Ταξινόμηση. Σαλτογιάννη Αθανασία
|
|
- Ἰφιγένεια ebrew Κολιάτσος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ταξινόμηση Σαλτογιάννη Αθανασία
2 Ταξινόμηση
3 Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση;
4 Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ποια είδη αλγορίθμων ταξινόμησης υπάρχουν;
5 Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ποια είδη αλγορίθμων ταξινόμησης υπάρχουν; Κατηγοριοποίηση βάσει πράξεων Αλγόριθμοι βασιζόμενοι σε συγκρίσεις Αλγόριθμοι που χρησιμοποιούν κάποια πληροφορία
6 Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ποια είδη αλγορίθμων ταξινόμησης υπάρχουν; Κατηγοριοποίηση βάσει πράξεων Αλγόριθμοι βασιζόμενοι σε συγκρίσεις Αλγόριθμοι που χρησιμοποιούν κάποια πληροφορία Κατηγοριοποίηση βάσει του χώρου που αποθηκεύεται η είσοδος Αλγόριθμοι για Κύρια Μνήμη Αλγόριθμοι για Δευτερεύουσα Μνήμη
7 Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ποια είδη αλγορίθμων ταξινόμησης υπάρχουν; Κατηγοριοποίηση βάσει πράξεων Αλγόριθμοι βασιζόμενοι σε συγκρίσεις Αλγόριθμοι που χρησιμοποιούν κάποια πληροφορία Κατηγοριοποίηση βάσει του χώρου που αποθηκεύεται η είσοδος Αλγόριθμοι για Κύρια Μνήμη Αλγόριθμοι για Δευτερεύουσα Μνήμη Τι είναι Κύρια Μνήμη; Τι είναι Δευτερεύουσα Μνήμη;
8 Bubble Sort Ταξινόμηση Φυσαλίδας Έχω τον πίνακα S = {s 1, s 2,, s n } προς ταξινόμηση Σαρώνω όλο τον πίνακα από την αρχή Συγκρίνω κάθε φορά τα στοιχεία S i και S i + 1 Εναλλάσσω τα στοιχεία έτσι ώστε το μικρότερο να είναι αριστερά και το μεγαλύτερο δεξιά Συνεχίζω μέχρι να σαρωθεί όλος ο πίνακας και το μεγαλύτερο στοιχείο φτάσει δεξιά Επαναλαμβάνω την παραπάνω διαδικασία για τα μη ταξινομημένα στοιχεία που έμειναν
9 Bubble Sort Ταξινόμηση Φυσαλίδας Έχω τον πίνακα S = {s 1, s 2,, s n } προς ταξινόμηση Σαρώνω όλο τον πίνακα από την αρχή Συγκρίνω κάθε φορά τα στοιχεία S i και S i + 1 Εναλλάσσω τα στοιχεία έτσι ώστε το μικρότερο να είναι αριστερά και το μεγαλύτερο δεξιά Συνεχίζω μέχρι να σαρωθεί όλος ο πίνακας και το μεγαλύτερο στοιχείο φτάσει δεξιά Επαναλαμβάνω την παραπάνω διαδικασία για τα μη ταξινομημένα στοιχεία που έμειναν Αλγόριθμος για Κύρια Μνήμη Αλγόριθμος βασιζόμενος σε συγκρίσεις
10 Bubble Sort Ταξινόμηση Φυσαλίδας Έστω S = {15, 9, 6, 22, 10, 8, 4}
11 Bubble Sort Ταξινόμηση Φυσαλίδας Έστω S = {15, 9, 6, 22, 10, 8, 4}
12 Bubble Sort Ταξινόμηση Φυσαλίδας Έστω S = {15, 9, 6, 22, 10, 8, 4} Συγκρίνω 15 και 9 15, 9, 6, 22, 10, 8, 4
13 Bubble Sort Ταξινόμηση Φυσαλίδας Έστω S = {15, 9, 6, 22, 10, 8, 4} Συγκρίνω 15 και 9 Εναλλάσσω 15, 9, 6, 22, 10, 8, 4
14 Bubble Sort Ταξινόμηση Φυσαλίδας Έστω S = {15, 9, 6, 22, 10, 8, 4} Συγκρίνω 15 και 9 Εναλλάσσω 15, 9, 6, 22, 10, 8, 4 9, 15, 6, 22, 10, 8, 4
15 Bubble Sort Ταξινόμηση Φυσαλίδας Έστω S = {15, 9, 6, 22, 10, 8, 4} Συγκρίνω 15 και 9 Εναλλάσσω Συγκρίνω 15 και 6 15, 9, 6, 22, 10, 8, 4 9, 15, 6, 22, 10, 8, 4 9, 15, 6, 22, 10, 8, 4
16 Bubble Sort Ταξινόμηση Φυσαλίδας Έστω S = {15, 9, 6, 22, 10, 8, 4} Συγκρίνω 15 και 9 Εναλλάσσω Συγκρίνω 15 και 6 Εναλλάσσω 15, 9, 6, 22, 10, 8, 4 9, 15, 6, 22, 10, 8, 4 9, 15, 6, 22, 10, 8, 4
17 Bubble Sort Ταξινόμηση Φυσαλίδας Έστω S = {15, 9, 6, 22, 10, 8, 4} Συγκρίνω 15 και 9 Εναλλάσσω Συγκρίνω 15 και 6 Εναλλάσσω 15, 9, 6, 22, 10, 8, 4 9, 15, 6, 22, 10, 8, 4 9, 15, 6, 22, 10, 8, 4 9, 6, 15, 22, 10, 8, 4
18 Bubble Sort Ταξινόμηση Φυσαλίδας Έστω S = {15, 9, 6, 22, 10, 8, 4} Συγκρίνω 15 και 9 Εναλλάσσω Συγκρίνω 15 και 6 Εναλλάσσω Συγκρίνω 15 και 22 Αφήνω Συγκρίνω 22 και 10 Εναλλάσσω Συγκρίνω 22 και 8 Εναλλάσσω Συγκρίνω 22 και 4 Εναλλάσσω 15, 9, 6, 22, 10, 8, 4 9, 15, 6, 22, 10, 8, 4 9, 15, 6, 22, 10, 8, 4 9, 6, 15, 22, 10, 8, 4 9, 6, 15, 22, 10, 8, 4 9, 6, 15, 22, 10, 8, 4 9, 6, 15, 10, 22, 8, 4 9, 6, 15, 10, 8, 22, 4 9, 6, 15, 10, 8, 4, 22
19 Bubble Sort Ταξινόμηση Φυσαλίδας Έστω S = {15, 9, 6, 22, 10, 8, 4} Συγκρίνω 15 και 9 Εναλλάσσω Συγκρίνω 15 και 6 Εναλλάσσω Συγκρίνω 15 και 22 Αφήνω Συγκρίνω 22 και 10 Εναλλάσσω Συγκρίνω 22 και 8 Εναλλάσσω Συγκρίνω 22 και 4 Εναλλάσσω Επαναλαμβάνω τα βήματα για αυτό το κομμάτι 15, 9, 6, 22, 10, 8, 4 9, 15, 6, 22, 10, 8, 4 9, 15, 6, 22, 10, 8, 4 9, 6, 15, 22, 10, 8, 4 9, 6, 15, 22, 10, 8, 4 9, 6, 15, 22, 10, 8, 4 9, 6, 15, 10, 22, 8, 4 9, 6, 15, 10, 8, 22, 4 9, 6, 15, 10, 8, 4, 22
20 Bubble Sort Ταξινόμηση Φυσαλίδας Έστω S = {15, 9, 6, 22, 10, 8, 4} Συγκρίνω 15 και 9 Εναλλάσσω Συγκρίνω 15 και 6 Εναλλάσσω Συγκρίνω 15 και 22 Αφήνω Συγκρίνω 22 και 10 Εναλλάσσω Συγκρίνω 22 και 8 Εναλλάσσω Συγκρίνω 22 και 4 Εναλλάσσω Επαναλαμβάνω τα βήματα για αυτό το κομμάτι 15, 9, 6, 22, 10, 8, 4 9, 15, 6, 22, 10, 8, 4 9, 15, 6, 22, 10, 8, 4 9, 6, 15, 22, 10, 8, 4 9, 6, 15, 22, 10, 8, 4 9, 6, 15, 22, 10, 8, 4 9, 6, 15, 10, 22, 8, 4 9, 6, 15, 10, 8, 22, 4 9, 6, 15, 10, 8, 4, 22
21 Bubble Sort Ταξινόμηση Φυσαλίδας Χειρότερη περίπτωση Αντίστροφα ταξινομημένος πίνακας Στο πέρασμα i χρειάζονται (n-i) συγκρίσεις και ανταλλαγές Συνολικό πλήθος συγκρίσεων και ανταλλαγών n 1 i=1 i = n n 1 2 = O(n 2 ) Καλύτερη περίπτωση Ταξινομημένος πίνακας Κανένα στοιχείο δεν μετακινείται Συνολικό πλήθος συγκρίσεων n 1 1 = (n 1) = O(n) i=1
22 Insertion Sort Ταξινόμηση με Εισαγωγή Έχω τον πίνακα S = {s 1, s 2,, s n } προς ταξινόμηση Αρχικά όλα τα στοιχεία είναι μη ταξινομημένα Ταξινομούμε τα στοιχεία ένα κάθε φορά Παίρνουμε ένα στοιχεία από αυτά που δεν έχουν ταξινομηθεί (i 2) Βρίσκουμε την κατάλληλη θέση μεταξύ των ταξινομημένων Μετακινούμε τα μεγαλύτερα στοιχεία μία θέση δεξιά Εισάγουμε το στοιχείο στην θέση που απελευθερώθηκε Επαναλαμβάνουμε μέχρι να ταξινομήσουμε όλα τα στοιχεία
23 Insertion Sort Ταξινόμηση με Εισαγωγή Έχω τον πίνακα S = {s 1, s 2,, s n } προς ταξινόμηση Αρχικά όλα τα στοιχεία είναι μη ταξινομημένα Ταξινομούμε τα στοιχεία ένα κάθε φορά Παίρνουμε ένα στοιχεία από αυτά που δεν έχουν ταξινομηθεί (i 2) Βρίσκουμε την κατάλληλη θέση μεταξύ των ταξινομημένων Μετακινούμε τα μεγαλύτερα στοιχεία μία θέση δεξιά Εισάγουμε το στοιχείο στην θέση που απελευθερώθηκε Επαναλαμβάνουμε μέχρι να ταξινομήσουμε όλα τα στοιχεία Αλγόριθμος για Κύρια Μνήμη Αλγόριθμος βασιζόμενος σε συγκρίσεις
24 Insertion Sort Ταξινόμηση με Εισαγωγή Έστω S = {25, 57, 48, 37, 12, 92, 86, 33}
25 Insertion Sort Ταξινόμηση με Εισαγωγή Έστω S = {25, 57, 48, 37, 12, 92, 86, 33} Βήμα 1 Βήμα 2 Βήμα 3 Βήμα 4 Βήμα 5 Βήμα 6 Βήμα
26 Heap Sort Ταξινόμηση Σωρού Έχω τον πίνακα S = {s 1, s 2,, s n } προς ταξινόμηση Φάση Δόμησης Μετατρέπω τον πίνακα S σε σωρό ξεκινώντας από την θέση 1 Φάση Διαλογής Διαλέγω και απομακρύνω το μεγαλύτερο στοιχείο, το οποίο θα το φέρω στην ρίζα του σωρού. Επαναλαμβάνω για τα υπόλοιπα στοιχεία φέρνοντας στην ρίζα ξεκινώντας πάλι από την θέση 1. Θέλω πάντα να διατηρείται η ιδιότητα του Σωρού, δηλ. τιμή(πατέρας(v)) τιμή(v)
27 Heap Sort Ταξινόμηση Σωρού Έχω τον πίνακα S = {s 1, s 2,, s n } προς ταξινόμηση Φάση Δόμησης Μετατρέπω τον πίνακα S σε σωρό ξεκινώντας από την θέση 1 Φάση Διαλογής Διαλέγω και απομακρύνω το μεγαλύτερο στοιχείο, το οποίο θα το φέρω στην ρίζα του σωρού. Επαναλαμβάνω για τα υπόλοιπα στοιχεία φέρνοντας στην ρίζα ξεκινώντας πάλι από την θέση 1. Θέλω πάντα να διατηρείται η ιδιότητα του Σωρού, δηλ. τιμή(πατέρας(v)) τιμή(v) Αλγόριθμος για Κύρια Μνήμη Αλγόριθμος βασιζόμενος σε συγκρίσεις
28 Heap Sort Ταξινόμηση Σωρού Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
29 Heap Sort Ταξινόμηση Σωρού Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
30 Heap Sort Ταξινόμηση Σωρού Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
31 Heap Sort Ταξινόμηση Σωρού Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
32 Heap Sort Ταξινόμηση Σωρού Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
33 Heap Sort Ταξινόμηση Σωρού Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
34 Heap Sort Ταξινόμηση Σωρού Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
35 Heap Sort Ταξινόμηση Σωρού Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
36 Heap Sort Ταξινόμηση Σωρού Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
37 Heap Sort Ταξινόμηση Σωρού Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
38 Heap Sort Ταξινόμηση Σωρού Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
39 Heap Sort Ταξινόμηση Σωρού Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
40 Heap Sort Ταξινόμηση Σωρού Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
41 Heap Sort Ταξινόμηση Σωρού 12 Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
42 Heap Sort Ταξινόμηση Σωρού 12 Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
43 Heap Sort Ταξινόμηση Σωρού 12 Έστω S = {11, 6, 4, 1, 3, 7, 12, 8}
44 Heap Sort Ταξινόμηση Σωρού 12 Έστω S = {11, 6, 4, 1, 3, 7, 12, 8} Με τον ίδιο τρόπο συνεχίζουμε για τα υπόλοιπα
45 Merge Sort Ταξινόμηση με Συμβολή Έχω τον πίνακα S = {s 1, s 2,, s n } προς ταξινόμηση Διαιρούμε τον πίνακα σε δύο περίπου ίσα μέρη Ταξινομούμε αναδρομικά κάθε μέρος του πίνακα Συγχωνεύουμε τα δύο μέρη Αλγόριθμος για Κύρια Μνήμη Αλγόριθμος βασιζόμενος σε συγκρίσεις
46 Merge Sort Ταξινόμηση με Συμβολή Έστω S = {25, 57, 48, 37, 12, 92, 86, 33}
47 Merge Sort Ταξινόμηση με Συμβολή Έστω S = {25, 57, 48, 37, 12, 92, 86, 33}
48 Merge Sort Ταξινόμηση με Συμβολή Έστω S = {25, 57, 48, 37, 12, 92, 86, 33}
49 Merge Sort Ταξινόμηση με Συμβολή Έστω S = {25, 57, 48, 37, 12, 92, 86, 33}
50 Merge Sort Ταξινόμηση με Συμβολή Έστω S = {25, 57, 48, 37, 12, 92, 86, 33}
51 Merge Sort Ταξινόμηση με Συμβολή Έστω S = {25, 57, 48, 37, 12, 92, 86, 33}
52 Merge Sort Ταξινόμηση με Συμβολή Έστω S = {25, 57, 48, 37, 12, 92, 86, 33}
53 Merge Sort Ταξινόμηση με Συμβολή Έστω S = {25, 57, 48, 37, 12, 92, 86, 33}
54 Merge Sort Ταξινόμηση με Συμβολή
55 Merge Sort Ταξινόμηση με Συμβολή
56 Merge Sort Ταξινόμηση με Συμβολή
57 Merge Sort Ταξινόμηση με Συμβολή
58 Merge Sort Ταξινόμηση με Συμβολή Χειρότερη Περίπτωση: O(n logn) Χειρότερη Περίπτωση: O(n logn)
59 QuickSort Γρήγορη Ταξινόμηση Έχω τον πίνακα S = {s 1, s 2,, s n } προς ταξινόμηση Η βασική ιδέα του αλγόριθμου βρίσκεται στη διαδικασία διαίρεση Ένα στοιχείο S[i] τοποθετείται στην τελική θέση ταξινόμησης Όλα τα στοιχεία S[0..i-1] είναι μικρότερα ή ίσα του S[i] Όλα τα στοιχεία S[i+1..n-1] είναι μεγαλύτερα ή ίσα του S[i]
60 QuickSort Γρήγορη Ταξινόμηση Έχω τον πίνακα S = {s 1, s 2,, s n } προς ταξινόμηση Η βασική ιδέα του αλγόριθμου βρίσκεται στη διαδικασία διαίρεση Ένα στοιχείο S[i] τοποθετείται στην τελική θέση ταξινόμησης Όλα τα στοιχεία S[0..i-1] είναι μικρότερα ή ίσα του S[i] Όλα τα στοιχεία S[i+1..n-1] είναι μεγαλύτερα ή ίσα του S[i] Υλοποίηση διαίρεσης: Θέτω δείκτη up στο πρώτο στοιχείο του πίνακα και δείκτη down στο τελευταίο στοιχείο του πίνακα. Θέτω οδηγό (pivot) το πρώτο στοιχείο του πίνακα Διατρέχω τον πίνακα από αριστερά προς τα δεξιά με τον up και αναζητώ στοιχείο > pivot και από δεξιά προς τα αριστερά με τον down και αναζητώ στοιχείο pivot. Εναλλάσσω αυτά τα στοιχεία Αλγόριθμος για Κύρια Μνήμη Αλγόριθμος βασιζόμενος σε συγκρίσεις
61 QuickSort Γρήγορη Ταξινόμηση Έστω S = {44, 75, 23, 43, 55, 12, 64, 77, 33}
62 QuickSort Γρήγορη Ταξινόμηση Έστω S = {44, 75, 23, 43, 55, 12, 64, 77, 33} Pivot =
63 QuickSort Γρήγορη Ταξινόμηση Έστω S = {44, 75, 23, 43, 55, 12, 64, 77, 33} Pivot = Up Down
64 QuickSort Γρήγορη Ταξινόμηση Έστω S = {44, 75, 23, 43, 55, 12, 64, 77, 33} Pivot = Up Down 75 >
65 QuickSort Γρήγορη Ταξινόμηση Έστω S = {44, 75, 23, 43, 55, 12, 64, 77, 33} Pivot = Up Down
66 QuickSort Γρήγορη Ταξινόμηση Έστω S = {44, 75, 23, 43, 55, 12, 64, 77, 33} Pivot = Up Down 55 >
67 QuickSort Γρήγορη Ταξινόμηση Έστω S = {44, 75, 23, 43, 55, 12, 64, 77, 33} Pivot = Up Down
68 QuickSort Γρήγορη Ταξινόμηση Έστω S = {44, 75, 23, 43, 55, 12, 64, 77, 33} Pivot = Up Down Οι δείκτες διασταυρώθηκαν οπότε εναλλάσσω τον οδηγό (pivot) με τον δείκτη down.
69 QuickSort Γρήγορη Ταξινόμηση Έστω S = {44, 75, 23, 43, 55, 12, 64, 77, 33} Pivot = Up Down Οι δείκτες διασταυρώθηκαν οπότε εναλλάσσω τον οδηγό (pivot) με τον δείκτη down.
70 QuickSort Γρήγορη Ταξινόμηση Έστω S = {44, 75, 23, 43, 55, 12, 64, 77, 33} Pivot = Up Down Τιμές pivot Τιμές > pivot
71 QuickSort Γρήγορη Ταξινόμηση Έστω S = {44, 75, 23, 43, 55, 12, 64, 77, 33} Pivot = Up Down Τιμές pivot Τιμές > pivot Ακολουθούμε την ίδια διαδικασία για τους υποπίνακες που προέκυψαν
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Ο 1 : ΤΑΞΙΝΟΜΗΣΗ Δ Ρ Ι Τ Σ Α Σ Η Λ Ι Α Σ Υ Π Ο Ψ Η Φ Ι Ο Σ Δ Ι Δ Α Κ Τ Ο Ρ Α Σ
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Ο 1 : ΤΑΞΙΝΟΜΗΣΗ Δ Ρ Ι Τ Σ Α Σ Η Λ Ι Α Σ Υ Π Ο Ψ Η Φ Ι Ο Σ Δ Ι Δ Α Κ Τ Ο Ρ Α Σ ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΑΞΙΝΟΜΗΣΗΣ Ορισμός ταξινόμησης 2 Κατηγορίες αλγορίθμων ταξινόμησης
Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012
Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 7 η. Βασίλης Στεφανής
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 7 η Βασίλης Στεφανής Αλγόριθμοι ταξινόμησης Στην προηγούμενη διάλεξη είδαμε: Binary search Λειτουργεί μόνο σε ταξινομημένους πίνακες Πώς τους ταξινομούμε? Πολλοί τρόποι. Ενδεικτικά:
Ταξινόμηση. Παύλος Εφραιμίδης. Δομές Δεδομένων Ταξινόμηση 1
Ταξινόμηση Παύλος Εφραιμίδης Δομές Δεδομένων Ταξινόμηση 1 Το πρόβλημα της ταξινόμησης Δομές Δεδομένων Ταξινόμηση 2 Ταξινόμηση Δίνεται πολυ-σύνολο Σ με στοιχεία από κάποιο σύμπαν U (πχ. U = το σύνολο των
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 9 ο Ταξινόµηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ταξινόµηση Εισαγωγή Selection sort Insertion sort Bubble sort
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 5. Απλή Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 11/11/2016 Εισαγωγή Η
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 8α: Ταξινόμηση-Σύγκριση αλγορίθμων ταξινόμησης Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ταξινόμηση: Εισαγωγικά. Ταξινόμηση (Sor ng) Αλγόριθμοι Απλής Ταξινόμησης. Βασικά Βήματα των Αλγορίθμων
Ταξινόμηση: Εισαγωγικά Ταξινόμηση (Sor ng) Ορέστης Τελέλης Βασικό πρόβλημα για την Επιστήμη των Υπολογιστών. π.χ. αλφαβητική σειρά, πωλήσεις ανά τιμή, πόλεις με βάση πληθυσμό, Μπορεί να είναι ένα πρώτο
Ταξινόµηση. Παύλος Εφραιµίδης. οµές εδοµένων και
Παύλος Εφραιµίδης 1 Το πρόβληµα της ταξινόµησης 2 3 ίνεται πολυ-σύνολο Σ µε στοιχεία από κάποιο σύµπαν U (πχ. U = το σύνολο των ακεραίων αριθµών). του Σ είναι η επιβολή µιας διάταξης στα στοιχεία του συνόλου
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα.0 Σταύρος Δ. Νικολόπουλος 06-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Ταξινόμηση Selection-Sort Bubble-Sort και
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην
Ταξινόμηση με συγχώνευση Merge Sort
Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων
Αλγόριθμοι ταξινόμησης
Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης BuubleSort, SelectionSort, InsertionSort, Merger Sort, Quick Soft ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι
Εργαστηριακή Άσκηση 1
Εργαστηριακή Άσκηση 1 Επανάληψη προγραμματισμού Βασικοί Αλγόριθμοι Είσοδος τιμών από το πληκτρολόγιο Σε όλα τα προγράμματα που θα γράψουμε στην συνέχεια του εξαμήνου θα χρειαστεί να εισάγουμε τιμές σε
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
Ουρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης
Ουρές Προτεραιότητας: Υπενθύμιση Σωροί / Αναδρομή / Ταξινόμηση Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς (Abstract Data Type) με μεθόδους: Μπορεί να υλοποιηθεί με
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)
Ταχεία Ταξινόμηση Quick-Sort
Ταχεία Ταξινόμηση Quc-Sort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7 9 2 2 9 9 Δομές Δεδομένων και Αλγόριθμοι Εργαστήριο Γνώσης και Ευφυούς Πληροφορικής 1 Outlne Quc-sort Αλγόριθμος Βήμα διαχωρισμού Δένδρο Quc-sort
Αλγόριθμοι Ταξινόμησης Μέρος 2
Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Γιάννης Κουτσονίκος Επίκουρος Καθηγητής Οργάνωση Δεδομένων Δομή Δεδομένων: τεχνική οργάνωσης των δεδομένων με σκοπό την
Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι
Πρόβλημα Ταξινόμησης Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Είσοδος : ακολουθία n αριθμών (α 1, α 2,..., α n
Αλγόριθμοι Ταξινόμησης Μέρος 1
Αλγόριθμοι Ταξινόμησης Μέρος 1 Μανόλης Κουμπαράκης 1 Το Πρόβλημα της Ταξινόμησης Το πρόβλημα της ταξινόμησης (sorting) μιας ακολουθίας στοιχείων με κλειδιά ενός γνωστού τύπου (π.χ., τους ακέραιους ή τις
Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης
Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Εισαγωγή Η τακτοποίηση των δεδομένων με ιδιαίτερη σειρά είναι πολύ σημαντική λειτουργία που ονομάζεται
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 10: Ταξινόμηση Πίνακα Αναζήτηση σε Ταξινομημένο Πίνακα Πρόβλημα Δίνεται πίνακας t από Ν ακεραίους. Ζητούμενο: να ταξινομηθούν τα περιεχόμενα του πίνακα σε αύξουσα αριθμητική
Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης
7η Δραστηριότητα Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης Περίληψη Οι υπολογιστές χρησιμοποιούνται συχνά για την ταξινόμηση καταλόγων, όπως για παράδειγμα, ονόματα σε αλφαβητική σειρά, ραντεβού
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης: Α. SelectoSort Ταξινόμηση με Επιλογή Β. IsertoSort Ταξινόμηση με Εισαγωγή Γ. MergeSort
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort 1, c 3, a 3, b 7, d 7, g 7, e B 0 1 3 4 5 6 7 8 9 1 BucketSort (Ταξινόμηση Κάδου) - Αρχικά θεωρείται ένα κριτήριο κατανομής με βάση το οποίο
Πίνακες. Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος A Εξάμηνο
Πίνακες Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος 2012-13 A Εξάμηνο Πίνακες Η ποιο γνωστή και διαδεδομένη στατική δομή είναι ο πίνακας. Οι πίνακες αποτελούνται από στοιχεία
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 22 Counting sort, bucket sort και radix sort 1 / 16 Ιδιότητες αλγορίθμων ταξινόμησης ευστάθεια (stable
ιαφάνειες παρουσίασης #4
ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ http://www.softlab.ntua.gr/~nickie/courses/progtech/ ιδάσκοντες: Γιάννης Μαΐστρος (maistros@cs.ntua.gr) Στάθης Ζάχος (zachos@cs.ntua.gr) (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης
Heapsort Using Multiple Heaps
sort sort Using Multiple s. Λεβεντέας Χ. Ζαρολιάγκης Τµήµα Μηχανικών Η/Υ & Πληροφορικής 29 Αυγούστου 2008 sort 1 Ορισµός ify Build- 2 sort Πως δουλεύει Ιδιότητες 3 4 Προβλήµατα Προτάσεις Ανάλυση Κόστους
8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων
3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή
3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ 3.1 ΑΝΑ ΡΟΜΗ 3.1.1 Εισαγωγή ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Αναδροµή είναι η µέθοδος κατά την οποία, σε µία γλώσσα προγραµµατισµού, µία διαδικασία ή συνάρτηση έχει την δυνατότητα
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Mergesort Κεφάλαιο 8 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική ταξινόµηση
Merge Sort (Ταξινόμηση με συγχώνευση) 6/14/2007 3:04 AM Merge Sort 1
Merge Sort (Ταξινόμηση με συγχώνευση) 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 6/14/2007 3:04 AM Merge Sort 1 Κύρια σημεία για μελέτη Το παράδειγμα του «διαίρει και βασίλευε» ( 4.1.1) Merge-sort
Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 20: Αλγόριθμοι ΤαξινόμησηςIII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Ε. QuickSort Γρήγορη Ταξινόμηση - Έμμεση Ταξινόμηση - Εξωτερική Ταξινόμηση Διδάσκων:
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Quicksort Κεφάλαιο 7. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Quicksort Κεφάλαιο 7 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Quicksort Ο βασικός αλγόριθµος Χαρακτηριστικά επιδόσεων Μικροί υποπίνακες Μη αναδροµική υλοποίηση Δοµές Δεδοµένων
Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2
Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.
Πληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Επιλογή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[ ] με n στοιχεία (όχι ταξινομημένος). Αριθμός k,
Προχωρημένες έννοιες προγραμματισμού σε C
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr)
Προγραµµατιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Προγραµµατιστικές Τεχνικές Βασίλειος Βεσκούκης ρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωµύλος Κορακίτης
Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Συγχωνευτική Ταξινόμηση (Merge Sort) 7 2 9 4 2 4 7 9 7 2 2 7 9 4
Ο αλγόριθμος Quick-Sort. 6/14/2007 3:42 AM Quick-Sort 1
Ο αλγόριθμος Quick-Sort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7 9 2 2 9 9 6/14/2007 3:42 AM Quick-Sort 1 Κύρια σημεία για μελέτη Quick-sort ( 4.3) Αλγόριθμος Partition step Δέντρο Quick-sort Παράδειγμα εκτέλεσης
Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η
Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο
Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1
Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Στοιχείο διαχωρισµού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες:
Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Επιλογή ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός k, 1 k n. Υπολογισμός
Η εφαρµογή xsortlab. Οπτικός τρόπος ταξινόµησης
Η εφαρµογή xsortlab Η ταξινόµηση µιας λίστας πραγµάτων είτε σε αύξουσα είτε σε φθίνουσα σειρά είναι µια πολύ σηµαντική λειτουργία. Η εφαρµογή xsortlab περικλείει 5 διαφορετικές µεθόδους ταξινόµησης. Την
ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ
ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.
Διάλεξη 13: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης SelectionSort, InsertionSort, Στις ερχόμενες διαλέξεις θα δούμε τους αλγόριθμους Mergesort,
Αλγόριθμοι Ταξινόμησης Μέρος 4
Αλγόριθμοι Ταξινόμησης Μέρος 4 Μανόλης Κουμπαράκης Δομές Δεδομένων και Τεχνικές 1 Μέθοδοι Ταξινόμησης Βασισμένοι σε Συγκρίσεις Κλειδιών Οι αλγόριθμοι ταξινόμησης που είδαμε μέχρι τώρα αποφασίζουν πώς να
Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης
Δοµές Δεδοµένων 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων Ε. Μαρκάκης Περίληψη Quicksort Χαρακτηριστικά επιδόσεων Μη αναδροµική υλοποίηση Δέντρα Μαθηµατικές ιδιότητες Δοµές Δεδοµένων 11-2
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Διαίρει-και-Βασίλευε Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Quicksort Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 6] Στοιχείο διαχωρισμού (pivot),
Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές
Επιλογή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα
Επιλογή. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Επιλογή ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Quicksort ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 62] Στοιχείο διαχωρισμού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση
int Α[] = {4, 16, 22, 12, 9, 15, 10}; { 4, 9, 10, 12, 15, 16, 22 } Α[0]=4, Α[1]=9, Α[2]=10 { 4, 16,22, 12, 9, 15, 10} { 4, 12, 16, 22, 9, 15,16, 22 }
ΤΑΞΙΝΟΜΗΣΗ- ΑΣΚΗΣΕΙΣ Οι μέθοδοι ταξινόμησης INSERTION, SELECTION και BUBBLE SORT με την ολοκλήρωσή τους θα έχουν σε κάθε θέση του πίνακα το σωστό στοιχείο x (ταξινόμηση με αύξουσα σειρά δηλ. στην θέση
Διάλεξη 10: Αλγόριθμοι Ταξινόμησης II
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 10: Αλγόριθμοι Ταξινόμησης II Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Δ. QuickSort Γρήγορη Ταξινόμηση Ε. BucketSort
Κεφάλαιο 2. Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014
Κεφάλαιο 2 Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Σωρός και Ταξινόμηση
p
ΑΝΑ ΡΟΜΙΚΗ ΤΑΞΙΝΟΜΗΣΗ- ΑΣΚΗΣΕΙΣ Οι μέθοδοι ταξινόμησης QUICK SORT και MERGE SORT κωδικοποιούνται εύκολα αναδρομικά Oι δυο αναδροµικοί µέθοδοι δέχονται 1ο όρισµα τον πίνακα, και δεν επιστρέφουν τίποτα.
Αλγόριθμοι και πολυπλοκότητα Ταχυταξινόμηση (Quick-Sort)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Ταχυταξινόμηση (Quick-Sort) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Ταχυταξινόμηση (Quick-Sort) 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7
Πρόβληµα Επιλογής. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1
Πρόβληµα Επιλογής Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1 Πρόβληµα Επιλογής Πίνακας Α[ Αριθµός k, 1 k n. ] µε n στοιχεία (όχι ταξινοµηµένος). Υπολογισµός του k-οστού µικρότερου στοιχείου (στοιχείο
Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ
ΓΡΑΦΙΚΑ Γέμισμα ΑΛΓΟΡΙΘΜΟΙ ΓΕΜΙΣΜΑΤΟΣ Για τις πλεγματικές οθόνες υπάρχουν: Αλγόριθμοι γεμίσματος:, που στηρίζονται στη συνάφεια των pixels του εσωτερικού ενός πολυγώνου Αλγόριθμοι σάρωσης: που στηρίζονται
Εισαγωγή στον δομημένο προγραμματισμό
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στον δομημένο προγραμματισμό Ενότητα 5 η : Πίνακες (Προχωρημένα Θέματα) Αν. καθηγητής Στεργίου Κώστας e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις
Διάλεξη 17η: Ταξινόμηση και Αναζήτηση
Διάλεξη 17η: Ταξινόμηση και Αναζήτηση Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Ταξινόμηση CS100, 2016-2017 1 / 10 Το πρόβλημα της Αναζήτησης
1η Σειρά Γραπτών Ασκήσεων
1/20 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 1η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 1 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 2 3 4 5 2/20
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 9: ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΕΞΙΣΟΡΡΟΠΗΣΗ, ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 9: ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΕΞΙΣΟΡΡΟΠΗΣΗ, ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Γ. MergeSort Ταξινόμηση με Συγχώνευση Δ. BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση
Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση 1 Ταξινόµηση! Δεδοµένα: Δίνεται ένας πίνακας data από N ακεραίους! Ζητούµενο: Να ταξινοµηθούν τα περιεχόµενα σε αύξουσα αριθµητική σειρά:!i : 0 data[i]
Quicksort. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Quicksort ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Φροντιστήριο 2 ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Φροντιστήριο 2 ΜΕΡΟΣ Α ΤΑΞΙΝΟΜΗΣΗ ΣΤΗ ΔΕΥΤΕΡΕΥΟΥΣΑ ΜΝΗΜΗ ΕΙΣΑΓΩΓΗ Όταν η χωρητικότητα της κύριας μνήμης δεν είναι ικανή να χωρέσει όλα τα δεδομένα που πρόκειται να ταξινομηθούν αναγκαζόμαστε
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 17 Σωροί (Heaps) έκδοση 10 1 / 19 Heap Σωρός Ο σωρός είναι μια μερικά ταξινομημένη δομή δεδομένων που υποστηρίζει
Θέματα Προγραμματισμού Η/Υ
Πρόγραμμα Μεταπτυχιακών Σπουδών Πληροφορική και Υπολογιστική Βιοϊατρική Θέματα Προγραμματισμού Η/Υ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ Θεματική
Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Όρια Αλγόριθμων Ταξινόμησης Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Μέχρι στιγμής εξετάσθηκαν μέθοδοι ταξινόμησης µε πολυπλοκότητα της τάξης Θ ) ή Θlog ). Τι εκφράζει
Δοµές Δεδοµένων. 10η Διάλεξη Ταξινόµηση. E. Μαρκάκης
Δοµές Δεδοµένων 10η Διάλεξη Ταξινόµηση E. Μαρκάκης Περίληψη Ταξινόµηση µε αριθµοδείκτη κλειδιού Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική
Δοµές Δεδοµένων. 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι. Ε. Μαρκάκης
Δοµές Δεδοµένων 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι Ε. Μαρκάκης Περίληψη Bubble Sort Selection Sort Insertion Sort Χαρακτηριστικά επιδόσεων Shellsort Ταξινόµηση συνδεδεµένων λιστών Δοµές Δεδοµένων
Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι
Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αναζήτηση και ταξινόµηση 7 Αναζήτηση (search) Πρόβληµα: αναζήτηση της καταχώρησης key στη
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3.0 Σταύρος Δ. Νικολόπουλος 0-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Διαίρει και Βασίλευε Quick-sort και Merge-sort
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 24: Μη Ντεντερμινιστικές Μηχανές Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Προγραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωμύλος Κορακίτης
ΑΥΤΟΡΓΑΝΟΥΜΕΝΕΣ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΑΥΤΟΡΓΑΝΟΥΜΕΝΕΣ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Splay Δέντρα ΕΚΤΕΝΕΙΣ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΑΛΤΟΓΙΑΝΝΗ ΑΘΑΝΑΣΙΑ Γενικά στοιχεία Μία τέτοιου είδους δομή βρίσκεται σε τυχαία αρχική κατάσταση, αλλά κατά τη διάρκεια κάθε πράξης
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Η Μέθοδος «Διαίρει & Βασίλευε» Η Μέθοδος
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 8: ΧΡΗΣΗ ΔΟΜΩΝ ΔΕΝΤΡΟΥ ΚΑΙ ΣΩΡΟΥ ΓΙΑ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗΣ ΑΛΓΟΡΙΘΜΟΣ HEAPSORT
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 8: ΧΡΗΣΗ ΔΟΜΩΝ ΔΕΝΤΡΟΥ ΚΑΙ ΣΩΡΟΥ ΓΙΑ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗΣ ΑΛΓΟΡΙΘΜΟΣ HEAPSORT Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 12/10/2017