Κινητά Δίκτυα Επικοινωνιών
|
|
- ΣoφпїЅα Νικολαΐδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κινητά Δίκτυα Επικοινωνιών Ενότητα 4: Διαμόρφωση Πολλαπλών Φερουσών και OFDM Καθ. Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής
2 Σκοποί ενότητας Η εξοικείωση του φοιτητή με τις τεχνικές διαμόρφωσης πολλαπλών φερουσών και ειδικότερα με την τεχνική OFDM 2
3 Περιεχόμενα ενότητας Διαμόρφωση Πολλαπλών Φερουσών και OFDM 3
4 Διαμόρφωση Πολλαπλών Φερουσών και OFDM
5 Διαμόρφωση μιας Φέρουσας Είδαμε ότι τα πραγματικά κανάλια (και ιδιαίτερα τα κινητά) εισάγουν διασυμβολική παρεμβολή Πότε συμβαίνει αυτό; όταν η περίοδος συμβόλου είναι μικρότερη της χρονικής διασποράς της κρουστικής απόκρισης του καναλιού όταν το κανάλι είναι συχνοτικά επιλεκτικό (ακόμα χειρότερα όταν έχουμε απότομα βυθίσματα στο φάσμα) Χρησιμοποιούμε ισοσταθμιστή, αλλά συχνά παραμένει κάποια υποβάθμιση της επίδοσης (εκτός αν αυξήσουμε την πολυπλοκότητα στον δέκτη) Έχουμε θεωρήσει ως τώρα χρήση μιας φέρουσας συχνότητας, δηλαδή: αν το κανάλι είναι ζωνοπερατό και με συγκεκριμένο εύρος ζώνης, τότε το σήμα πληροφορίας (βασικής ζώνης) διαμορφώνεται και μετατοπίζεται στις συχνότητες της ζώνης διέλευσης του καναλιού 5
6 Διαμόρφωση Πολλών Φερουσών Εναλλακτικά, μπορούμε να διαιρέσουμε το διαθέσιμο εύρος ζώνης W (βασικής ζώνης ή ζωνοπερατό): σε Κ υποκανάλια ίσου εύρους ζώνης Δf = W K Εφόσον το εύρος ζώνης κάθε υποκαναλιού είναι αρκετά στενό: η απόκριση συχνότητας μπορεί να θεωρηθεί σταθερή Αυτό, στο πεδίο του χρόνου, σημαίνει ότι η κρουστική απόκριση του υποκαναλιού είναι αρκετά περιορισμένη άρα, μπορεί η ISI που υπεισέρχεται να είναι πολύ μικρή έως ασήμαντη Πολυπλεξία Διαίρεσης Συχνότητας (FDM): σε κάθε υποκανάλι, μπορεί να μεταδοθεί διαφορετικό σύμβολο πληροφορίας 6
7 Διαίρεση εύρους ζώνης καναλιού Το εύρος ζώνης W διαιρείται σε Κ υποκανάλια Τα υποκανάλια έχουν περιορισμένο εύρος ζώνης Επιστροφή στο FDM ; Ναι αλλά σε μια εξελιγμένη του μορφή 7
8 Ορθογώνια FDM: Γενικά Στο σύστημα OFDM τα φάσματα των υπο-φερουσών επικαλύπτονται χωρίς όμως αυτό να προκαλεί το φαινόμενο inter-carrier interference. Για να επιτευχθεί αυτό πρέπει οι υπο-φέρουσες να είναι μαθηματικά ορθογώνιες (αρκεί να απέχουν στη συχνότητα απόσταση ίση με k/t, όπου Τ η διάρκεια του OFDM συμβόλου). 8
9 Ορθογώνια FDM Σε κάθε υποκανάλι k, χρησιμοποιείται διαφορετική φέρουσα y k t = cos 2πf k t, k = 0,1,, K 1 όπου f k η κεντρική συχνότητα του υποκαναλιού Αν η διαφορά συχνότητας μεταξύ διαδοχικών υποκαναλιών είναι (κατ ελάχιστο) Δf = 1/Τ, όπου Τ ο ρυθμός συμβόλων σε κάθε υποκανάλι, τότε οι υποφέρουσες είναι ορθογώνιες μεταξύ τους ανεξάρτητα από τις φάσεις τους 0 T cos 2πf k + φ k cos 2πf j + φ j dt = 0 Τότε, έχουμε ορθογώνια πολυπλεξία διαίρεσης συχνότητας Orthogonal Frequency Division Multiplexing - OFDM 9
10 Ορθογώνια FDM Στο σχήμα (α) βλέπουμε το φάσμα ενός OFDM subchannel ενώ στο σχήμα (β) το φάσμα του συνολικού σήματος OFDM. 10
11 Ορθογώνια FDM Σε ένα τέτοιο σύστημα, ο ρυθμός συμβόλων σε κάθε υποκανάλι μειώνεται κατά Κ σε σχέση με το σύστημα μιας φέρουσας άρα, η περίοδος συμβόλου στο OFDM γίνεται T = KT s όπου Τ s η περίοδος των αρχικών συμβόλων Αν το Κ είναι αρκετά μεγάλο, το διάστημα συμβόλου μπορεί να γίνει σημαντικά μεγαλύτερο της χρονικής διάρκειας του υποκαναλιού και να μην εμφανίζεται ISI Έτσι, αν επιλέξω αρκετά μεγάλο Κ, τότε κάθε υποκανάλι εμφανίζεται να έχει σταθερή απόκριση συχνότητας C f k C k 11
12 Ορθογώνια FDM Κρουστική Απόκιση Απόκριση Συχνοτήτων Σειριακή Μετάδοση Παράλληλη Μετάδοση σε 2 κανάλια Παράλληλη Μετάδοση σε 8 κανάλια 12
13 OFDM Με μια πρώτη ματιά, η υλοποίηση του OFDM φαίνεται ως μία εξαιρετικά περίπλοκη διαδικασία που περιλαμβάνει Κ πομπούς και Κ δέκτες. Όμως, ο διαμορφωτής και ο αποδιαμορφωτής OFDM μπορούν να υλοποιηθούν ως μια συστοιχία φίλτρων με τη βοήθεια του διακριτού μετασχηματισμού Fourier (DFT) (σημαντική διαπίστωση) Αν το Κ είναι αρκετά μεγάλο, τότε τα παραπάνω υλοποιούνται αποδοτικά με χρήση του Γρήγορου Μετασχηματισμού Fourier (FFT) 13
14 Σύστημα OFDM 14
15 Ο ρόλος του IFFT στο OFDM K 1 x( n) X ( k) e n 0 2 j k n K j 0 0 j 1 0 j 2 0 j x(0) X (0) e X (1) e X (2) e X (3) e j 0 1 j 11 j 2 1 j x(1) X (0) e X (1) e X (2) e X (3) e j 0 2 j 1 2 j 2 2 j x(2) X (0) e X (1) e X (2) e X (3) e j 0 3 j 1 3 j 2 3 j x(3) X(0) e X (1) e X (2) e X (3) e Οι έξοδοι του IDFT αποστέλλονται μία-προς-μία (P/S) και το σήμα που προκύπτει είναι ένα σύμβολο OFDM Το οποίο ουσιαστικά είναι η υπέρθεση των διαμορφωμένων (με τα QAM σύμβολα) υπο-φερουσών Παρατηρούμε ότι κάθε αρχικό σύμβολο QΑΜ μεταδίδεται μέσω μίας συγκεκριμένης υπο-φέρουσας (γινόμενο της αντίστοιχης συνάρτησης βάσης του IDFT με μία κοινή φέρουσα) για Κ-πλάσιο χρόνο 15
16 Πρόβλημα OFDM: PAR Σημαντικό πρόβλημα OFDM: ο μεγάλος λόγος κορυφής προς μέση τιμή ισχύος (Peak-to-Average Ratio, PAR) στο μεταδιδόμενο σήμα Τι σημαίνει αυτό; Μεταδιδόμενο σήμα: Κ παράλληλα υποσήματα Κάθε υποσήμα έχει μια δυναμική περιοχή τιμών Αν τύχει πολλά υποσήματα ταυτόχρονα να έχουν μεγάλες τιμές και οι υποφέρουσές τους να είναι συμφασικές Η στιγμιαία τιμή του συνολικού μεταδιδόμενου σήματος μπορεί να γίνει πολύ μεγάλη Τότε, ο ενισχυτής του πομπού λειτουργεί στην περιοχή κόρου, όπου εμφανίζει μη γραμμική συμπεριφορά Για να το αντιμετωπίσουμε αυτό, πρέπει να μειώσουμε την ισχύ εκπομπής, γεγονός που επηρεάζει το λαμβανόμενο SNR και την πιθανότητα σφάλματος στο δέκτη. Υπάρχουν πάντως και καλύτεροι τρόποι (ωστόσο γενικά παραμένει ανοιχτό πρόβλημα) 16
17 Σύστημα OFDM: Adaptive Transmission Ο πομπός συγκεντρώνει ένα πλαίσιο B f bits. Αυτά χωρίζονται σε Κ ομάδες, και σε κάθε ομάδα εκχωρούνται b i bits, K i=1 b i = B f Στη γενική περίπτωση, σε κάθε υποκανάλι μπορεί να χρησιμοποιηθεί διαφορετικός αριθμός bits/σύμβολο (δηλαδή, χρησιμοποιείται QAM- Μi=2bi σε κάθε υποκανάλι). Π.χ. αν ένα κανάλι έχει χαμηλό SNR, τότε μπορώ να χρησιμοποιήσω QAM-4 σε ένα άλλο κανάλι με υψηλότερο SNR, μπορώ να χρησιμοποιήσω QAM-16 Η παραπάνω διαδικασία του adaptive power and bit allocation δεν είναι απλή και απαιτεί γνώση στην πλευρά του πομπού Εφαρμόζεται IFFT σε όλα τα σύμβολα των υποκαναλιών 17
18 Σύστημα OFDM Εξάλειψη Παρεμβολής Πλαισίων Σε κάθε υποκανάλι παρουσιάζεται (σχεδόν) επίπεδη εξασθένηση, οπότε δεν εμφανίζεται διασυμβολική παρεμβολή Ωστόσο, τα σύμβολα δύο πλαισίων παρεμβάλλονται και εμφανίζεται Inter-Block Interference (IBI) Για να το αποφύγουμε αυτό, ανάμεσα σε δύο διαδοχικά πλαίσια, είτε αφήνουμε ένα διάστημα σιωπής (zero prefix) είτε εισάγουμε ένα κυκλικό πρόθεμα (cyclic prefix) Αφού εισαχθεί το CP, το σήμα μεταδίδεται σειριακά 18
19 Σύστημα OFDM Δίπλα φαίνεται ο λόγος εισαγωγής του ZP (με μήκος L όσο είναι και το εκτιμώμενο μήκος του καναλιού) Ωστόσο ενώ αποφεύγεται το ΙΒΙ εξακολουθεί να υπάρχει ICI (intercarrier interference) λόγω απώλειας ορθογωνιότητας Η λύση είναι η εισαγωγή CP CP: στην αρχή του κάθε πλαισίου (OFDM symbol) μπαίνουν ως πρόθεμα τα τελευταία L δείγματα του πλαισίου) 19
20 Σύστημα OFDM Ο δέκτης συγκεντρώνει τα σειριακά δείγματα και πετάει τα L πρώτα που αντιστοιχούν στο CP, όπου L το μήκος της κρουστικής απόκρισης του συνολικού καναλιού Έτσι εξαφανίζεται η όποια παρεμβολή μεταξύ των πλαισίων Γίνεται παράλληλη αποδιαμόρφωση όλων των υποκαναλιών με χρήση του FFT Το σήμα κάθε υποκαναλιού λαμβάνεται πλέον ως X k = C k X k + N k Το κανάλι θα πρέπει να αντισταθμιστεί, εφόσον προηγουμένως το υποκανάλι έχει εκτιμηθεί με κάποια διαδικασία εκτίμησης (αν είναι μεταβαλλόμενο χρησιμοποιείται κάποιος προσαρμοστικός τρόπος) Εξάγεται απόφαση για κάθε σύμβολο 20
21 Σύστημα OFDM Το SNR σε κάθε υποκανάλι είναι SNR k = TP k C 2 k Τ η διάρκεια συμβόλου 2 σ nk P k η μέση μεταδιδόμενης ισχύς στο k-υποκανάλι Ck 2 η απόκριση συχνότητας του υποκαναλιού k σ 2 nk η διασπορά του θορύβου στο υποκανάλι k Όπως ήδη αναφέρθηκε, ανάλογα με το SNR σε κάθε υποκανάλι, μπορούμε να επιλέξουμε διαφορετικό P k ή/και άρα διαφορετικούς αστερισμούς QAM 21
22 ΟFDM: Γενική αξιολόγηση Βασικά πλεονεκτήματα: Καλύτερη αξιοποίηση του φάσματος Διάχυση του προβλήματος της επιλεκτικής και γρήγορης απόσβεσης. Έτσι αποφεύγονται burst errors. Μειονεκτήματα: Ευαισθησία σε carrier frequency offset (λόγω jitter και Doppler Δεν διασφαλίζεται η σταθερή περιβάλλουσα και συνεπώς η τεχνική είναι ευαίσθητη σε μη γραμμικές παραμορφώσεις του διαύλου Απαραίτητη η ύπαρξη κωδικοποίησης καναλιού (COFDM) 22
23 OFDMA To σύστημα OFDM έχει επινοηθεί πρωτίστως ως ένα σύστημα φασματικά αποδοτικής διαμόρφωσης. Ωστόσο, η βασική ιδέα μπορεί να χρησιμοποιηθεί για πολλαπλή προσπέλαση, δηλαδή κοινή χρήση του μέσου από πολλούς χρήστες. Αυτό γίνεται αναθέτοντας ομάδες υποφερουσών σε διαφορετικούς χρήστες (ενδεχομένως με διαφορετικές απαιτήσεις σε QoS). 23
24 Εφαρμογές OFDM Το OFDM έχει εφαρμοστεί σε διάφορα συστήματα, όπως: Discrete MultiTone Modulation - DMT για υψίρυθμη μετάδοση σε τηλεφωνικές γραμμές, όπως οι ψηφιακές συνδρομητικές γραμμές ADSL σε αυτήν την περίπτωση λέγεται διακριτή πολυτονική διαμόρφωση (Discrete MultiTone modulation) Digital Audio Broadcasting DAB για ψηφιακή εκπομπή ήχου Digital Video Broadcasting DVB (HDTV) για ψηφιακή εκπομπή βίντεο Ασύρματα Δίκτυα LAN : ΙΕΕΕ , HIPERLAN και MAN : ΙΕΕΕ , HIPERMAN Power Line Communications Ultra Wide-band (UWB) Communications 24
25 Συναφή συστήματα SC-FDMA (Single-Carrier FDMA) Χρησιμοποιεί: Single-Carrier Modulation DFT-spread orthogonal frequency multiplexing Frequency-Domain Equalization Filter Bank-based Multi-Carrier (FBMC) Υλοποίηση της παράλληλης μετάδοσης σε υποφέρουσες με bank of filters αντί DFT 25
26 Τέλος Ενότητας
27 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 27
28 Σημειώματα
29 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση
30 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Πατρών, Καθ. Κώστας Μπερμπερίδης Κώστας Μπερμπερίδης. «Κινητά Δίκτυα Επικοινωνιών. Διαμόρφωση Πολλαπλών Φερουσών και OFDM». Έκδοση: 1.0. Πάτρα Διαθέσιμο από τη δικτυακή διεύθυνση: 30
31 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 31
32 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. 32
33 Σημείωμα Χρήσης Έργων Τρίτων Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Οι εικόνες στις σελίδες: 7, 14, έχουν δημιουργηθεί με βάση αντίστοιχες εικόνες του βιβλίου: «Συστήματα Επικοινωνιών» των J. G. Proakis και M. Salehi, μετάφραση στα ελληνικά από τους Κ. Καρούμπαλο, Ε. Ζέρβα, Σ. Καραμπογιά και Ε. Σαγκριώτη, εκδόσεις Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών. 33
Κινητά Δίκτυα Επικοινωνιών
Κινητά Δίκτυα Επικοινωνιών Διαμόρφωση Πολλαπλών Φερουσών και OFDM (Orthogonal Frequency Division Multiplexing) Διαμόρφωση μιας Φέρουσας Είδαμε ότι τα πραγματικά κανάλια (και ιδιαίτερα τα κινητά) εισάγουν
Διαμόρφωση μιας Φέρουσας. Προχωρημένα Θέματα Τηλεπικοινωνιών. Διαίρεση εύρους ζώνης καναλιού. Διαμόρφωση Πολλών Φερουσών OFDM
Διαμόρφωση μιας Φέρουσας Προχωρημένα Θέματα Τηλεπικοινωνιών Διαμόρφωση Πολλαπλών Φερουσών και OFDM (Orthogonal Frquncy Division Multiplxing) Είδαμε ότι τα πραγματικά (μη-ιδανικά) κανάλια εισάγουν διασυμβολική
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 11: Ψηφιακή Διαμόρφωση Μέρος Α Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή διαμόρφωσης παλμών κατά
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 3: Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μέρος Α 3 Διαμόρφωση βασικής ζώνης (1) H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 4: Απόδοση συστημάτων AM υπό θόρυβο Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της γενικής μορφής
Κινητά Δίκτυα Υπολογιστών
Κινητά Δίκτυα Υπολογιστών Ενότητα 3: Τεχνικές Ψηφιακής Διαμόρφωσης και Μετάδοσης Καθ. Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Η εξοικείωση του φοιτητή με
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 7: Ορθογώνια Πολυπλεξία Διαίρεσης Συχνότητας - OFDM Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Περιεχόμενα Ιστορική εξέλιξη Γενικά Ορθογωνιότητα Διαμόρφωση Υποκαναλιών
Τμήμα Μηχανικών Η/Υ και Πληροφορικής
Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Τεχνικές Ψηφιακής Διαμόρφωσης και Μετάδοσης Tο γενικό
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές αποκατάστασης
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 12: Ψηφιακή Διαμόρφωση Μέρος B Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της διαμόρφωσης παλμών
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 9: Παλμοκωδική Διαμόρφωση (PCM) Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της μεθόδου παλμοκωδικής
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 7: Απόδοση συστημάτων γωνίας υπό θόρυβο Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της γενικής
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Κινητά Δίκτυα Υπολογιστών
Κινητά Δίκτυα Υπολογιστών Καθ. Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εξοικείωση του φοιτητή με την έννοια της προσαρμοστικής ισοστάθμισης καναλιού 2 Περιεχόμενα
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 10: Ψηφιακή Μετάδοση Βασικής Ζώνης Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση των πινάκων αναζήτησης
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 5: Διαμορφώσεις γωνίας Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της διαμόρφωσης συχνότητας και
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 4: Ψηφιακές Διαμορφώσεις Υψηλής Φασματικής Αποδοτικότητας Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακές Διαμορφώσεις Υψηλής
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 6: Δέκτες- Ραδιοφωνία AM-FM Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση ραδιοφωνικής εκπομπής ΑΜ-FM
Εισαγωγή στη Δικτύωση Υπολογιστών
Εισαγωγή στη Δικτύωση Υπολογιστών Ενότητα 2: Το Φυσικό Επίπεδο Δημήτριος Τσώλης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Στόχοι Μαθήματος
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 3: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Διαμόρφωση Πλάτους: Διπλής πλευρικής ζώνης με συνολικό φέρον,
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 8: Δειγματοληψία - Διαμόρφωση παλμών Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της διαδικασίας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εισαγωγή στη Δικτύωση Υπολογιστών
Εισαγωγή στη Δικτύωση Υπολογιστών Ενότητα 3: Το Επίπεδο Συνδέσμου Δεδομένων Δημήτριος Τσώλης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών
ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6: Ανάδραση Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskl Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Στοχαστικά Σήματα και Τηλεπικοινωνιές
Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 1: Εισαγωγή Περιγραφή Υλής Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληφοροφικής Σκοποί ενότητας Παροχή εισαγωγικών πληροφοριών
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 2: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Τυχαίες Διαδικασίες: Ορισμοί, Μέσες τιμές συνόλου (Ensemble averages),
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 4: Μετατροπή Αναλογικών Σημάτων σε Ψηφιακά Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Δειγματοληψία: Ιδανική
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1 Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Δισδιάστατα σήματα
Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών
Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 5: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Πλεονεκτήματα-Μειονεκτήματα ψηφιακών επικοινωνιών, Κριτήρια Αξιολόγησης
Επεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Ψηφιακή Μετάδοση Αναλογικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Μετάδοση Αναλογικών Σημάτων Τα σύγχρονα συστήματα
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 2: Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εισαγωγή (1) Οι Ψηφιακές Επικοινωνίες (Digital Communications) καλύπτουν σήμερα το
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 7: Universal motor Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης
1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10
Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra
Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 8: Ορθομοναδιαίοι μετασχηματισμοί Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Ορθομοναδιαίοι μετασχηματισμοί ισοδύναμη
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Τηλεματική και Νέες Υπηρεσίες
Τηλεματική και Νέες Υπηρεσίες Ενότητα: Στοιχεία αυτό-αξιολόγησης Όνομα Καθηγητή: Χρήστος Μπούρας Τμήμα: Μηχανικών Η/Υ & Πληροφορικής 1. Στοιχεία Αυτο-αξιολόγησης Παρακάτω ακολουθούν ενδεικτικές ερωτήσεις
ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6: 1η εργαστηριακή άσκηση και προσομοίωση με το SPICE Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 1: E-L Συστήματα Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Ενότητα: Εργασίες Διδάσκων: Βασίλης Κόμης, Καθηγητής komis@upatras.gr www.ecedu.upatras.gr/komis/ Τμήμα Επιστημών
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 10 η : Ανάλυση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 10 η : Ανάλυση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη ψηφιακή ανάλυση εικόνας
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.
Στοχαστικά Σήματα και Τηλεπικοινωνιές
Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 9: Συγχρονισμός Συμβόλων Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Στην ενότητα αυτή παρουσιάζεται
Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης
Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα
Αερισμός. Ενότητα 1: Αερισμός και αιμάτωση. Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής
Αερισμός Ενότητα 1: Αερισμός και αιμάτωση Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Ολικός και κυψελιδικός αερισμός Η κύρια λειτουργία του αναπνευστικού συστήματος είναι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο
Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 1: Εισαγωγή Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται
Ευφυής Προγραμματισμός
Ευφυής Προγραμματισμός Ενότητα 13: Δημιουργία Βάσεων Κανόνων Από Δεδομένα- Αξιολόγηση Βάσης Κανόνων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων
Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Σημάτων Άσκηση 3η Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 6: Συγχρονισμός στις Ψηφιακές Επικοινωνίες Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Συγχρονισμός στις Ψηφιακές Επικοινωνίες Συγχρονισμός
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και
Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία
Παιδαγωγικό Τμήμα Νηπιαγωγών Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία Ενότητα # 9: Ψηφιακός Ήχος - Audacity Θαρρενός Μπράτιτσης Παιδαγωγικό Τμήμα Νηπιαγωγών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 3
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 3: Ενισχυτές στις χαμηλές συχνότητες Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες
Διοίκηση Επιχειρήσεων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η λήψη των αποφάσεων Ευγενία Πετρίδου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διδακτική της Πληροφορικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Διδακτικές Προσεγγίσεις για τον Προγραμματισμό Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Μεθοδολογία εφαρμογής προγράμματος Ολικής Ποιότητας
Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Ψωμάς Ευάγγελος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Υποενότητα
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 11 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 1: Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Διδάσκων Παναγιώτης Μαθιόπουλος Ph.D. Καθηγητής Ψηφιακών Επικοινωνιών Τμήμα Πληροφορικής
Βάσεις Περιβαλλοντικών Δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 3: Διαμόρφωση πλάτους Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση των χαρακτηριστικών στοιχείων
Διδακτική των εικαστικών τεχνών Ενότητα 1
Διδακτική των εικαστικών τεχνών Ενότητα 1 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 1. Ιστορική αναδρομή της διδακτικής της
Διδακτική των εικαστικών τεχνών Ενότητα 3
Διδακτική των εικαστικών τεχνών Ενότητα 3 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 3. Ο ρόλος του εκπαιδευτικού: σχεδιασμός
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διδακτική Πληροφορικής
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 4: Διδακτικός μετασχηματισμός βασικών εννοιών πληροφορικής Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons