ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ"

Transcript

1 ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ Υποστηρίζεται η άποψη ότι η ελληνιστική περίοδος (3ος - 2ος αι. π.χ.) αποτελεί το «απόγειο» της αρχαίας ελληνικής επιστήµης. Επίσης, ορισµένοι ιστορικοί της επιστήµης εκτιµούν ότι η ιστορία της ελληνικής επιστήµης κατά τον 3ο µ.χ. αιώνα και µετά χαρακτηρίζεται από µια διαρκώς φθίνουσα παραγωγή νέων ιδεών και από µια παράλληλη διοχέτευση της επιστηµονικής δραστηριότητας στη συγγραφή σχολιαστικών υποµνηµάτων. Η περίοδος αυτή χαρακτηρίζεται ως παρακµή της ελληνικής επιστήµης. Α. Αναφερθείτε στη συµβολή του Αρχιµήδη και του Ευκλείδη στην ανάπτυξη της επιστήµης κατά την ελληνιστική περίοδο. Β. Ποια είναι κατά την εκτίµησή σας τα αίτια της επιστηµονικής άνθησης κατά την ελληνιστική περίοδο; Γ. Συµφωνείτε ή διαφωνείτε µε την άποψη ότι η κατάσταση της επιστηµονικής σκέψης κατά την ύστερη αρχαιότητα (3ος - 4ος αι. µ.χ ) µπορεί να περιγραφεί µε τη φράση «παρακµή της ελληνικής επιστήµης»; ΕΙΣΑΓΩΓΗ Από τον 3 ο αιώνα πχ εγκαινιάζεται µια νέα περίοδος, η ελληνιστική περίοδος, η οποία εκφράζει µια νέα αλλαγή στον πνευµατικό κόσµο, τη φιλοσοφία και στις επιστήµες. Στην Ελληνιστική περίοδο πραγµατοποιήθηκε µια εντυπωσιακή και αξιοσηµείωτη ανάπτυξη των επιστηµών και της τεχνολογίας, όπως στους τοµείς των µαθηµατικών, της αστρονοµίας και της µηχανικής. Στην εργασία αυτή θα γίνει αναφορά στη συµβολή του Αρχιµήδη και του Ευκλείδη στην ανάπτυξη της επιστήµης κατά την ελληνιστική περίοδο. Θα προσδιοριστούν τα αίτια της άνθισης των επιστηµών κατά την ελληνιστική περίοδο και θα δοθεί απάντηση στο ερώτηµα, αν από το τέλος της ελληνιστικής περιόδου υπάρχει παρακµή της ελληνικής επιστήµης. 1

2 Η ΣΥΜΒΟΛΗ ΤΟΥ ΕΥΚΛΕΙ Η ΚΑΙ ΤΟΥ ΑΡΧΙΜΗ Η ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΤΑ ΤΗΝ ΕΛΛΗΝΙΣΤΙΚΗ ΠΕΡΙΟ Ο. Τεράστια ήταν η προσφορά των µαθηµατικών Ευκλείδη και Αρχιµήδη στην εξέλιξη της ελληνιστικής επιστήµης. Ο Ευκλείδης µε το σύγγραµµά του Στοιχεία συµπεριέλαβε όλες τις µαθηµατικές γνώσεις που είχαν αποκτηθεί µέχρι τα τέλη του 4 ου αιώνα πχ. Βέβαια σε αυτά περιέχονται και κάποιες σηµαντικές εξαιρέσεις όπως είναι η θεωρία των κωνικών τοµών και η µαθηµατική θεωρία της αρµονίας. Πραγµατοποιήθηκε µια σύνθεση µε µεγάλο βαθµό µεθοδικότητας και της συνέπειας. Το έργο του αποτέλεσε υπόδειγµα για τους µεταγενέστερους συγγραφείς στα µαθηµατικές και στις άλλες επιστήµες. 1 To κύριο χαρακτηριστικό του έργου Στοιχεία είναι η αξιωµατικήπαραγωγική µορφή έκθεσης των αποτελεσµάτων. Αυτό σηµαίνει ότι µε αφετηρία ενός µικρού αριθµού αρχικών προτάσεων(αιτήµατα, κοινές έννοιες) µε βάση κάποιους κανόνες παραγωγής παράγονται τα θεωρήµατα. 2 Ο Ευκλείδης διατυπώνει µια σειρά από ορισµούς, γιατί έχει ως σκοπό να κάνει τους αναγνώστες να καταλάβουν τον τρόπο µε τον οποίο αξιοποιούνται οι έννοιες στο έργο. Στη συνέχεια διατυπώνει τα αιτήµατα και τις κοινές έννοιες. Τα αιτήµατα αποτελούν τις βασικές παραδοχές που χρησιµοποιούνται στη Γεωµετρία, ενώ οι κοινές έννοιες είναι γενικές προτάσεις τις οποίες αποδέχονται σε όλες τις επιστήµες. Τα αιτήµατα λειτουργούν ως γεωµετρικά αξιώµατα και οι κοινές ως λογικά αξιώµατα. 3 Το έργο του Ευκλείδη Στοιχεία είναι αξιόλογο όχι µόνο για τη συστηµατικότητά του αλλά και για τη συλλογή του υλικού του. Αποτελεί ένα καλό οδηγό για να γνωρίσουµε επιστηµονικά το υλικό των µαθηµατικών. 4 Η γεωµετρία του Ευκλείδη αποτέλεσε το υπόδειγµα της επιστηµονικής αλήθειας που προσπάθησαν να εφαρµόσουν οι Aρχαίοι Έλληνες όχι µόνο στο χώρο των µαθηµατικών αλλά στην αστρονοµία και στη µηχανική. 5 1 Χριστιανίδης σελ Χριστιανίδης σελ Χριστιανίδης σελ Farington σελ Farington σελ 249 2

3 Ο Αρχιµήδης αξιοποιεί τις απειροστικές µεθόδους του Ευδόξου εφαρµόζοντας τες επιτυχώς για την εύρεση εµβαδών και όγκων διαφόρων σχηµάτων. 6 Ο Αρχιµήδης στο έργο Κύκλου µέτρησις διακρίνεται για τους περίπλοκους αριθµητικούς υπολογισµούς. Εκτελούσε περίπλοκους αριθµητικούς υπολογισµούς και να παρουσιάζει τα αριθµητικά αποτελέσµατα. Καταλήγει στον υπολογισµό της τιµής του π, για την εύρεση της οποίας πραγµατοποίησε µια σειρά από αριθµητικούς υπολογισµούς που όµοιοι τους δεν υπάρχουν σε κανένα προγενέστερο έργο. 7 Το γεωµετρικό έργο του Αρχιµήδη είναι αξιόλογο. Αναπτύσσονται ευρετικές µέθοδοι µε βάση τα οποία ήταν σε θέση να γνωρίζει πολλά µαθηµατικά αποτελέσµατα προτού να τα αποδείξει µε αυστηρό γεωµετρικό τρόπο Τα γεωµετρικά του συγγράµµατα διαφοροποιούνται ως προς τη Στοιχείωση του Ευκλείδη αναφέροντας τη µέθοδο ανακάλυψης των θεωρηµάτων, προτού προχωρήσει στην απόδειξή τους. Στο σύγγραµµα Περί των µηχανικών θεωρηµάτων προς Ερατοσθένη έφοδος γίνεται αναλυτική αναφορά στις ευρετικές µεθόδους µε βάση τις οποίες οδηγείται σε αποτελέσµατα. 8 Ο Αρχιµήδης γνωρίζοντας τους νόµους της στατικής ισχυρίζεται ότι κάθε µη αβαρές σώµα έχει ένα κέντρο βάρους. Χρησιµοποιεί τους νόµους της στατικής για την επίλυση γεωµετρικών προβληµάτων και την ανάλυση του εµβαδού σε άθροισµα ευθύγραµµων τµηµάτων. 9 Όπως αναφέρει στο γράµµα του προς τον Ερατοσθένη µέσω της στατικής βρίσκει τον λόγο της σφαίρας προς τον περιγεγραµµένο κύλινδρο. Με γεωµετρικό τρόπο ορίζονται τα οµογενή σήµατα και καθορίζεται το κέντρο βάρους τους. Με µεθόδους της µηχανικής και της γεωµετρίας επιχειρεί να αποδείξει ότι το εµβαδό παραβολικού τµήµατος είναι ίσο προς τα 4/3 του τριγώνου. Η επιφάνεια κάθε σφαίρας είναι τετραπλάσια του µέγιστου κύκλου της, γιατί κάθε κύκλος είναι ίσος µε το τρίγωνο που έχει βάση την περιφέρεια του κύκλου, ενώ το ύψος ισούται µε την ακτίνα του κύκλου. 10 Ο Αρχιµήδης διατυπώνει έξι αξιώµατα µε τα οποία ορίζει τις κοίλες και κυρτές γραµµές, της επιφάνειας, του στερεού τοµέα, στερεού ρόµβου. Ξεχωριστή θέση κατέχει το αξίωµα της συνέχειας, σύµφωνα µε το οποίο αν έχουµε δύο άνισες γραµµές ή άνισες επιφάνειες ή άνισα στερεά και το µεγαλύτερο από αυτά διαφέρει από 6 Χριστιανίδης σελ Χριστιανίδης σελ Χριστιανίδης σελ 161, Φίλη σελ Φίλη σελ 22, 23 3

4 το µικρότερο σε µικρή ποσότητα, µε την επανάληψη αυτή εισάγει τρία καινούρια στερεά της µικρής ποσότητας θα γίνει µεγαλύτερη του αρχικά µεγαλύτερου µεγέθους. Ο Αρχιµήδης µε 32 θεωρήµατα υπολογίζει την επιφάνεια και τον όγκο της σφαίρας. Επίσης εισάγει τρία καινούρια στερεά, το ελλειψοειδές, το παραβολοειδές και το υπερβολοειδές. 11 Ο Αρχιµήδης επιχείρησε να καθορίσει τη γωνία που σχηµατίζεται από το µάτι και την αντιληπτή διάµετρο του ήλιου. Παρατήρησε τον ήλιο που µόλις βγαίνει στον ορίζοντα µε ένα στρογκυλεµένο δίσκο που στηριζόταν κάθετα στην άκρη ενός µακριού χάρακα. Ο Αρχιµήδης επιχείρησε δύο ειδών µετρήσεις, µία τη χρονική στιγµή που η ηλιακή σφαίρα σκεπάζεται από τον δίσκο και η άλλη µε την παρέκκλιση του δίσκου. Η σωστή γωνία βρισκόταν ανάµεσα στη µεγάλη γωνία που έδινε η πρώτη παρατήρηση και στη µικρή που του έδινε η δεύτερη παρατήρηση. 12.O Aρχιµήδης στα πλαίσια της φυσικής του αποδεικνύει τον νόµο για την ισορροπία του ζυγού. 13 µαθηµατικά µοντέλα Για την περιγραφή φυσικών φαινοµένων εφάρµοσε Ο Αρχιµήδης, επιπλέον, στα πλαίσια της φυσικής του, διαµορφώνει την επιστήµη της υδροστατικής. ιατυπώνει δύο αρχές. Σύµφωνα µε την πρώτη αρχή το ολιγότερο πιεζόµενο µέρος εξωθείται από το περισσότερο πιεζόµενο και κάθε ένα από τα µέρη του πιέζεται «κατά κάθετον» από το υγρό που βρίσκεται πάνω του. Με βάση αυτή την αρχή διατυπώνονται δύο θεωρήµατα της υδροστατικής. Τα πιο ελαφρά του υγρού στερεά που υπάρχουν στο υγρό ανεβαίνουν προς τα πάνω µε τόση δύναµη όσο είναι το βάρος, ενώ τα βαρύτερα του υγρού στερεά έχουν φορά προς τα κάτω. Σύµφωνα µε τη δεύτερη αρχή αυτά που βρίσκονται στο υγρό σώµατα και ωθούνται προς τα πάνω έχουν διεύθυνση προς τη κατακόρυφο η οποία διέρχεται από το κέντρο βάρους του. Με βάση αυτή την αρχή οδηγείται στο συµπέρασµα αν κάθε τµήµα σφαίρας που είναι πιο ελαφρύ από το υγρό βρεθεί στο υγρό, η βάση του θα έχει τέτοια ισορροπία, ώστε να είναι κατακόρυφος ο άξονας τµήµατος 14 «Τα βαρύτερα του υγρού στερεά όταν αφήνονται στο υγρό θα φέρονται προς τα κάτω, όσο είναι δυνατόν να βυθίζονται, και θα είναι ελαφρότερα εντός του υγρού τόσο, όσο βάρος έχει το υγρό που έχει τόσο όγκο, όσος είναι ο όγκος του στέρεου µεγέθους» Φίλη σελ Fαrrington σελ Χριστιανίδης σελ161, Φίλη σελ 24, Χριστιανίδης σελ 171 4

5 Ο Αρχιµήδης επινόησε διάφορες µηχανικές κατασκευές, οι οποίες εφαρµόζονταν µε βάση κάποιες φυσικές αρχές. 16 Θεωρήθηκε ο µεγαλύτερος µηχανικός της αρχαιότητας. Σύµφωνα µε µερικούς µελετητές αντιλήφθηκε τη σηµασία της πειραµατικής µεθόδου. 17 ΤΑ ΑΙΤΙΑ ΤΗΣ ΕΠΙΣΤΗΜΟΝΙΚΗΣ ΑΝΘΙΣΗΣ ΚΑΤΑ ΤΗΝ ΕΛΛΗΝΙΣΤΙΚΗ ΠΕΡΙΟ Ο. Οι λόγοι της ανάπτυξης στις επιστήµες κατά την ελληνιστική περίοδο ήταν οι πολιτικές και οι κοινωνικές αλλαγές που πραγµατοποιήθηκαν µε την εδραίωση των ελληνιστικών βασιλείων στη Μέση Ανατολή. Τα βασίλεια αυτά ενθάρρυναν και ενίσχυσαν τις προσπάθειες επιστηµόνων και δόθηκε έµφαση στην επιστηµονική σκέψη. ιαµορφώθηκαν οι κατάλληλες συνθήκες για νέες επιστηµονικές ανακαλύψεις και τεχνολογικές εφευρέσεις. Οι βασιλείς επέµεναν στην εξέλιξη της επιστηµονικής γνώσης, καθώς θεωρούσαν ότι µε αυτόν τον τρόπο θα είχαν πλεονεκτήµατα στο εµπόριο και στους διάφορους πολέµους που διεξήγαγαν. Ανέλαβαν να προστατεύσουν οι ίδιοι τις επιστήµες και ενίσχυσαν οικονοµικά την προσπάθεια των επιστηµόνων για νέες ανακαλύψεις. ηµιουργήθηκαν βιβλιοθήκες σε πολλές ελληνιστικές πόλεις. Η επιστήµη στην ελληνιστική περίοδο αποτελούσε υπόθεση των αυλικών και απαιτούσε την ύπαρξη βιβλιοθηκών και βασιλικές χορηγίες. 18 Η Αλεξάνδρεια αναδεικνύεται η πνευµατική εστία του ελληνόφωνου κόσµου. Σε αυτήν θεµελιώθηκαν δύο ιδρύµατα µε την ενθάρρυνση του Πτολεµαίου Α και µε τη συµβολή στην οργάνωση τους από τον ηµήτριο Φαληρέα, το Μουσείο και η Βιβλιοθήκη. Το Μουσείο αποτέλεσε µια µορφή πανεπιστηµίου, το οποίο επισκέπτονταν οι πιο επιφανείς λόγιοι των γραµµάτων και των επιστηµών από όλο τον ελληνόφωνο κόσµο. Αρχικά καθήκον τους ήταν η ενασχόληση µε την έρευνα, αλλά στην πορεία ασχολήθηκαν και µε τη διδασκαλία. Η Βιβλιοθήκη αποτέλεσε τη µεγαλύτερη και καλύτερα οργανωµένη βιβλιοθήκη της Αρχαιότητας Χριστιανίδης σελ Farrington σελ Χριστιανίδης σελ Χριστιανίδης σελ 148 5

6 Η ΠΑΡΑΚΜΗ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Μετά τον 3 αιώνα µχ αρχίζει να παρακµάζει η ελληνική επιστήµη. εν παράγονται νέες ιδέες και δεν ανακαλύπτονται νέα πράγµατα. Εξαντλείται η δραστηριότητα των λογίων αυτής της περιόδου στη συγγραφή σχολαστικών υποµνηµάτων, εξηγήσεων και προεκτάσεων στα µεγάλα έργα του παρελθόντος. εν υπάρχουν πλέον αξιόλογες επιστηµονικές µελέτες. εν ενδιαφέρονται οι βασιλείς για τη δαπάνη χρηµάτων για την επιστήµη, δεν υπάρχουν πλέον οι επιχορηγήσεις της ελληνιστικής περιόδου. 20 Αίτια αυτής της παρακµής µπορούν να θεωρηθούν η οικονοµική κρίση, οι πόλεµοι και η εξοντωτική φορολογία που επέβαλαν οι Ρωµαίοι και οδήγησε στην εξασθένηση των ελληνιστικών κρατών που αποτελούσαν την εστία των επιστηµονικών ανακαλύψεων της προηγούµενης περιόδου. 21 Ωστόσο µια πιο σηµαντική αιτία είναι η διακοπή της προφορικής παράδοσης της αρχαίας επιστήµης. Τα επιστηµονικά επιτεύγµατα των προηγούµενων περιόδων σχετίζονταν µε τη διατήρηση της προφορικής παράδοσης. Σηµαντικά έργα του παρελθόντος αποκτούν αξία, γιατί συνοδεύονταν µε προφορικές εξηγήσεις. Με την προφορική τονίζονται τα ουσιώδη σηµεία των γραπτών πηγών. 22 Άλλη εξίσου σηµαντική αιτία αποτελεί το ιδεολογικό υπόβαθρο των φιλοσοφικών και θρησκευτικών κινηµάτων. Ο νεοπλατωνισµός ήταν η φιλοσοφία της αποκάλυψης και απαιτούσε τον σχολιασµό των έργων του Πλάτωνα. Αυτό είχε ως αποτέλεσµα την υποβάθµιση της µαθηµατικής έρευνας 23 Παράλληλα από τον 3 αιώνα εξελίσσεται ο χριστιανισµός σε σηµαντική θρησκευτική δύναµη και από τον 4 ο αιώνα αποτελεί κρατική θρησκεία. Είναι µια θρησκεία που ενδιαφέρεται για την αποκάλυψη της αλήθειας. ιάφορα γεγονότα, όπως το κλείσιµο της Σχολής των Αθηνών το 529 µχ, η δολοφονία της Υπατίας, η καταστροφή της Βιβλιοθήκης Αλεξάνδρειας αποδεικνύουν ότι είχε καλλιεργηθεί ένα κλίµα που δεν ευνοούσε την εξέλιξη της επιστηµονικής έρευνας Χριστιανίδης σελ Χριστιανίδης σελ Χριστιανίδης 257, Χριστιανίδης σελ Χριστιανίδης σελ 259 6

7 Ο ιόφαντος αποτέλεσε την εξαίρεση στο γενικότερο κλίµα παρακµής στα µέσα του 3 αιώνα µχ. Εισάγει µια ειδική ορολογία και µια σειρά από συντοµογραφίες. Η Εισαγωγή των Αριθµητικών αποτελεί το αρχαιότερο εγχειρίδιο Άλγεβρας στην ιστορία µαθηµατικών. Η καινοτοµία είναι ότι κάνει υπολογισµούς µε τον άγνωστο. Το έργο του έχει αλγεβρικό χαρακτήρα. Αποτέλεσε ο ιόφαντος παράδειγµα πρωτότυπης σκέψης, ο οποίος επέδρασε στους µαθηµατικούς τον 16 ο και τον 17 ο αιώνα και συνέβαλε στη γέννηση της άλγεβρας. 25 ΣΥΜΠΕΡΑΣΜΑΤΑ Το έργο που ξεχώρισε από την όλη δραστηριότητα του Ευκλείδη είναι τα Στοιχεία, το πιο γνωστό σύγγραµµα στην ιστορία των µαθηµατικών. Μεγάλη είναι η συµβολή του Ευκλείδη στο χώρο των µαθηµατικών. Το έργο αυτό είναι το αρχαιότερο παράδειγµα έργου στην ιστορία, στο οποίο παρατηρείται η πιο συνεπής εφαρµογή της αξιωµατικής- παραγωγικής µεθόδου. 26 Η σκέψη του Αρχιµήδη διακρίνεται για τη µεθοδικότητα, την άψογη τεχνική και την πληρότητα των συλλογισµών του. Παρουσίασε µέσω της µαθηµατικής γλώσσας απλές γνώσεις και εµπειρίες. ύσκολες θεµελιώδεις προτάσεις διατυπώνονται από τον Αρχιµήδη µε τον πιο απλό τρόπο. 27 Συνδέει όλους τους κλάδους της επιστήµης, δανείζοντας αρχές από το ένα για να διατυπώσει τα θεωρήµατα των άλλων. Οι λόγοι της άνθισης των επιστηµών στην ελληνιστική περίοδο είναι νέες πολιτικές και κοινωνικές συνθήκες, το ενδιαφέρον των βασιλιάδων για την επιστηµονική εξέλιξη, την οποία ήθελαν οι ίδιοι να αξιοποιήσουν στις επιδιώξεις τους, η οργάνωση βιβλιοθηκών και οι επιχορηγήσεις. Από τον 3 ο µχ αιώνα αρχίζει να παρακµάζει η ελληνική επιστήµη λόγω των γενικότερων πολιτικών και κοινωνικών αναταραχών, αλλά κυρίως λόγω της διακοπής της προφορικής παράδοσης και του ιδεολογικού υποβάθρου του νεοπλατωνισµού και του χριστιανισµού. 25 Χριστιανίδης Χριστιανίδης σελ Φίλη 24,26 7

8 ΒΙΒΛΙΟΓΡΑΦΙΑ Χριστιανίδης κα, Εγχειρίδιο ΕΑΠ, Β τόµος Farrington B., Η επιστήµη στην αρχαία Ελλάδα, Κάλβος Χριστίνα Φίλη, Αρχιµήδης, Ελευθεροτυπία, Ιστορικά,

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 18.03.14 Χ. Χαραλάμπους Πως ορίζονται αξιωματικά από το σύστημα των ρητών αριθμών οι πραγματικοί αριθμοί? Τομές του Dedekind (1831-1916) στους ρητούς: δημιουργία των άρρητων (αξιωματική

Διαβάστε περισσότερα

1 ο Μαθητικό Συνέδριο Έρευνας και Επιστήμης Μάρτιος 2017

1 ο Μαθητικό Συνέδριο Έρευνας και Επιστήμης Μάρτιος 2017 1 ο Μαθητικό Συνέδριο Έρευνας και Επιστήμης Μάρτιος 2017 Αναγνώστου Σαραφιανός, Γαβρίδης Δημήτριος, Μαραντίδου Χριστίνα Επιβλέπων καθηγητής: Νίκος Τερψιάδης Πειραματικό Λύκειο Πανεπιστημίου Μακεδονίας

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΣΧΟΛΕΣ ΣΤΟ ΒΥΖΑΝΤΙΟ. Ολυμπία Μπάρμπα Μπάμπης Χιώτης Κων/να Μάγγου 2017, Β3 Γυμνασίου

ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΣΧΟΛΕΣ ΣΤΟ ΒΥΖΑΝΤΙΟ. Ολυμπία Μπάρμπα Μπάμπης Χιώτης Κων/να Μάγγου 2017, Β3 Γυμνασίου ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΣΧΟΛΕΣ ΣΤΟ ΒΥΖΑΝΤΙΟ Ολυμπία Μπάρμπα Μπάμπης Χιώτης Κων/να Μάγγου 2017, Β3 Γυμνασίου ΒΑΣΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ ΓΙΑ ΤΟ ΒΥΖΑΝΤΙΟ H Βυζαντινή Αυτοκρατορία (αλλιώς Βυζάντιο, Ανατολική Ρωμαϊκή Αυτοκρατορία

Διαβάστε περισσότερα

6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο:

6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο: 6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε στο

Διαβάστε περισσότερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα [ 1 ] Πανεπιστήµιο Κύπρου Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα Νικόλαος Στυλιανόπουλος Ηµερίδα Ιστορία των Μαθηµατικών Πανεπιστήµιο Κύπρου Νοέµβριος 2016 [ 2 ] Πανεπιστήµιο Κύπρου υσκολίες

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Ονοµατεπώνυµο: Διάρκεια: (3 45)+5=50 min Τµήµα: ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Ζήτηµα ο Ένα στερεό µπορεί να στρέφεται γύρω από σταθερό άξονα και αρχικά ηρεµεί. Σε µια στιγµή δέχεται (ολική) ροπή

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

1.6.3 Ιατρικές και βιολογικές θεωρίες στον Πλάτωνα και στον Αριστοτέλη Η αρχαία ελληνική ιατρική µετά τον Ιπποκράτη

1.6.3 Ιατρικές και βιολογικές θεωρίες στον Πλάτωνα και στον Αριστοτέλη Η αρχαία ελληνική ιατρική µετά τον Ιπποκράτη 1 2 Περιεχόµενα Πρόλογος...5 Εισαγωγή: Οι Απαρχές της Ελληνικής Επιστήµης...8 Κεφάλαιο 1: Η Αρχαία Ελληνική Επιστήµη...24 1.1 Οι φυσικές θεωρίες των Προσωκρατικών φιλοσόφων...25 1.1.1 H πρώιµη ιωνική φιλοσοφική

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα. εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς

Διαβάστε περισσότερα

Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία

Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία ΕΠΙΣΤΗΜΕΣ ΣΤΗΝ ΑΡΧΑΙΑ ΑΙΓΥΠΤΟ H γενική τάση των κατοίκων της Αιγύπτου στις επιστήμες χαρακτηριζόταν από την προσπάθεια

Διαβάστε περισσότερα

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1 EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1. Από την ίδια γραµµή αφετηρίας(από το ίδιο ύψος) ενός κεκλιµένου επιπέδου αφήστε να κυλήσουν, ταυτόχρονα προς τα κάτω, δύο κυλίνδροι της

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία

Ευκλείδεια Γεωμετρία Ευκλείδεια Γεωμετρία Γεωμετρία Γεω + μετρία Γη + μετρώ Οι πρώτες γραπτές μαρτυρίες γεωμετρικών γνώσεων ανάγονται στην τρίτη με δεύτερη χιλιετία π.χ. και προέρχονται από τους λαούς της αρχαίας Αιγύπτου

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 27.03.12 Χ. Χαραλάμπους Προσέγγιση για το π (Αρχιμήδης) "Κύκλου μέτρησις" Το θεώρημα εκφράζει τον λόγο της περιφέρειας του κύκλου ως προς τη διάμετρο του κύκλου, δηλ. το π. 3 10 / 71

Διαβάστε περισσότερα

Κωνικές Τομές: Η Γεωμετρία των Σκιών. Κοινή εργασία με τους Σπύρο Στίγκα και Δημήτρη Θεοδωράκη

Κωνικές Τομές: Η Γεωμετρία των Σκιών. Κοινή εργασία με τους Σπύρο Στίγκα και Δημήτρη Θεοδωράκη Κωνικές Τομές: Η Γεωμετρία των Σκιών Κοινή εργασία με τους Σπύρο Στίγκα και Δημήτρη Θεοδωράκη Ιστορικά Η μεταφορά αντικειμένων του Χώρου των τριών διαστάσεων στο επίπεδο έχει τις ρίζες της στην προϊστορική

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

ΟΜΑΔΑ 4 Ιορδανίδης Γιώργος Βασιλακάκης Ανέστης Καρακάσης Αναστάσιος Μαυρόπουλος Γιώργος Αλή Ογλού Μπουσέ Κόλα Κατερίνα

ΟΜΑΔΑ 4 Ιορδανίδης Γιώργος Βασιλακάκης Ανέστης Καρακάσης Αναστάσιος Μαυρόπουλος Γιώργος Αλή Ογλού Μπουσέ Κόλα Κατερίνα ΟΜΑΔΑ 4 Ιορδανίδης Γιώργος Βασιλακάκης Ανέστης Καρακάσης Αναστάσιος Μαυρόπουλος Γιώργος Αλή Ογλού Μπουσέ Κόλα Κατερίνα Απολλώνιος ο Περγαίος γεννήθηκε το 265 π.χ. και πέθανε το 170 π.χ. Μεγάλος μελετητής

Διαβάστε περισσότερα

Διαγώνισμα Μηχανική Στερεού Σώματος

Διαγώνισμα Μηχανική Στερεού Σώματος Διαγώνισμα Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό.

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό. Αρχιμήδης ο Συρακούσιος Ο μεγαλύτερος μαθηματικός της αρχαιότητας και από τους μεγαλύτερους όλων των εποχών. Λέγεται ότι υπήρξε μαθητής του Ευκλείδη, ότι ταξίδεψε στην Αίγυπτο, σπούδασε στην Αλεξάνδρεια

Διαβάστε περισσότερα

Μηχανική Στερεού Σώματος

Μηχανική Στερεού Σώματος Μηχανική Στερεού Σώματος 1. Ο ομογενής οριζόντιος δίσκος ακτίνας R και μάζας Μ, περιστρέφεται γύρω από κατακόρυφο άξονα που περνά από το κέντρο του με γωνιακή ταχύτητα ω 1. Μυρμήγκι μάζας m= 2 M που αρχικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος 2013-14 Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΗΣ ΚΑΙ ΤΟ ΕΡΓΟ ΤΟΥ

ΕΥΚΛΕΙΔΗΣ ΚΑΙ ΤΟ ΕΡΓΟ ΤΟΥ ΕΥΚΛΕΙΔΗΣ Η ΖΩΗ ΚΑΙ ΤΟ ΕΡΓΟ ΤΟΥ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Κυριακή Ιορδανίδου, ΠΕ03 Μαθηματικών ΣΧΟΛΕΙΟ 1 ο Γυμνάσιο Χαριλάου Θεσσαλονίκη, 2018 Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Σε αυτή την

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΙΣΤΟΡΙΑ ΤΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΙΣΤΟΡΙΑ ΤΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΙΣΤΟΡΙΑ ΤΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΟΜΑΔΑ Α ΘΕΜΑ Α1 Α.1.1. Να γράψετε στο τετράδιό σας τα

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τα Μαθηματικά στην αρχαία Ελλάδα. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/02/7 ΕΠΙΜΕΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 13.03.14 Χ. Χαραλάμπους Εντονες πυθαγόρειες επιδράσεις. Η Γεωμετρία και τα Μαθηματικά έχουν μια ξεχωριστή ξχ θέση. Ουδείς αγεωμέτρητος εισί Στον κόσμο των ιδεών τα μαθηματικά αντικείμενα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s] ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 017 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Μ Τετάρτη 1 Απριλίου 017 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( )

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( ) Ερωτήσεις ανάπτυξης. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι β ( f () f () ) + α ηµ d β α = [f () ηµ] - [f () συν] β α. ( ) β) Αν f () = ηµ, να αποδείξετε ότι f () + f ()

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4 Ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση. ΘΕΜΑ Β Ένα ομογενές σώμα με κανονικό γεωμετρικό σχήμα κυλίεται, χωρίς να

Διαβάστε περισσότερα

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Τετάρτη 12 Απριλίου Θέμα 1ο

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Τετάρτη 12 Απριλίου Θέμα 1ο Διαγώνισμα Μηχανική Στερεού Σώματος Τετάρτη 12 Απριλίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Η γωνιακή επιτάχυνση ενός ομογενούς δίσκου που

Διαβάστε περισσότερα

α. µόνο µεταφορική. β. µόνο στροφική. γ. σύνθετη. δ. ακινησία.

α. µόνο µεταφορική. β. µόνο στροφική. γ. σύνθετη. δ. ακινησία. ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 24 ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΜΑ Α ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΘΕΜΑ Α (Μονάδες 25) A1. Σε

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α 6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι Ηµεροµηνία : 10 Μάρτη 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστη απάντηση [4 5 = 20 µονάδες] Α.1. Στερεό

Διαβάστε περισσότερα

ΕΠΠΣ & ΑΠΣ ΜΑΘΗΜΑΤΙΚΩΝ (ΦΕΚ 303/2003 σσ )

ΕΠΠΣ & ΑΠΣ ΜΑΘΗΜΑΤΙΚΩΝ (ΦΕΚ 303/2003 σσ ) ΗΛΙΑΣ. ΑΝΑΓΝΩΣΤΟΥ, Σχολικός Σύµβουλος 41 ης ΕΠ Αττικής ΣΤΕΛΙΟΣ Κ. ΚΡΑΣΣΑΣ, Σχολικός Σύµβουλος 31 ης ΕΠ Αττικής ΕΠΠΣ & ΑΠΣ ΜΑΘΗΜΑΤΙΚΩΝ (ΦΕΚ 303/2003 σσ. 3983-4008) ΣΚΟΠΟΣ ΣΤΟ ΕΠΠΣ 1. Σκοπός της ιδασκαλίας

Διαβάστε περισσότερα

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1 ΙΟΥΝΙΟΥ 017 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει σωστά την

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

Μεθοδολογίες στην Μηχανική των Ρευστών

Μεθοδολογίες στην Μηχανική των Ρευστών Μεθοδολογίες στην Μηχανική των Ρευστών η Μεθοδολογία: «Ανυψωτήρας» Το υγρό του δοχείου κλείνεται με δύο έμβολα που βρίσκονται στην ίδια οριζόντιο. Στο έμβολο με επιφάνεια Α ασκείται δύναμη F. ον Η F ασκεί

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Πέτρος Κλιάπης Τάξη Στ Βοηθητικό υλικό: Σχολικό βιβλίο μάθημα 58 Δραστηριότητα 1, ασκήσεις 2, 3 και δραστηριότητα με προεκτάσεις Προσδοκώμενα

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 24 Γενάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΔΙΔΑΚΤΕΑ ΥΛΗ Ι. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως, της απόλυτης τιμής, των προόδων, της συνάρτησης κ.ά.,

Διαβάστε περισσότερα

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017

ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017 ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά σας. Σας δίνονται

Διαβάστε περισσότερα

Παρασκευή-Ανδριάννα Μαρούτσου Πρότυπο Γυμνάσιο Ευαγγελικής Σχολής Σμύρνης Επιβλέπων καθηγητής: Νικόλαος Μεταξάς, Δρ. Μαθηματικών Θεματική Ενότητα:

Παρασκευή-Ανδριάννα Μαρούτσου Πρότυπο Γυμνάσιο Ευαγγελικής Σχολής Σμύρνης Επιβλέπων καθηγητής: Νικόλαος Μεταξάς, Δρ. Μαθηματικών Θεματική Ενότητα: Παρασκευή-Ανδριάννα Μαρούτσου Πρότυπο Γυμνάσιο Ευαγγελικής Σχολής Σμύρνης Επιβλέπων καθηγητής: Νικόλαος Μεταξάς, Δρ. Μαθηματικών Θεματική Ενότητα: Μαθηματικά Ο σκοπός της έρευνας είναι η αναζήτηση για

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2 ΚΕΦΑΛΑΙΟ 4 Ροπή αδράνειας - Θεμελιώδης νόμος της στροφικής κίνησης 4.1 Η ροπή αδράνειας ενός σώματος εξαρτάται: α. μόνο από τη μάζα του σώματος β. μόνο τη θέση του άξονα γύρω από τον οποίο μπορεί να περιστρέφεται

Διαβάστε περισσότερα

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας ΜΕΡΟΣ ΠΡΩΤΟ Ένα από τα δύο κομβικά ερευνητικά προβλήματα που οι συστηματικές

Διαβάστε περισσότερα

Γεωμετρία. I. Εισαγωγή

Γεωμετρία. I. Εισαγωγή I. Εισαγωγή Γεωμετρία Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι μαθητές έχουν έρθει σε

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο 13: ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Θεωρούµε ένα επίπεδο p, µια κλειστή πολυγωνική γραµµή του p και µια ευθεία ε που έχει µε το p ένα µόνο κοινό σηµείο. Από κάθε σηµείο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,

Διαβάστε περισσότερα

Πρόλογος. 1.Τίτλος της έρευνας. 2.Παρουσίαση του προβλήµατος. 3.Παρουσίαση του σκοπού της έρευνας.

Πρόλογος. 1.Τίτλος της έρευνας. 2.Παρουσίαση του προβλήµατος. 3.Παρουσίαση του σκοπού της έρευνας. Πρόλογος 1.Τίτλος της έρευνας. 2.Παρουσίαση του προβλήµατος. 3.Παρουσίαση του σκοπού της έρευνας. 4.Παρουσίαση των κοινωνικών αναγκών που εξυπηρετεί η έρευνα. 5. ιαµωρφωση της υπόθεσης της έρευνας. 6.Ανάλυση

Διαβάστε περισσότερα

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 20.03.14 Χ. Χαραλάμπους Είναι το 5 ο αίτημα όντως αίτημα και όχι πρόταση? Η πρώτη φορά που το αίτημα χρησιμοποιείται στα Στοιχεία είναι στην απόδειξη της Πρότασης 29. ( Η Πρόταση 29

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΜΑΪΟΥ 03 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία συµπληρώνει

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 8.04.14 Χ. Χαραλάμπους Παράδειγμα από το κείμενο του Abu Kamil (Αίγυπτος: γ ς ~850-930 μ.χ.) ) Σε ένα πρόβλημα υπολογίζει πως να χωρίσει κανείς το 10 σε δύο μέρη, έτσι ώστε όταν το

Διαβάστε περισσότερα

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα. Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται

Διαβάστε περισσότερα

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων 3 1.1 Διανύσματα 1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων ΑΣΚΗΣΗ 1.1 Να βρεθεί η γωνία που σχηματίζουν τα διανύσματα î + ĵ + ˆk και î + ĵ ˆk. z k i j y x Τα δύο διανύσματα που προκύπτουν από

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/04 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα

Διαβάστε περισσότερα

Δραστηριότητα Εύρεση του π

Δραστηριότητα Εύρεση του π Δραστηριότητα Εύρεση του π Ανάµεσα σε πολλά πρωτότυπα και εντυπωσιακά επιτεύγµατα του Αρχιµήδη, η µέθοδός του για την εύρεση µιας αριθµητικής προσέγγισης για το π ξεχωρίζει για την κοµψότητα και την ασυνήθιστη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας»

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Εισαγωγή Επιστημονική μέθοδος Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Διατύπωση αξιωματική της αιτίας μια κίνησης

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003, Λευκωσία Τηλ. 357 22378101 Φαξ: 357 22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ημερομηνία:

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

Ελληνιστική Περίοδος Πολιτισμός. Τάξη: Α4 Ονόματα μαθητών : Παρλιάρου Βάσω Σφήκας Ηλίας

Ελληνιστική Περίοδος Πολιτισμός. Τάξη: Α4 Ονόματα μαθητών : Παρλιάρου Βάσω Σφήκας Ηλίας Ελληνιστική Περίοδος Πολιτισμός Τάξη: Α4 Ονόματα μαθητών : Παρλιάρου Βάσω Σφήκας Ηλίας ελληνιστικός ονομάστηκε o πολιτισμός που προήλθε από τη σύνθεση ελληνικών και ανατολικών στοιχείων κατά τους τρεις

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan)

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) On-the-fly feedback, Upper Secondary Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) Τάξη: Β Λυκείου Διάρκεια ενότητας Μάθημα: Φυσική Θέμα: Ταλαντώσεις (αριθμός Χ διάρκεια μαθήματος): 6X90

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 28 Φλεβάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο.

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ας μελετήσουμε τι συμβαίνει, όταν ένα υγρό περιέχεται σε ένα ακίνητο δοχείο. Τι δυνάμεις ασκεί στο δοχείο; Τι σχέση έχουν αυτές με το βάρος του υγρού; Εφαρμογή

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 3 1.1 Γενικά.......................... 3 1.2 Ορισµοί......................... 4 1.3 Στοιχειώδεις Πράξεις Μεταξύ ιανυσµάτων....... 8 1.3.1 Γινόµενο Αριθµού επί ιάνυσµα.........

Διαβάστε περισσότερα

ΟΜΑΔΑ Α ΘΕΜΑ Α1 Α.1.1.

ΟΜΑΔΑ Α ΘΕΜΑ Α1 Α.1.1. ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δʹ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 7 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΙΣΤΟΡΙΑ ΤΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΘΕΜΑ Α1 ΟΜΑΔΑ Α Α.1.1. Οι προτάσεις που ακολουθούν,

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009-2015 Σελίδα 1 από 13 Μηχανική Στερεού Σώματος 1. Στο πιο κάτω σχήμα φαίνονται δύο όμοιες πλατφόρμες οι οποίες μπορούν να περιστρέφονται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

Διαγώνισμα: Μηχανική Στερεού Σώματος

Διαγώνισμα: Μηχανική Στερεού Σώματος Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα