Frobenius integrable decompositions for PDEs

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Frobenius integrable decompositions for PDEs"

Transcript

1 Frobenius integrable decompositions for PDEs GAO Liang Department of Applied Mathematics, School of Science, Northwestern Polytechnical University Xi an, Shaanxi 71019, P.R. China Joint work with Wen-Xiu Ma and Wei Xu

2 Outline 1. Introduction. Specific PDEs possessing Frobenius integrable decompositions (FIDs) 3. Conclusions

3 1. Introduction Many PDEs exhibiting soliton phenomena appeared in many science subjects fluid physics, solid physics, elementary particle physics, biological physics, superconductor physics, It is a quite fascinating research topic that how to solve such PDEs to obtain interesting solutions including solitons, which attracts much attention of mathematicians, physicists and dynamicists.

4 In the past several decades, there have been many efficient methods for constructing exact solutions to nonlinear PDEs. Though the solving methods are diverse, appropriate reductions similarity reductions, symmetry constraints, travelling wave reductions To reduce given PDEs to simpler PDEs and/or integrable ODEs.

5 W.X. Ma, H.Y. Wu, J.S. He, Partial differential equations possessing Frobenius integrable decompositions, Physics Letters A, 364 (007) 9-3. They presented FIDs for two classes of nonlinear evolution equations (NEEs) with logarithmic derivative Bäcklund transformations in soliton theory. u ψ = (ln φ) x =, φ u λφ ψ = (ln φ) xx =. φ The discussed NEEs are transformed into systems of Frobenius integrable ODEs with cubic nonlinearity.

6 F.C. You, T.C. Xia, J. Zhang, Frobenius integrable decompositions for two classes of nonlinear evolution equations with variable coefficients, Modern Physics Letters B, 3 (1) (009) They obtained two classes of PDEs with variable coefficients possessing FIDs, including the KdV equation the potential KdV equation the Boussinesq equation the generalized BBM equation,

7 Puu (,, u, u, ) = 0 t x xt What is FIDs? u = v( Φ ) = v( Φ( x, t)), Φ =Α( Φ), Φ =Β( Φ), x t Then we say that the equation possesses a FID.

8 FIDs generalize compatible time-space decompositions requiring Hamiltonian structures, which aim to guarantee the Liouville integrability ([1, ]). [1] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, [] W.X. Ma, in: A. Scott (Ed.), Encyclopedia of Nonlinear Science, Taylor & Francis, New York, 005, pp Through FIDs, a PDE problem can be transformed into two associated ODE problems. Thus, the existence of solutions can be guaranteed easily by the theory of ODEs.

9 Our work Present two classes of PDEs of specific type possessing FIDs by introducing some general ansatzes on FIDs, motivated by the works about FIDs by Ma and You et al. Two kinds of functions for Bäcklund transformations are taken in our constructive computation algorithm, and the associated Frobenius integrable ODEs possess higher-order nonlinearity.

10 . Specific PDEs possessing FIDs Ruu (,, u, u, u, u, u, u, u, u, u, ) = 0. x xx xxx xxxx 5x 7x 9x t tt xxt Many interesting wave equations belong to this class of PDEs, the KdV, the potential KdV, the generalized seventh-order KdV, the Burgers, the spatially periodic third-order dispersive PDE, the b-equation,...

11 Based on the symmetry constrains theory [1-4], [1] W.X. Ma, W. Strampp, Physics Letters A, 185 (1994) 77. [] W.X. Ma, Journal of the Physical Society of Japan, 64 (1995) [3] W.X. Ma, Z.X. Zhou, Journal of Mathematical Physics, 4 (001) [4] Y.B. Zeng, W.X. Ma, Journal of Mathematical Physics, 40 (1999) 656. we consider the following case

12 T T Φ= ( φψ, ) = ( φ( xt, ), ψ( xt, )), which satisfies two Frobenius integrable systems: a real parameter φ = ψ, ψ = λφ, x x undetermined polynomials φ = θ ( φ, ψ), ψ = θ ( φ, ψ). t 1 t It is easy to see that the equation can be generated from the Schrödinger spectral problem with zero potential.

13 Then, we have the following mixed derivatives for the considered FIDs: and φxt = ψt = θ( φ, ψ), φtx = θ1, φψ + λθ1, ψφ, ψ xt = λφt = λθ1( φ, ψ ), ψ tx = θ, φψ + λθ, ψφ.

14 Thus, we get and accordingly, θ ( φψ, ) = θ ψ+ λθ φ, 1, φ 1, ψ λθ ( φ, ψ) = θ ψ + λθ φψ + λ θ φ + λ( θ φ+ θ ψ). 1 1, φφ 1, φψ 1, ψψ 1, φ 1, ψ the only condition on θ 1

15 To search for θ1 which satisfies λθ ( φ, ψ) = θ ψ + λθ φψ + λ θ φ + λ( θ φ + θ ψ). 1 1, φφ 1, φψ 1, ψψ 1, φ 1, ψ Take the following ansatze natural numbers θ m1 m i j 1 = bi, jφψ i= 0 j= 0, arbitrary constants

16 when m1 = m = 7 θ = λ b φ λ b φ ψ + 3λ b φ ψ + 3λ b φ ψ 3λb φ ψ 3λb φ ψ ,6 0,7 1,6 0,7 1,6 0,7 + b φψ + b ψ + λ b φ + λ b φ ψ λb φ ψ λb φ ψ + b φψ ,6 0,7 1,4 0,5 1,4 0,5 1,4 + b ψ λb φ λb φ ψ + b φψ + b ψ + b φ+ b ψ ,5 1, 0,3 1, 0,3 1,0 0,1 θ = λ( λ b φ + 6λ b φ ψ + 9λ b φ ψ 1λb φ ψ 15λb φ ψ + 6b φψ ,7 1,6 0,7 1,6 0,7 1,6 + 7b ψ + λ b φ 4λb φ ψ 6λb φ ψ + 4b φψ + 5b ψ λb φ ,7 0,5 1,4 0,5 1,4 0,5 0,3 + b φψ + 3 b ψ + b ) φ + ( 7λ b φ 6λ b φ ψ + 15λ b φ ψ , 0,3 0,1 1,6 0,7 1,6 + 1λ b φψ 9λb φψ 6λb φψ + b ψ + 5λ b φ , 7 1,6 0,7 1,6 1,4 + 4λ b φ ψ 6λb φ ψ 4λb φψ + b ψ ,5 1,4 0,5 1,4 3λb φ λb φψ + b ψ + b ) ψ. 1, 0,3 1, 1,0

17 On the other hand, we consider the following specific type of the polynomial R Ruu (,, u, u, u, u, u, u, u, u, u, ) x xx xxx xxxx 5x 7x 9x t tt xxt = d u+ d u + d u + d u + d u + d u + d uu + d uu + d uu 0,0 0,1 x 0, xx 0,3 xxx 0,4 xxxx 1,0 1,1 x 1, xx 1,3 xxx + d uu + d u + d uu + d uu + d uu + d u + d u u + d 1,4 xxxx,0 x,1 x xx, x xxx,3 x xxxx 3,0 xx 3,1 xx xxx 3, u u + d u + d u u + d u + e u + eu + e u xx xxxx 4,0 xxx 4,1 xxx xxxx 5,0 xxxx 0 5x 1 7x 9x + euu + euu + euu + fuu + fuu + fuu + fu 3 3 5x 4 7x 5 9x 0 x 1 xxx 5x 3 x + fuu + fuuu + gu+ gu + gu + gu 3 4 x 5 x xx 0 t 1 tt xxt 3 xxt.

18 Theorem (a) If we take a Bäcklund transformation ψ u = (ln φ) x = φ from the Frobenius integrable systems φ = ψ, ψ = λφ, x x φ = θ ( φ, ψ), ψ = θ ( φ, ψ), t 1 t to the PDE Puu (,, u, u, ) = 0, t x xt

19 θ = λ b φ + 3λ b φ ψ 3λb φ ψ + b φψ + λ b φ λb φ ψ ,6 1,6 1,6 1,6 1,4 1,4 + b φψ λb φ + b φψ + b φ + b ψ, 4 3 1,4 1, 1, 1,0 0,1 θ = λ(6λ b φ ψ 1λb φ ψ + 6b φψ 4λb φ ψ + 4b φψ + b φψ + b ) φ ,6 1,6 1,6 1,4 1,4 1, 0,1 + (15λ b φψ 7λ b φ 9λb φψ + b ψ + 5λ b φ 6λb φψ ,6 1,6 1,6 1,6 1,4 1,4 + b ψ 3 λb φ + b ψ + b ) ψ, 4 1,4 1, 1, 1,0

20 R = (4λ e + 8λd 40λe + 4d d 6 d ) u u + f u u + f u u + f u 3 3 4,3 3 0,4,1 1,3 x 1 xxx 5 x 3 x + d uu + d uu + (3d 40λ f 60e + d 3 f 1/ f + 1 d ) uu u 1,4 xxxx 1,3 xxx, 0 3, ,4 x xx + d uu + e uu + e uu + 630e u 35e u u + d u u 1, xx 3 5x 4 7x xxxx 4 xxx xxxx,3 x xxxx + d u u + d u + d u u (56λ e + 64λ e + 16λ f + 16λ e 4 3 3, x xxx 3,0 xx,1 x xx λ f 8λ d + 4λb g + 4λd λd + b g + d ) u u / λ 1 1,4 0,1 0,3 1, 0,1 0 0,1 + (4λ e 88λ e 8λ d + b g + λd + λd 3 3 4,3 0,1 1,1 16λd0,4 1,3 + d ) uu + (105e 3/4d + 5/f 3/4 b g ) u xx u xxxx 0, x 1 xxt + gu 3 xxt. 4,0 0,1 3 + d u (140λ e + d + 10 e ) u u + d u 0,4 xxxx 4,3 3 xx xxx 0,3 xxx + d u + e u + eu + e u + d u (4λ c g 3 0, xx 9x 1 7x 0 5x 0,1 x 0, λ e + 4λ d 7λ e + 16λ e ,0 1 0 λ d + λ f λb g λd, 3 0,1 0,3 + b g + d ) u / λ + g u + g u + gu 0,1 0 0,1 x 0 t 1 tt x + d 4,0 u xxx

21 (b) If we take a Bäcklund transformation u = (ln φ) xx = λφ ψ φ θ = λ b φ + 3λ b φ ψ 3λb φ ψ + b φψ + λ b φ λb φ ψ ,6 1,6 1,6 1,6 1,4 1,4 + b φψ λb φ + b φψ + b φ + b ψ, 4 3 1,4 1, 1, 1,0 0,1 θ = λb φψ+ 3λ b φψ 3λb φψ + λb φψ λb φψ ,6 1,6 1,6 1,4 1,4 λb φ ψ + λb φ+ b ψ + b ψ + b ψ + b ψ, , 0,1 1,6 1,4 1, 0,1

22 R = f uu + fuu + fuuu + (44350λ e 35λ d 3584λ e 10λe + 8λ f λ f + λ f 3 4 x 1 xxx 5 x xx 4, e + 1d + 6 d ) u u + (4d 5040e + 56 e ) u u + e uu + e uu + d uu + d uu 0 1,3,1 x 4,1 4 5x 4 7x 3 5x 1,4 xxxx 1,3 xxx + d uu + (40λd 30400λe λe + 30d,3 + 18d3,1 5040e1 + 90e3 3 f1 + 1/ 4 f4 1, xx 4,1 4 3/ f ) u + d u u + d u u + d u u + d u u + d u + d u u + (3λ d x,3 x xxxx,1 x xx 3, xx xxxx 4,1 xxx xxxx 3,0 xx 3,1 xx xxx 3, 16λ d 4λ d + 6b g + λd + 6 d ) u + (6580λ e 64λ d 64λ e 16λ d ,4 3,0 0,1 1 1, 0, 4,1 4,3 3, ,3,1 0,1 0,3 x 1,4 3, 0,4 1, x 1,4 3,0 x xxx 9x 1 7x 0 5x 0,4 xxxx 0,3 xxx 0, xx 0,1 3 3, xxx 16λ d + 403λ e 16λ e + 40λe 4λd 4λd + 1b g + 1 d ) uu + (10λd 4λ d + 30d 3 / d ) u (5 / d + 3 / 4 d ) u u + e u + eu + e u + d u + d u + d u ( b g + 5/4 d ) u 4 3 (4λb g + 16λ d + 4 λd ) u (56λ e + 64λ e + 16λ e 0,1 1 0,4 0, λb0,1g 4 λd0,3 b0,1g0) ux g0ut g1utt guxxt g3uxxt.

23 Take a special reduction as follows: Ruu (,, u, u, u, u, u, u, u, u, u, ) x xx xxx xxxx 5x 7x 9x t tt xxt = d u + d u + d u + d u + d u + d uu + d uu + d uu 0,0 0,1 x 0, xx 0,3 xxx 0,4 xxxx 1,1 x 1, xx 1,3 xxx + d u + d u u + d u u + d u u + d u u + e u + eu,0 x,1 x xx, x xxx,3 x xxxx 3,1 xx xxx 0 5x 1 7x + eu + euu + fu u + fu u + fu u + fu + fuu 3 3 9x 3 5x 0 x 1 xxx 5x 3 x 4 x 5 x xx 0 t 1 tt xxt. + fuuu + gu + gu + gu

24 For the u ψ = (ln φ) x = φ The corresponding results θ1 = λ b1,6φ + 3λ b1,6 φ ψ 3λb1,6φ ψ + b1,6 φψ + λ b1,4φ λb φ ψ + b φψ λb φ + b φψ + b φ + b ψ, ,4 1,4 1, 1, 1,0 0,1 θ = λ (6λ b φ ψ 1λb φ ψ + 6b φψ 4λb φ ψ + 4b φψ + b φψ ,6 1,6 1,6 1,4 1,4 1, + b ) φ+ ( 7λ b φ + 15λ b φ ψ 9λb φ ψ + b ψ + 5λ b φ ,1 1,6 1,6 1,6 1,6 1,4 6λb φ ψ + b ψ 3 λb φ + b ψ + b ) ψ, 4 1,4 1,4 1, 1, 1,0

25 R = (8 λ d 40 λe + 4 d 6 d d ) u u + f u u 4e u u + f u 3 3,3 3 0,4 1,3,1 x 1 xxx 1 5x 3 x + ( 336λ e λ d 4λ f + λ f 6b g 6 d + d + d ) uu 1, 1 3 0,1 0,3 1,,0 + d uu + (1680λ e + 3d 60e 3 f 1/ f ) uu u + d 1, xx 1, x xx 1,3 xxx + e uu + d u u + d u u 3 5x,1 x xx, x xxx,3 x xxxx,0 x 3,3 0,1 1 0,4 1,3,1 0,,3 3 xx xxx 0, xx 0,3 xxx 0,4 xxxx 3 0 5x 1 7 x 1, 0 λ f3 λb0,1g λ d0,3 λ d,0 0,1 0 + d uu + d u + (4λ e 8λ d + b g 16λ d + λ d + λ d + d ) uu (d + 10 e ) u u + d u + d u + d u + e u + eu + (7λ e + λ d 16λ e + + b g ) u + g u xxt. x + g u + g u 0 t 1 tt x uu x

26 It includes many nonlinear equations, the potential KdV equation gu 0 t + d0,3uxxx + 6d0,3ux = 0, the Burgers equation gu 0 t + d0,uux + d0,uxx = 0, b - equation 1 1 gu 0 t uxxt uux = ( 3 uu x xx + uuxxx ). λ a general case of the famous Rod equation [1] [1] H.H. Dai, Y. Huo, Proceedings of the Royal Society of London Series A, 456 (000) 331. λ

27 For the u = (ln φ) xx = λφ ψ φ The corresponding results θ = λ b φ + 3λ b φ ψ 3λb φ ψ + b φψ + λ b φ ,6 1,6 1,6 1,6 1,4 λ b φ ψ + b φψ λb φ + b φψ + b φ + b ψ, ,4 1,4 1, 1, 1,0 0,1 θ = λ b φ ψ + 3λ b φ ψ 3λb φ ψ + λ b φ ψ λb φ ψ ,6 1,6 1,6 1,4 1,4 λb φ ψ + λb φ+ b ψ + b ψ + b ψ + ψ b , 0,1 1,6 1,4 1, 1,0,

28 R = fuu + fuu + (44350λ e 10λ e + 8λ f λ f + λ f + 1 d + 6 d 3 4 x 1 xxx ,3,1 360 e ) u u + d uu + d uu + e uu + d u u + d u u + (30 d 0 x 1, xx 1,3 xxx 3 5x 3,0 xx xxx,1 x xx,3 + 18d 30400λ e 5040 e + 90 e 3 f + 1/ 4 f 3 / f ) u + e u 3 3, x 9x + d u + f uu 0,3 xxx 5 x u + d u + e u + eu + ( 30 d 3 / d ) u xx 0,4 xxxx 0 5x 1 7x 0,4 1, x + ( 4/3λ d 16 λ d ) u ( b g + 1/3 λ d ) u ( 64λ e 3 1, 0,4 0,1 1 1, xx λ e + 16λ e + 4λ c g + 4λ d + b g ) u 4 0 0,1 0,3 0,1 0 + d u u 5040 e u u + (6580λ e 3,3 x xxxx 5x 16λ d 16λ d λ e,3 3,0 1 16λ e3 4λ d1,3 4λ d,1 + 40λ e + 1b g 0 0,1 + 1 d ) uu + g u 0,3 x 0 + gu + gu 1 tt xxt. t x

29 It includes: the KdV equation gu+ 1d uu + d u = 0, 0 t 0,3 x 0,3 xxx the family of spatially periodic third-order dispersive PDE 1 b0,1g0ut b0,1g0ux + b0,1d0,3uxxx d0,3uxxt = b0,1αλ ( u + ux uuxx ) x,

30 the generalized seventh-order KdV equation 3 g u + (λf 10λe + 8 λ f ) uu + (30d + 18d f + 90e 5040e 3 f ) u + fuuu + fuu + d u u + d uu + euu + eu = 0, 3 0 t x,3 3, x 5 x xx 1 xxx 3,0 xx xxx,3 x xxxx 3 5x 1 7x which has two well-known special cases [1]: the Lax seventh-order equation the Sawada-Kotera-Ito seventh-order equation [1] M. Ito, Journal of the Physical Society of Japan, 49 (1980) 771

31 3. Conclusions Through two Bäcklund transformations of dependent variables, ninth-order PDEs possessing the FIDs have been obtained. Two special classes of such nonlinear PDEs possessing special FIDs have been presented under a reduction. The obtained PDEs contain various significant nonlinear wave equations.

32 The approach adopted here can be easily applied to nonlinear variable coefficient PDEs, which are quite intriguing in ocean dynamics, fluid mechanics, plasma physics, etc. A question? If we take the Möbius transformation u = ( aϕ + bψ)/( cϕ + dψ), ( ad bc 0) instead of the logarithmic derivative type Bäcklund transformations, what we will get?

33 Thank Prof. Wen-Xiu Ma, Prof. Xingbiao Hu and Prof. Qingping Liu! Thank you for your attention!

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Envelope Periodic Solutions to Coupled Nonlinear Equations

Envelope Periodic Solutions to Coupled Nonlinear Equations Commun. Theor. Phys. (Beijing, China) 39 (2003) pp. 167 172 c International Academic Publishers Vol. 39, No. 2, February 15, 2003 Envelope Periodic Solutions to Coupled Nonlinear Equations LIU Shi-Da,

Διαβάστε περισσότερα

Exact Two Waves Solutions with Variable Amplitude to the KdV Equation 1

Exact Two Waves Solutions with Variable Amplitude to the KdV Equation 1 International Mathematical Forum, Vol. 9, 2014, no. 3, 137-144 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.312238 Exact Two Waves Solutions with Variable Amplitude to the KdV Equation

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction

New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction ISSN 1749-3889 print), 1749-3897 online) International Journal of Nonlinear Science Vol.15013) No.,pp.18-19 New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ» I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Περίληψη (Executive Summary)

Περίληψη (Executive Summary) 1 Περίληψη (Executive Summary) Η παρούσα διπλωματική εργασία έχει ως αντικείμενο την "Αγοραστική/ καταναλωτική συμπεριφορά. Η περίπτωση των Σπετσών" Κύριος σκοπός της διπλωματικής εργασίας είναι η διερεύνηση

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping

Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping 5 2010 9 ) Journal of East China Normal University Natural Science) No. 5 Sep. 2010 : 1000-56412010)05-0067-06 DGH, 226007) :,. DGH H 1.,,. : ; DGH ; : O29 : A Stability of peakons for the DGH equation

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Test Data Management in Practice

Test Data Management in Practice Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Classification of Single Traveling Wave Solutions to the Generalized Strong Nonlinear Boussinesq Equation without Dissipation Terms in P = 1

Classification of Single Traveling Wave Solutions to the Generalized Strong Nonlinear Boussinesq Equation without Dissipation Terms in P = 1 Journal of Applied Matheatics and Physics 5-59 Pulished Online Feruary (http://wwwscirporg/journal/jap http://dxdoiorg/6/jap6 Classification of Single Traveling Wave Solutions to the Generalized Strong

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Lecture 12: Pseudo likelihood approach

Lecture 12: Pseudo likelihood approach Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed

Διαβάστε περισσότερα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the

Διαβάστε περισσότερα