Ουρές Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες)
Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 15-1 Περιεχόμενο
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,
Διάλεξη 08: ΛίστεςΙΙ Κυκλικές Λίστες. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 0: ΛίστεςΙΙ Κυκλικές Λίστες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Κυκλικές Απλά Συνδεδεμένες Λίστες - Κυκλικές Διπλά Συνδεδεμένες Λίστες - Τεχνικές Μείωσης Χώρου Διδάσκων:
Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα
Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διάλεξη 17: Επανάληψη για την ενδιάμεση εξέταση. Διδάσκων: Παναγιώτης Ανδρέου. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ.
Διάλεξη 7: Επανάληψη για την ενδιάμεση εξέταση Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. ΑΠΟΡΙΕΣ ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ.
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας (Priority
Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ
Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΔΕΔΟΜΕΝΑ ΑΛΓΟΡΙΘΜΟΙ -ΠΛΗΡΟΦΟΡΙΑ: Δεδομένα: Αναπαράσταση της Πραγματικότητας Μπορούν να γίνουν αντιληπτά με μια από τις αισθήσεις μας Πληροφορία: Προκύπτει από
ΛΙΣΤΕΣ. Ορισμός ΑΤΔ Λίστα ΑΤΔ Ακολουθιακή Λίστα Διαχείριση Δεικτών και Λιστών στη C ΑΤΔ Συνδεδεμένη Λίστα. Εφαρμογές και Χρήση Λιστών
ΛΙΣΤΕΣ Ορισμός ΑΤΔ Λίστα ΑΤΔ Ακολουθιακή Λίστα Διαχείριση Δεικτών και Λιστών στη C ΑΤΔ Συνδεδεμένη Λίστα Υλοποίηση με δείκτες (pointers) Υλοποίηση με πίνακα Εφαρμογές και Χρήση Λιστών Λίστες (Lists) Δεδομένα
3 ΟΥ και 9 ΟΥ ΚΕΦΑΛΑΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 3 ΟΥ και 9 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΝΑΚΩΝ ΣΤΟΙΒΑΣ ΚΑΙ ΟΥΡΑΣ Α ΜΕΡΟΣ ΘΕΩΡΙΑ ΓΙΑ ΠΙΝΑΚΕΣ 3.1