Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
|
|
- Ενυώ Παπάζογλου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή Γ. MergeSort Ταξινόμηση με Συγχώνευση ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1
2 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 2 Αλγόριθμοι ταξινόμησης Δοθέντων μιας συνάρτησης f (ordering function) και ενός συνόλου στοιχείων η ταξινόμηση συνίσταται στη μετάθεση των στοιχείων ώστε να μπουν σε μια σειρά η οποία να ικανοποιεί ή f ( x k 1 ) f ( xk2 f ( xk ) f ( xk2 x x,..., 1, 2 xk,x 1 k2 ) x n,..., x... )... f ( x 1 n αύξουσα σειρά φθίνουσα σειρά Ταξινόμηση Ονομάτων: f( Maria ) < f( Michalis ), δηλαδή η συνάρτηση f συγκρίνει τις δυο λέξεις αλφαριθμητικά. k n f ( Θα εξετάσουμε αλγόριθμους ταξινόμησης με κύριο γνώμονα την αποδοτικότητά τους (χρόνος εκτέλεσης, χρήση μνήμης). x k k n ) )
3 Bubble Sort Animation ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 3
4 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4 A. Ταξινόμηση με Επιλογή - Selection Sort Η Ταξινόμηση με Επιλογή (Selection Sort) βασίζεται στα ακόλουθα τρία βήματα: 1. επιλογή του ελάχιστου στοιχείου 2. ανταλλαγή με το i-οστό στοιχείο (i είναι μια μεταβλητή που αυξάνεται κατά ένα). 3. επανάληψη των βημάτων 1 και 2 για τα υπόλοιπα στοιχεία. Το ελάχιστο μεταξύ i στοιχείων μπορεί να βρεθεί με τη χρήση ενός while-loop, σε χρόνο Ο(i). Άρα ο χρόνος εκτέλεσης του Selection Sort είναι: n 1 i= 1 i = O( n 2 )
5 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5 Ταξινόμηση με επιλογή: SelectionSort SelectionSort: ο αλγόριθμος αυτός ταξινομεί μία λίστα με στοιχεία. Σε κάθε βήμα i βρίσκει το i-οστό πιο μικρό στοιχείο και το τοποθετεί στην θέση i. Παράδειγμα: int x = {4, 8, 2, 1, 3, 5; swap Βήμα Βήμα 2 Βήμα 3 Βήμα 4 Βήμα 5 Βήμα
6 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 6 Ταξινόμηση με επιλογή: SelectionSort (συν.) Πρότυπο Συνάρτησης void selectionsort(int x[], int length) Αλγόριθμος //ο πίνακας //το μέγεθος του x Αρχικοποίησε μία μεταβλητή min_index η οποία θα αποθηκεύει τη θέση του ελάχιστου αριθμού Με ένα βρόγχο for που θα ελέγχει ένα ένα τα στοιχεία του πίνακα (i<length) κάνε τα εξής: Θέσε σαν min_index το i Ψάξε ένα-ένα τα στοιχεία με ένα δεύτερο εσωτερικό βρόγχο αρχίζοντας από j=i Αν το στοιχείο που βρίσκεται στη θέση j είναι μικρότερο από το στοιχείο που βρίσκεται στη θέση min_index τότε θέσε min_index = j Με την έξοδο από το βρόγχο, αντάλλαξε τα στοιχεία που βρίσκονται στη θέση i με το στοιχείο που βρίσκεται στη θέση min_index
7 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 7 SelectionSort: Παράδειγμα Εκτέλεσης Θέση Αρχικός Πίνακας i= min_index Στοιχείο που θα εισαχθεί στην θέση i i= i= i= i= Δεν είναι υποχρεωτικό να γίνει αυτό το βήμα
8 Selection Sort Animation ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 8
9 SelectionSort: Υλοποίηση ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 9 void SelectionSort(int A[]) { int n = A.length; int min_index; int tmp; for(int i=0; i<n-1; i++){ min_index = i; for(int j=i+1; j<n; j++){ if(a[j]<a[min_index]) min_index=j; Αρχικοποίηση θέσης μικρότερου στοιχείου Βρες το μικρότερο στοιχείο tmp = A[i]; A[i] = A[min_index]; A[min_index]=tmp; Αντάλλαξε το μικρότερο στοιχείο με το τρέχον στοιχείο στη θέση [i]
10 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 10 SelectionSort: Ανάλυση Χρόνου Εκτέλεσης void SelectionSort(){ for (i=0; i<n-1; i++){ for (j=i+1; j<n; j++){ sum++; Εσωτερικός Βρόγχος Εξωτερικός Βρόγχος Εσωτερικός Βρόγχος: IL n = 1 j= i+ 1 = n ( i + 1) + 1 = n i Εξωτερικός Βρόγχος: n = n 1 i i= 0 n i= 0 = n 2 OL n n 1 = i= 0 ( n + 1) 2 IL = n i= 0 ( n i) ( 2 n )
11 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 11 B. Ταξινόμηση με Εισαγωγή - Insertion Sort Η Ταξινόμηση με Εισαγωγή (InsertionSort) εισάγει έναένα τα στοιχεία του συνόλου που εξετάζεται, στη σωστή τους θέση. Στο βήμα i: 1. υποθέτουμε πως ο πίνακας A[0..(i-1)] είναι ταξινομημένος, 2. εισάγουμε το στοιχείο Α[i] στην ακολουθία Α[0..(i-1)] στη σωστή θέση. Αυτό επιτυγχάνεται μετακινώντας όλα τα στοιχεία που είναι μεγαλύτερα του Α[i] μια θέση δεξιά. sorted notsorted {A[i] {
12 { { { ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 12 { B. Ταξινόμηση με Εισαγωγή - Insertion Sort (συν.) Στο βήμα i: 1. υποθέτουμε πως ο πίνακας A[0..(i-1)] είναι ταξινομημένος, 2. εισάγουμε το στοιχείο Α[i] στην ακολουθία Α[0..(i-1)] στη σωστή θέση. Αυτό επιτυγχάνεται μετακινώντας όλα τα στοιχεία που είναι μεγαλύτερα του Α[i] μια θέση δεξιά. sorted notsorted {A[i] sorted A[i] notsorted {25 A[i] notsorted 7 11 sorted
13 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 13 InsertionSort: Παράδειγμα Εκτέλεσης Θέση Αρχικός Πίνακας Με i= min_index Στοιχείο που θα εισαχθεί στην θέση i Με i= Με i= Με i= Με i=
14 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 14 Insertion Sort: Παράδειγμα Εκτέλεσης 2 BEFORE:[8,4,8,43,3,5,2,] (Το κόκκινο δείχνει τα ταξινομημένα στοιχεία) i:1(index:4) >8 ( > Δείχνει τις μετακινήσεις) [4,8,8,43,3,5,2,] (Νέος Πίνακας) i:2(index:8) (Τίποτα δεν μετακινείται) [4,8,8,43,3,5,2,] i:3(index:43) (Τίποτα δεν μετακινείται) [4,8,8,43,3,5,2,] i:4(index:3) >43>8>8>4 [3,4,8,8,43,5,2,] i:5(index:5) >43>8>8 [3,4,5,8,8,43,2,] i:6(index:2) >43>8>8>5>4>3 [2,3,4,5,8,8,43,] AFTER:[2,3,4,5,8,8,43,]
15 Insertion Sort Animation ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 15
16 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 16 InsertionSort: Υλοποίηση void InsertionSort(int A[]){ int n = x.length; int index, i, j; for (i=1; i < n; i++) { index = A[i]; for (j=i; j>0; j--){ Τρέχον στοιχείο εισαγωγής μετακίνηση στοιχείων προς δεξιά if (A[j-1] <= index) { break; A[j] = A[j-1]; θέλουμε να μετακινήσουμε μόνο τα A[j-1] > index A[j] = index; sorted τοποθέτηση στοιχείου A[i] 9 notsorted { index=9 { 7 17 A[j-1] j=i
17 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 17 InsertionSort: Ανάλυση Χρόνου Εκτέλεσης void InsertionSort(){ for (i=1; i<n; i++){ for (j=i; j>0; j--){ sum++; Εσωτερικός Βρόγχος: Εξωτερικός Βρόγχος: Εσωτερικός Βρόγχος Εξωτερικός Βρόγχος IL i = 1 OL j=0 = n = i= 1 i IL = n i= 1 i = n ( n +1) 2 ( 2 n )
18 Σύγκριση InsertionSort και SelectionSort Υπάρχουν δυο κριτήρια: Βήματα (μέχρι να βρω ένα στοιχείο) και Μετακινήσεις (όταν το βρω, πόσα swap κάνω). Ο αλγόριθμος Selection sort απαιτεί πάντα Ο(n²) βήματα (δεν είναι δυνατή η γρήγορη έξοδος από τους βρόχους), έτσι η βέλτιστη περίπτωση είναι η ίδια με τη χείριστη περίπτωση. Στον αλγόριθμο Insertion Sort, είναι δυνατό να βγούμε από το δεύτερο βρόχο γρήγορα. Στη βέλτιστη περίπτωση (ο πίνακας είναι ήδη ταξινομημένος), ο χρόνος εκτέλεσης είναι της τάξης Ω(n) βήματα. Παρά τούτου, το Selection Sort είναι πιο αποδοτικός αν κρίνουμε τους αλγόριθμους με βάση τον αριθμό των μετακινήσεων (swaps) που απαιτούν: το selection sort απαιτεί Ο(n) μετακινήσεις, το insertion sort, απαιτεί Ο(n²) μετακινήσεις (στη χείριστη περίπτωση όπου ο αρχικός πίνακας είναι ταξινομημένος σε φθίνουσα σειρά). ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 18
19 Γ. Ταξινόμηση με Συγχώνευση (Merge sort) Η ταξινόμηση με συγχώνευση είναι διαδικασία διαίρει και βασίλευε ( Divide and Conquer: αναδρομική διαδικασία όπου το πρόβλημα μοιράζεται σε μέρη τα οποία λύνονται ξεχωριστά, και μετά οι λύσεις συνδυάζονται. ) Περιγραφή του Mergesort 1.Διαίρεση: Αναδρομικά μοιράζουμε τον πίνακα στα δύο μέχρι να φτάσουμε σε πίνακες μεγέθους ένα (DIVIDE) 2.Συγχώνευση: Ταξινομούμε αναδρομικά τους πίνακες αυτούς με την συγχώνευση γειτονικών πινάκων (χρησιμοποιώντας βοηθητικό πίνακα). (CONQUER) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 19
20 MergeSort: Βασική Ιδέα ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 20 (#στοιχείων αριστερά) n=7 (#στοιχείων δεξιά) n 7 n 7 = = 4 = = 2 2 Divide (split) Conquer (merge)
21 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 21 Συγχώνευση 2 Λιστών Υποθέστε ότι θέλετε να συγχωνεύσετε 2 ταξινομημένες λίστες L1, L2 και να δημιουργήσετε μια νέα ταξινομημένη λίστα TEMP Διαδικασία 1. Τοποθέτησε τους δείκτες i, j στην κεφαλή κάθε λίστας. 2. Διάλεξε το μικρότερο από την λίστα L1 και L2 και τοποθέτησε τον στον πίνακα TEMP στην θέση κ 3. Προχώρησε τον δείκτη i (αν το μικρότερο στοιχείο ήταν από την λίστα L1) ή τον δείκτη j στην αντίθετη περίπτωση. 4. Επανέλαβε τα βήματα 2-4 μέχρι να εισαχθούν όλα τα στοιχεία στον TEMP Μέτα από 6 εκτελέσεις: L L TEMP i min(l1[i],l2[j]) κ j (Το i,j ξεκινάνε από την αρχή της κάθε λίστας)
22 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 22 MergeSort: Υλοποίηση void MergeSort(int A[], int temp[], int l, int r){ // η συνθήκη τερματισμού της ανάδρομης if (l==r) return; int mid = (l+r)/2; // για ελαχιστοποίηση overflow(για μεγάλα l,r) // int mid = l + ((r - l) / 2); // μοιράζουμε αναδρομικά τον πίνακα MergeSort(A, temp, l, mid); MergeSort(A, temp, mid+1, r); DIVIDE // συνεχίζεται
23 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 23 MergeSort: Υλοποίηση (συν.) // Τώρα οι πίνακες [l..mid] και [mid+1..r] είναι // ταξινομημένοι Η διαδικασία συγχώνευσης int k=l, i=l, j=mid+1; // συγχώνευση στον temp μέχρι μια από // τις λίστες αδειάσει while ((i<=mid) && (j<=r)) { if (A[i]<A[j]){ temp[k] = A[i]; i++; else { temp[k] = A[j]; j++; k++; // συνεχίζεται MERGE
24 MergeSort: Υλοποίηση (συν.) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 24 // copy όλων των υπόλοιπων στοιχείων λίστας L1 while (i<=mid) { temp[k] = A[i]; k++;i++; // copy όλων των υπόλοιπων στοιχείων λίστας L2 while (j<=r) { temp[k] = A[j]; k++;j++; // αντιγραφή όλων των στοιχείων από TEMP -> A for (i=l; i<=r; i++) { A[i] = temp[i];
25 Merge Sort Animation ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 25
26 Παράδειγμα Εκτέλεσης Merge Sort ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 26 BEFORE:[8,4,8,43,3,5,2,1,10] Index: ,8: [8,4,8,43,3, 5,2,1,10] 0,4: [8,4,8,43,3] 0,2: [8,4,8] 0,1: [8,4] 0,0: [8] 1,1: [4] Merging: [A0,A0] [A1,A1] => [4,8,] 2,2: [8] Merging: [A0,A1] [A2,A2] => [4,8,8,] 3,4: [43,3] 3,3: [43] 4,4: [3] Merging: [A3,A3] [A4,A4] => [3,43] divide divide divide Merging: [A0,A2] [A3,A4] => [3,4,8,8,43] 5,8: [5,2,1,10] 5,6: [5,2] 5,5: [5] 6,6: [2] divide Merging: [A5,A5] [A6,A6] => [2,5] 7,8: [1,10] divide 7,7: [1] 8,8: [10] Merging: [A7,A7] [A8,A8] => [1,10] Merging: [A5,A6] [A7,A8] => [1,2,5,10] Merging: [A0,A4] [A5,A8] => [1,2,3,4,5,8,8,10,43] AFTER:[1,2,3,4,5,8,8,10,43]
27 MergeSort: Ανάλυση Χρ. Εκτέλ. - Αναδρομή Το πρόβλημα μοιράζει αναδρομικά σε δυο μέρη την λίστα που θέλουμε να ταξινομήσουμε. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 27 Όταν φτάσουμε στην λίστα που έχει μέγεθος 1 τότε σταματά η αναδρομή και το πρόγραμμα αρχίζει να συνδυάζει (merge) τις επιμέρους λίστες. Παρατηρούμε ότι πάνω σε μια λίστα μεγέθους Ν η αναδρομή εκτελείται 2log 2 n φορές. Δηλαδή ο πίνακας μοιράζεται ως εξής: n, n/2, n/4,, 2, 1 void MergeSort(int A[], int temp[], int l, int r){ if (l==r) return; int mid = (l+r)/2; MergeSort(A, temp, l, mid); MergeSort(A, temp, mid+1, r); Θ(logn)
28 MergeSort: Ανάλυση Χρ. Εκτέλ. - Συγχώνευση Σε κάθε επίπεδο της ανάδρομης περνάμε μια φορά από το κάθε στοιχείο. Επομένως η συγχώνευση των στοιχείων σε κάθε επίπεδο της εκτέλεσης χρειάζεται γραμμικό χρόνο Θ(n). Σημειώστε ότι η διαδικασία απαιτεί τη χρήση βοηθητικού πίνακα. Μπορούμε να χρησιμοποιούμε τον ίδιο βοηθητικό πίνακα temp για όλες τις (αναδρομικές) κλήσεις του ΜergeSort. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 28
29 MergeSort: Ανάλυση Χρ. Εκτέλ. - Συνολικός Η αντιγραφή και η συγχώνευση παίρνουν χρόνο Θ(n) και η αναδρομή παίρνει χρόνο Θ(log n). Συνολικά Θ(n log n). Ο χρόνος εκτέλεσης εκφράζεται και από την αναδρομική εξίσωση Τ(0) = Τ(1) = 1 Τ(n) = 2 T(n/2) + n η οποία μπορεί να λυθεί με το Master Theorem ή με την μέθοδο της αντικατάστασης. Πλεονέκτημα MergeSort: O συνολικός χρόνος εκτέλεσης είναι Θ(n log n) (σε αντίθεση με το SelectionSort (Θ(n 2 )) και το InsertionSort (Ο(n 2 )) Μειονέκτημα: Απαιτεί τη χρήση βοηθητικού πίνακα (δηλαδή χρειάζεται διπλάσιο χώρο αποθήκευσης για την εκτέλεση του). Αυτό δεν καθιστά την μέθοδο πολύ εύχρηστη. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 29
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης: Α. SelectoSort Ταξινόμηση με Επιλογή Β. IsertoSort Ταξινόμηση με Εισαγωγή Γ. MergeSort
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Γ. MergeSort Ταξινόμηση με Συγχώνευση Δ. BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.
Διάλεξη 13: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης SelectionSort, InsertionSort, Στις ερχόμενες διαλέξεις θα δούμε τους αλγόριθμους Mergesort,
Αλγόριθμοι ταξινόμησης
Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης BuubleSort, SelectionSort, InsertionSort, Merger Sort, Quick Soft ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι
Αλγόριθµοι Ταξινόµησης
Αλγόριθµοι Ταξινόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Οι αλγόριθµοι ταξινόµησης SelectionSort, InsertionSort, Mergesort, QuickSort, BucketSort Κάτω φράγµα της αποδοτικότητας
Εργαστήριο 2: Πίνακες
Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035
ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 9 ο Ταξινόµηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ταξινόµηση Εισαγωγή Selection sort Insertion sort Bubble sort
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
Διάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 20: Αλγόριθμοι ΤαξινόμησηςIII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Ε. QuickSort Γρήγορη Ταξινόμηση - Έμμεση Ταξινόμηση - Εξωτερική Ταξινόμηση Διδάσκων:
Αλγόριθµοι Ταξινόµησης
Αλγόριθµοι Ταξινόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Οι αλγόριθµοι ταξινόµησης SelectionSort, InsertionSort, Mergesort, QuickSort, BucketSort Κάτω φράγµα της αποδοτικότητας
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2
Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.
Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Διαίρει-και-Βασίλευε Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 10: Ταξινόμηση Πίνακα Αναζήτηση σε Ταξινομημένο Πίνακα Πρόβλημα Δίνεται πίνακας t από Ν ακεραίους. Ζητούμενο: να ταξινομηθούν τα περιεχόμενα του πίνακα σε αύξουσα αριθμητική
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
Εργαστηριακή Άσκηση 1
Εργαστηριακή Άσκηση 1 Επανάληψη προγραμματισμού Βασικοί Αλγόριθμοι Είσοδος τιμών από το πληκτρολόγιο Σε όλα τα προγράμματα που θα γράψουμε στην συνέχεια του εξαμήνου θα χρειαστεί να εισάγουμε τιμές σε
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα
Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι
Πρόβλημα Ταξινόμησης Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Είσοδος : ακολουθία n αριθμών (α 1, α 2,..., α n
Διάλεξη 10: Αλγόριθμοι Ταξινόμησης II
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 10: Αλγόριθμοι Ταξινόμησης II Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Δ. QuickSort Γρήγορη Ταξινόμηση Ε. BucketSort
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
Ταξινόμηση με συγχώνευση Merge Sort
Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων
Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας
Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Αναζήτηση με linearsearch, binarysearch, ternarysearch - Ανάλυση Πολυπλοκότητας ternarysearch
5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 5. Απλή Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 11/11/2016 Εισαγωγή Η
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Αλγόριθμοι Ταξινόμησης Μέρος 2
Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2
Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1
Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα.0 Σταύρος Δ. Νικολόπουλος 06-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Ταξινόμηση Selection-Sort Bubble-Sort και
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.
Διάλεξη : Παραδείγματα Ανάλυσης Πολυπλοκότητας / Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, 6 παραδείγματα
Εισαγωγή στην Ανάλυση Αλγορίθμων
Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)
Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012
Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση
Merge Sort (Ταξινόμηση με συγχώνευση) 6/14/2007 3:04 AM Merge Sort 1
Merge Sort (Ταξινόμηση με συγχώνευση) 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 6/14/2007 3:04 AM Merge Sort 1 Κύρια σημεία για μελέτη Το παράδειγμα του «διαίρει και βασίλευε» ( 4.1.1) Merge-sort
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Mergesort Κεφάλαιο 8 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική ταξινόµηση
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 7 η. Βασίλης Στεφανής
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 7 η Βασίλης Στεφανής Αλγόριθμοι ταξινόμησης Στην προηγούμενη διάλεξη είδαμε: Binary search Λειτουργεί μόνο σε ταξινομημένους πίνακες Πώς τους ταξινομούμε? Πολλοί τρόποι. Ενδεικτικά:
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων
Ταξινόμηση. Παύλος Εφραιμίδης. Δομές Δεδομένων Ταξινόμηση 1
Ταξινόμηση Παύλος Εφραιμίδης Δομές Δεδομένων Ταξινόμηση 1 Το πρόβλημα της ταξινόμησης Δομές Δεδομένων Ταξινόμηση 2 Ταξινόμηση Δίνεται πολυ-σύνολο Σ με στοιχεία από κάποιο σύμπαν U (πχ. U = το σύνολο των
Ταξινόμηση. Σαλτογιάννη Αθανασία
Ταξινόμηση Σαλτογιάννη Αθανασία Ταξινόμηση Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ποια είδη αλγορίθμων ταξινόμησης υπάρχουν; Ταξινόμηση Τι εννοούμε όταν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου
Ταξινόμηση: Εισαγωγικά. Ταξινόμηση (Sor ng) Αλγόριθμοι Απλής Ταξινόμησης. Βασικά Βήματα των Αλγορίθμων
Ταξινόμηση: Εισαγωγικά Ταξινόμηση (Sor ng) Ορέστης Τελέλης Βασικό πρόβλημα για την Επιστήμη των Υπολογιστών. π.χ. αλφαβητική σειρά, πωλήσεις ανά τιμή, πόλεις με βάση πληθυσμό, Μπορεί να είναι ένα πρώτο
Κεφάλαιο 1 Εισαγωγή. Περιεχόμενα. 1.1 Αλγόριθμοι και Δομές Δεδομένων
Κεφάλαιο 1 Εισαγωγή Περιεχόμενα 1.1 Αλγόριθμοι και Δομές Δεδομένων... 9 1.2 Διατήρηση Διατεταγμένου Συνόλου... 12 1.3 Ολοκληρωμένη Υλοποίηση σε Java... 15 Ασκήσεις... 18 Βιβλιογραφία... 19 1.1 Αλγόριθμοι
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται
Κατ οίκον Εργασία 1 Σκελετοί Λύσεων
ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 008 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Παρατηρούμε ότι ο χρόνος εκτέλεσης μέσης περίπτωσης της κάθε εντολής if ξεχωριστά: if (c mod 0) for (k ; k
Προχωρημένες έννοιες προγραμματισμού σε C
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr)
Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Quicksort ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 62] Στοιχείο διαχωρισμού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 4: Αναδρομικές σχέσεις και ανάλυση αλγορίθμων Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Quicksort Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 6] Στοιχείο διαχωρισμού (pivot),
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 10: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Δ. QuickSort Γρήγορη Ταξινόμηση Ε. BucketSort Ταξινόμηση με Κάδους - Έμμεση Ταξινόμηση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1
Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Στοιχείο διαχωρισµού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες:
Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012
Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012 Ενδεικτικές απαντήσεις 1 ου σετ ασκήσεων. Άσκηση 1 Πραγματοποιήσαμε μια σειρά μετρήσεων του χρόνου εκτέλεσης τριών
Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013
Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013 Λυμένες Ασκήσεις Σετ Α: Ανάλυση Αλγορίθμων Άσκηση 1 Πραγματοποιήσαμε μια σειρά μετρήσεων του
Τεχνικές Σχεδιασμού Αλγορίθμων
Τεχνικές Σχεδιασμού Αλγορίθμων Διαίρει και Βασίλευε Δυναμικός Προγραμματισμός Απληστία Π. Μποζάνης ΤHMMY - Αλγόριθμοι 2014-2015 1 Διαίρει και Βασίλευε Βασικά Βήματα Διαίρει: Κατάτμηση του αρχικού προβλήματος
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2016 - Ι. ΜΗΛΗΣ - 03 - EXAMPLES ALG & COMPL 1 Example: GCD συνάρτηση
Αλγόριθμοι Ταξινόμησης Μέρος 1
Αλγόριθμοι Ταξινόμησης Μέρος 1 Μανόλης Κουμπαράκης 1 Το Πρόβλημα της Ταξινόμησης Το πρόβλημα της ταξινόμησης (sorting) μιας ακολουθίας στοιχείων με κλειδιά ενός γνωστού τύπου (π.χ., τους ακέραιους ή τις
p
ΑΝΑ ΡΟΜΙΚΗ ΤΑΞΙΝΟΜΗΣΗ- ΑΣΚΗΣΕΙΣ Οι μέθοδοι ταξινόμησης QUICK SORT και MERGE SORT κωδικοποιούνται εύκολα αναδρομικά Oι δυο αναδροµικοί µέθοδοι δέχονται 1ο όρισµα τον πίνακα, και δεν επιστρέφουν τίποτα.
Quicksort. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Quicksort ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Η Μέθοδος «Διαίρει & Βασίλευε» Η Μέθοδος
Αλγόριθμοι και Πολυπλοκότητα Φώτης Ε. Ψωμόπουλος, Περικλής Α. Μήτκας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Ηλεκτρονικής και Υπολογιστών Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών Καθηγητής: Περικλής
Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές
Επιλογή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός
Δοµές Δεδοµένων. 10η Διάλεξη Ταξινόµηση. E. Μαρκάκης
Δοµές Δεδοµένων 10η Διάλεξη Ταξινόµηση E. Μαρκάκης Περίληψη Ταξινόµηση µε αριθµοδείκτη κλειδιού Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική
Διάλεξη 17η: Ταξινόμηση και Αναζήτηση
Διάλεξη 17η: Ταξινόμηση και Αναζήτηση Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Ταξινόμηση CS100, 2016-2017 1 / 10 Το πρόβλημα της Αναζήτησης
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
int Α[] = {4, 16, 22, 12, 9, 15, 10}; { 4, 9, 10, 12, 15, 16, 22 } Α[0]=4, Α[1]=9, Α[2]=10 { 4, 16,22, 12, 9, 15, 10} { 4, 12, 16, 22, 9, 15,16, 22 }
ΤΑΞΙΝΟΜΗΣΗ- ΑΣΚΗΣΕΙΣ Οι μέθοδοι ταξινόμησης INSERTION, SELECTION και BUBBLE SORT με την ολοκλήρωσή τους θα έχουν σε κάθε θέση του πίνακα το σωστό στοιχείο x (ταξινόμηση με αύξουσα σειρά δηλ. στην θέση
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3.0 Σταύρος Δ. Νικολόπουλος 0-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Διαίρει και Βασίλευε Quick-sort και Merge-sort
Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Επιλογή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[ ] με n στοιχεία (όχι ταξινομημένος). Αριθμός k,
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 28: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η διαδικασία PercolateDown, Δημιουργία Σωρού - O Αλγόριθμος Ταξινόμησης HeapSort - Υλοποίηση, Παραδείγματα
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
Ταξινόµηση. Παύλος Εφραιµίδης. οµές εδοµένων και
Παύλος Εφραιµίδης 1 Το πρόβληµα της ταξινόµησης 2 3 ίνεται πολυ-σύνολο Σ µε στοιχεία από κάποιο σύµπαν U (πχ. U = το σύνολο των ακεραίων αριθµών). του Σ είναι η επιβολή µιας διάταξης στα στοιχεία του συνόλου
Εισαγωγή στην Ανάλυση Αλγορίθμων (1) Διαφάνειες του Γ. Χ. Στεφανίδη
Εισαγωγή στην Ανάλυση Αλγορίθμων (1) Διαφάνειες του Γ. Χ. Στεφανίδη 0. Εισαγωγή Αντικείμενο μαθήματος: Η θεωρητική μελέτη ανάλυσης των αλγορίθμων. Στόχος: επιδόσεις των επαναληπτικών και αναδρομικών αλγορίθμων.
8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων
Αναδρομικοί Αλγόριθμοι
Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας
Πληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Στόχοι και αντικείμενο ενότητας. Πέρασμα Πίνακα σε Συνάρτηση (συν.) Πέρασμα Πίνακα σε Συνάρτηση. #8.. Ειδικά Θέματα Αλγορίθμων
Στόχοι και αντικείμενο ενότητας Πέρασμα Πίνακα σε Συνάρτηση #8.. Ειδικά Θέματα Αλγορίθμων Προβλήματα Αναζήτησης Γραμμική Αναζήτηση (Linear Search) Ενημέρωση Μέτρηση Δυαδική Αναζήτηση (Binary Search) Προβλήματα
Πρόβληµα Επιλογής. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1
Πρόβληµα Επιλογής Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1 Πρόβληµα Επιλογής Πίνακας Α[ Αριθµός k, 1 k n. ] µε n στοιχεία (όχι ταξινοµηµένος). Υπολογισµός του k-οστού µικρότερου στοιχείου (στοιχείο
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Επιλογή ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός k, 1 k n. Υπολογισμός
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Quicksort Κεφάλαιο 7. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Quicksort Κεφάλαιο 7 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Quicksort Ο βασικός αλγόριθµος Χαρακτηριστικά επιδόσεων Μικροί υποπίνακες Μη αναδροµική υλοποίηση Δοµές Δεδοµένων
Κεφάλαιο 8.6. Πίνακες ΙI (Διάλεξη 17)
Κεφάλαιο 8.6 Πίνακες ΙI (Διάλεξη 17) 16-1 Πίνακες - Επανάληψη Στην προηγούμενη διάλεξη κάναμε μια εισαγωγή στην δομή δεδομένων Πίνακας Σε ένα πίνακα ένα σύνολο αντικειμένων του ιδίου τύπου αποθηκεύονται
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων 1. (α) Αλγόριθµος: ηµιούργησε το σύνολο P που αποτελείται από τα άκρα όλων των ευθυγράµµων τµηµάτων. Βρες το κυρτό περίβληµα του P µε τον αλγόριθµο του Graham. Ορθότητα:
Ουρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης
Ουρές Προτεραιότητας: Υπενθύμιση Σωροί / Αναδρομή / Ταξινόμηση Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς (Abstract Data Type) με μεθόδους: Μπορεί να υλοποιηθεί με
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 1: Εισαγωγή Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Δείκτες & Πίνακες Δείκτες, Πίνακες
Δείκτες & Πίνακες Δείκτες, Πίνακες Δείκτες Δείκτης είναι μια μεταβλητή που ως δεδομένο περιέχει τη θέση μνήμης (διεύθυνση) μιας άλλης μεταβλητής. Μεταβλητές Τιμές. (*) Δείκτης p Μεταβλητή v Δ1. Δ2. τιμή
Μεθόδων Επίλυσης Προβλημάτων
ΕΠΛ 032.3: 3: Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 11 Πίνακες ΙΙ Πίνακες - Επανάληψη Στην προηγούμενη
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Γιάννης Κουτσονίκος Επίκουρος Καθηγητής Οργάνωση Δεδομένων Δομή Δεδομένων: τεχνική οργάνωσης των δεδομένων με σκοπό την
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο
Ο αλγόριθμος Quick-Sort. 6/14/2007 3:42 AM Quick-Sort 1
Ο αλγόριθμος Quick-Sort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7 9 2 2 9 9 6/14/2007 3:42 AM Quick-Sort 1 Κύρια σημεία για μελέτη Quick-sort ( 4.3) Αλγόριθμος Partition step Δέντρο Quick-sort Παράδειγμα εκτέλεσης
Κατ οίκον Εργασία 1 Σκελετοί Λύσεων
ΕΠΛ 1 Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 009 Κατ οίκον Εργασία 1 Σκελετοί Λύσεων Άσκηση 1 Αρχικά θα πρέπει να υπολογίσουμε τον αριθμό των πράξεων που μπορεί να εκτελέσει ο υπολογιστής σε μια ώρα,
Ταξινόμηση. 1. Γρήγορη ταξινόμηση 2. Ταξινόμηση με Συγχώνευση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Ταξινόμηση. Γρήγορη ταξινόμηση. Ταξινόμηση με Συγχώνευση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Γρήγορη Ταξινόμηση Η γρήγορη ταξινόμηση qucksort), που αλλιώς ονομάζεται και ταξινόμηση µε διαμερισμό
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου, Τμήμα Μηχανικών Πληροφορικής ΤΕ Χειμερινό Εξάμηνο 2014-2015 (Παρουσίαση 5) 1 / 17 Απόδοση προγραμμάτων Συχνά χρειάζεται να εκτιμηθεί η απόδοση
Αναζήτηση και ταξινόμηση
Αναζήτηση και ταξινόμηση Περιεχόμενα Αναζήτηση (searching): εύρεση ενός στοιχείου σε έναν πίνακα Ταξινόμηση (sorting): αναδιάταξη των στοιχείων ενός πίνακα ώστε να είναι τοποθετημένα με μια καθορισμένη
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 8α: Ταξινόμηση-Σύγκριση αλγορίθμων ταξινόμησης Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης