Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό
|
|
- Νικόστρατος Μαρκόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη 8η: 18/04/2007 1
2 Ανάλυση υπερσυνδέσµων Πρακτικές έννοιες του PageRank 2
3 The Web as a Directed Graph Page A Anchor hyperlink Page B Assumption 1: A hyperlink between pages denotes author perceived relevance (quality signal) Assumption 2: The anchor of the hyperlink describes the target page (textual context) 3
4 Anchor Text WWW Worm - McBryan [Mcbr94] For ibm how to distinguish between: IBM s home page (mostly graphical) IBM s copyright page (high term freq. for ibm ) Rival s spam page (arbitrarily high term freq.) ibm ibm.com IBM home page A million pieces of anchor text with ibm send a strong signal 4
5 Indexing anchor text When indexing a document D, include anchor text from links pointing to D. Armonk, NY-based computer giant IBM announced today Big Blue today announced Joe s computer hardware links record profits for the quarter Compaq HP IBM 5
6 Indexing anchor text Can sometimes have unexpected side effects - e.g., evil empire. Can index anchor text with less weight. 6
7 Anchor Text Other applications Weighting/filtering links in the graph HITS [Chak98], Hilltop [Bhar01] Generating page descriptions from anchor text [Amit98, Amit00] 7
8 Citation Analysis Citation frequency Co-citation coupling frequency Cocitations with a given author measures impact Cocitation analysis [Mcca90] Bibliographic coupling frequency Articles that co-cite the same articles are related Citation indexing Who is author cited by? (Garfield [Garf72]) Pagerank preview: Pinsker and Narin 60s 8
9 Query-independent ordering First generation: using link counts as simple measures of popularity. Two basic suggestions: Undirected popularity: Each page gets a score = the number of in-links plus the number of out-links (3+2=5). Directed popularity: Score of a page = number of its in-links (3). 9
10 Query processing First retrieve all pages meeting the text query (say venture capital). Order these by their link popularity (either variant on the previous page). 10
11 Spamming simple popularity Exercise: How do you spam each of the following heuristics so your page gets a high score? Each page gets a score = the number of inlinks plus the number of out-links. Score of a page = number of its in-links. 11
12 Pagerank scoring Imagine a browser doing a random walk on web pages: Start at a random page 1/3 1/3 1/3 At each step, go out of the current page along one of the links on that page, equiprobably In the steady state each page has a long-term visit rate - use this as the page s score. 12
13 Not quite enough The web is full of dead-ends. Random walk can get stuck in dead-ends. Makes no sense to talk about long-term visit rates.?? 13
14 Teleporting At a dead end, jump to a random web page. At any non-dead end, with probability 10%, jump to a random web page. With remaining probability (90%), go out on a random link. 10% - a parameter. 14
15 Result of teleporting Now cannot get stuck locally. There is a long-term rate at which any page is visited (not obvious, will show this). How do we compute this visit rate? 15
16 Markov chains A Markov chain consists of n states, plus an n n transition probability matrix P. At each step, we are in exactly one of the states. For 1 i,j n, the matrix entry P ij tells us the probability of j being the next state, given we are currently in state i. P ii >0 is OK. i P ij j 16
17 Markov chains Clearly, for all i, n j= 1 P ij = 1. Markov chains are abstractions of random walks. Exercise: represent the teleporting random walk from 3 slides ago as a Markov chain, for this case: 17
18 Ergodic Markov chains A Markov chain is ergodic if you have a path from any state to any other For any start state, after a finite transient time T 0, the probability of being in any state at a fixed time T>T 0 is nonzero. Not ergodic (even/ odd). 18
19 Ergodic Markov chains For any ergodic Markov chain, there is a unique long-term visit rate for each state. Steady-state probability distribution. Over a long time-period, we visit each state in proportion to this rate. It doesn t matter where we start. 19
20 Probability vectors A probability (row) vector x = (x 1, x n ) tells us where the walk is at any point. E.g., ( ) means we re in state i. 1 i n More generally, the vector x = (x 1, x n ) means the walk is in state i with probability x i. n i= 1 x i = 1. 20
21 Change in probability vector If the probability vector is x = (x 1, x n ) at this step, what is it at the next step? Recall that row i of the transition prob. Matrix P tells us where we go next from state i. So from x, our next state is distributed as xp. 21
22 Steady state example The steady state looks like a vector of probabilities a = (a 1, a n ): a i is the probability that we are in state i. 1/4 3/ /4 3/4 For this example, a 1 =1/4 and a 2 =3/4. 22
23 How do we compute this vector? Let a = (a 1, a n ) denote the row vector of steady-state probabilities. If we our current position is described by a, then the next step is distributed as ap. But a is the steady state, so a=ap. Solving this matrix equation gives us a. So a is the (left) eigenvector for P. (Corresponds to the principal eigenvector of P with the largest eigenvalue.) Transition probability matrices always have largest eigenvalue 1. 23
24 One way of computing a Recall, regardless of where we start, we eventually reach the steady state a. Start with any distribution (say x=(10 0)). After one step, we re at xp; after two steps at xp 2, then xp 3 and so on. Eventually means for large k, xp k = a. Algorithm: multiply x by increasing powers of P until the product looks stable. 24
25 Pagerank summary Preprocessing: Given graph of links, build matrix P. From it compute a. The entry a i is a number between 0 and 1: the pagerank of page i. Query processing: Retrieve pages meeting query. Rank them by their pagerank. Order is query-independent. 25
26 PageRank: Πώς χρησιµοποιείται (1/3) PageRank is one of the methods Google uses to determine a page s relevance or importance. It is only one part of the story when it comes to the Google listing PageRank is also displayed on the toolbar of your browser if you ve installed the Google toolbar ( But the Toolbar PageRank only goes from 0 10 and seems to be something like a logarithmic scale: 26
27 PageRank: Πώς χρησιµοποιείται (2/3) We can t know the exact details of the scale because, as we ll see later, the maximum PR of all pages on the web changes every month when Google does its re-indexing Also the toolbar sometimes guesses! The toolbar often shows me a Toolbar PR for pages I ve only just uploaded and cannot possibly be in the index yet! 27
28 PageRank: Πώς χρησιµοποιείται (3/3) What seems to be happening is that the toolbar looks at the URL of the page the browser is displaying and strips off everything down the last / (i.e. it goes to the parent page in URL terms) If Google has a Toolbar PR for that parent then it subtracts 1 and shows that as the Toolbar PR for this page. If there s no PR for the parent it goes to the parent s parent s page, but subtracting 2, and so on all the way up to the root of your site If it can t find a Toolbar PR to display in this way, that is if it doesn t find a page with a real calculated PR, then the bar is greyed out 28
29 PageRank: Βασική εξίσωση (1/3) PageRank is a vote, by all the other pages on the Web, about how important a page is A link to a page counts as a vote of support If there s no link there s no support (but it s an abstention from voting rather than a vote against the page PR(A) = (1-d) + d (PR(T1)/C(T1) PR(Tn)/C(Tn)) Note that the PageRanks form a probability distribution over web pages, so the sum of all web pages' PageRanks will be 1 29
30 PageRank: Βασική εξίσωση (2/3) PR(Tn) - Each page has a notion of its own self-importance. That s PR(T1) for the first page in the web all the way up to PR(Tn) for the last page C(Tn) - Each page spreads its vote out evenly amongst all of it s outgoing links. The count, or number, of outgoing links for page 1 is C(T1), C(Tn) for page n, and so on PR(Tn)/C(Tn) - so if our page (page A) has a backlink from page n the share of the vote page A will get is PR(Tn)/C(Tn) 30
31 PageRank: Βασική εξίσωση (3/3) d(... - All these fractions of votes are added together but, to stop the other pages having too much influence, this total vote is damped down by multiplying it by 0.85 (the factor d ) (1 - d) - The (1 d) bit at the beginning is a bit of probability math magic so the sum of all web pages' PageRanks will be one : it adds in the bit lost by the d(... It also means that if a page has no links to it (no backlinks) even then it will still get a small PR of 0.15 (i.e ). (Aside: the Google paper says the sum of all pages but they mean the the normalised sum otherwise known as the average to you and me. 31
32 PageRank: Πώς υπολογίζεται; (1/5) The PR of each page depends on the PR of the pages pointing to it But we won t know what PR those pages have until the pages pointing to them have their PR calculated and so on And when you consider that page links can form circles it seems impossible to do this calculation! But actually it s not that bad. Remember this bit of the Google paper: PageRank or PR(A) can be calculated using a simple iterative algorithm, and corresponds to the principal eigenvector of the normalized link matrix of the Web 32
33 PageRank: Πώς υπολογίζεται; (2/5) What that means to us is that we can just go ahead and calculate a page s PR without knowing the final value of the PR of the other pages That seems strange but, basically, each time we run the calculation we re getting a closer estimate of the final value So all we need to do is remember the each value we calculate and repeat the calculations lots of times until the numbers stop changing much. 33
34 PageRank: Πώς υπολογίζεται; (3/5) Lets take the simplest example network: two pages, each pointing to the other: Each page has one outgoing link (the outgoing count is 1, i.e. C(A) = 1 and C(B) = 1) Guess 1: We don t know what their PR should be to begin with, so let s take a guess at 1.0 and do some calculations with d = 0.85 PR(A)= (1 d) + d(pr(b)/1) PR(B)= (1 d)+d(pr(a)/1) PR(A)= *1= 1 PR(B)= *1= 1 The numbers aren t changing at all! So it looks like we started out with a lucky guess!!! 34
35 PageRank: Πώς υπολογίζεται; (4/5) Guess 2: No, that s too easy, maybe I got it wrong (and it wouldn t be the first time). Ok, let s start the guess at 0 instead and re-calculate: PR(A) = * 0= 0.15 PR(B) = * 0.15= PR(A) = * = PR(B) = * = PR(A) = * = PR(B) = * = and so on. The numbers just keep going up. But will the numbers stop increasing when they get to 1.0? What if a calculation over-shoots and goes above 1.0? 35
36 PageRank: Πώς υπολογίζεται; (5/5) Guess 3: Well let s see. Let s start the guess at 40 each and do a few cycles: PR(A) = 40 PR(B) = 40 First calculation PR(A) = * 40= PR(B) = * = PR(A) = * = PR(B) = * = Those numbers are heading down alright! It sure looks the numbers will get to 1.0 and stop 36
37 PageRank: Γρήγορος υπολογισµός How many times do we need to repeat the calculation for big networks? That s a difficult question; for a network as large as the World Wide Web it can be many millions of iterations! The damping factor is quite subtle. If it s too high then it takes ages for the numbers to settle, if it s too low then you get repeated over-shoot, both above and below the average - the numbers just swing about the average like a pendulum and never settle down. Also choosing the order of calculations can help. The answer will always come out the same no matter which order you choose, but some orders will get you there quicker than others 37
38 PageRank: Παράδειγµα 1 it took about 20 iterations before the network began to settle on these values Look at Page D - it has a PR of 0.15 even though no-one is voting for it. So, for Page D, no backlinks means the equation looks like this: PR(A) = (1-d) + d * (0)= 0.15 Observation: every page has at least a PR of 0.15 to share out But this may only be in theory - there are rumours that Google undergoes a post-spidering phase whereby any pages that have no incoming links at all are completely deleted from the index 38
39 PageRank: Παράδειγµα 2 As you d expect, the home page has the most PR it has the most incoming links! But what s happened to the average? It s only 0.378!!! That doesn t tie up with what I said earlier so something is wrong somewhere! Well no, everything is fine. But take a look at the external site pages what s happening to their PageRank? They re not passing it on, they re not voting for anyone, they re wasting their PR!!! 39
40 PageRank: Παράδειγµα 3 That s better - it does work after all! And look at the PR of our home page! All those incoming links sure make a difference we ll talk more about that later. 40
41 PageRank: Παράδειγµα 4 41
42 PageRank: Παράδειγµα 5 Our home page has 2 and a half times as much PR as the child pages! Excellent! Observation: a hierarchy concentrates votes and PR into one page 42
43 PageRank: Παράδειγµα 6 This is what we d expect. All the pages have the same number of incoming links, all pages are of equal importance to each other, all pages get the same PR of 1.0 (i.e. the average probability). 43
44 PageRank: Παράδειγµα 7 Yes, the results are the same as the Looping example above and for the same reasons 44
45 PageRank: Παράδειγµα 8 We ll assume there s an external site that has lots of pages and links with the result that one of the pages has the average PR of 1.0. We ll also assume the webmaster really likes us there s just one link from that page and it s pointing at our home page In example 5 the home page only had a PR of 1.92 but now it is 3.31! Excellent! Not only has site A contributed 0.85 PR to us, but the raised PR in the About, Product and More pages has had a lovely feedback effect, pushing up the home page s PR even further! Priciple: a well structured site will amplify the effect of any contributed PR 45
46 PageRank: Παράδειγµα 9 Well, the PR of our home page has gone up a little, but what s happened to the More page? The vote of the Product page has been split evenly between it and the external site. We now value the external Site B equally with our More page. The More page is getting only half the vote it had before this is good for Site B but very bad for us 46
47 PageRank: Παράδειγµα 10 (1/2) That s much better. The More page is still getting less share of the vote than in example 7 of course, but now the Product page has kept three quarters of its vote within our site - unlike example 9 where it was giving away fully half of it s vote to the external site! Keeping just this small extra fraction of the vote within our site has had a very nice effect on the Home Page too PR of 2.28 compared with just 1.66 in example 9 47
48 PageRank: Παράδειγµα 10 (2/2) Observation: increasing the internal links in your site can minimize the damage to your PR when you give away votes by linking to external sites. Principle: If a particular page is highly important use a hierarchical structure with the important page at the top. Where a group of pages may contain outward links increase the number of internal links to retain as much PR as possible. Where a group of pages do not contain outward links the number of internal links in the site has no effect on the site s average PR. You might as well use a link structure that gives the user the best navigational experience 48
49 PageRank: Παράδειγµα 11 Lets try to fix our site to artificially concentrate the PR into the home page. That looks good, most of the links seem to be pointing up to page A so we should get a nice PR Oh it s much worse than just an ordinary hierarchy! What s going on is that pages C and D have such weak incoming links that they re no help to page A at all! Principle: trying to abuse the PR calculation is harder than you think 49
50 PageRank: Παράδειγµα 12 (1/2) A common web layout for long documentation is to split the document into many pages with a Previous and Next link on each plus a link back to the home page. The home page then only needs to point to the first page of the document In this simple example, where there s only one document, the first page of the document has a higher PR than the Home Page! This is because page B is getting all the vote from page A, but page A is only getting fractions of pages B, C and D 50
51 PageRank: Παράδειγµα 12 (1/2) Principle: in order to give users of your site a good experience, you may have to take a hit against your PR. There s nothing you can do about this - and neither should you try to or worry about it! If your site is a pleasure to use lots of other webmasters will link to it and you ll get back much more PR than you lost. Can you also see the trend between this and the previous example? As you add more internal links to a site it gets closer to the Fully Meshed example where every page gets the average PR for the mesh. Observation: as you add more internal links in your site, the PR will be spread out more evenly between the pages 51
52 PageRank: Παράδειγµα 13 let s see if we can get 1,000 pages pointing to our home page, but only have one link leaving it Yup, those spam pages are pretty worthless but they sure add up! Observation: it doesn t matter how many pages you have in your site, your average PR will always be 1.0 at best. But a hierarchical layout can strongly concentrate votes, and therefore the PR, into the home page! 52
53 Συµπεράσµατα (1/2) From the Brin and Page paper, the average Actual PR of all pages in the index is 1.0! So if you add pages to a site you re building the total PR will go up by 1.0 for each page (but only if you link the pages together so the equation can work), but the average will remain the same. If you want to concentrate the PR into one, or a few, pages then hierarchical linking will do that. If you want to average out the PR amongst the pages then "fully meshing" the site (lots of evenly distributed links) will do that - examples 5, 6, and 7 above. 53
54 Συµπεράσµατα (2/2) Getting inbound links to your site is the only way to increase your site's average PR. How that PR is distributed amongst the pages on your site depends on the details of your internal linking and which of your pages are linked to. If you give outbound links to other sites then your site's average PR will decrease (you're not keeping your vote "in house" as it were). Again the details of the decrease will depend on the details of the linking. Given that the average of every page is 1.0 we can see that for every site that has an actual ranking in the millions (and there are some!) there must be lots and lots of sites who's Actual PR is below 1.0 (particularly because the absolute lowest Actual PR available is (1 - d)) 54
Ανάλυση υπερσυνδέσµων
Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη 8η: 18/04/2007 1 Ανάλυση υπερσυνδέσµων Πρακτικές
Διαβάστε περισσότεραΑνάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός
Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 12: 07/04/2014 1 Τα μαθηματικά του PageRank 2 Η αρχική εξίσωση αθροίσματος Το PageRank μιας σελίδας είναι το άθροισμα του PageRank των σελίδων που
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραderivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Διαβάστε περισσότεραHOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότερα5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότεραCHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραThe Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Διαβάστε περισσότεραΑνάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός
Ανάκληση Πληποφοπίαρ Διδάζκων Δημήηριος Καηζαρός Διάλεξη 11: 12/04/2016 1 Τα μαθημαηικά ηοσ PageRank 2 Η αρχική εξίσωση αθροίσματος Το PageRank μιας σελίδας είναι το άθροισμα του PageRank των σελίδων που
Διαβάστε περισσότεραb. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραConcrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Διαβάστε περισσότερα( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραExample of the Baum-Welch Algorithm
Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)
Διαβάστε περισσότεραFinite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Διαβάστε περισσότεραSection 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Διαβάστε περισσότεραEE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραTMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Διαβάστε περισσότεραThe challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Διαβάστε περισσότερα9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Διαβάστε περισσότεραΜηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Διαβάστε περισσότεραPotential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Διαβάστε περισσότεραCongruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Διαβάστε περισσότεραInstruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Διαβάστε περισσότεραBlock Ciphers Modes. Ramki Thurimella
Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be
Διαβάστε περισσότεραPhysical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.
B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs
Διαβάστε περισσότεραSrednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Διαβάστε περισσότεραSection 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Διαβάστε περισσότεραΕισαγωγή στην ανάλυση συνδέσμων
Εισαγωγή στην ανάλυση συνδέσμων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μαρία Χαλκίδη Why link analysis? Why link analysis? The web is not just a collection of documents its hyperlinks are important!
Διαβάστε περισσότεραPARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Διαβάστε περισσότεραMath221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Διαβάστε περισσότεραProblem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Διαβάστε περισσότερα[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Διαβάστε περισσότεραRight Rear Door. Let's now finish the door hinge saga with the right rear door
Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents
Διαβάστε περισσότεραdepartment listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότεραSolutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραthe total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Διαβάστε περισσότεραSCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games
Διαβάστε περισσότεραΣυστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
Διαβάστε περισσότερα6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Διαβάστε περισσότεραLESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014
LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο
Διαβάστε περισσότεραJesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Διαβάστε περισσότεραExercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Διαβάστε περισσότερα2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Διαβάστε περισσότεραΕΠΛ660. Ανάλυση Υπερσυνδέσµων
Ανάλυση Υπερσυνδέσµων Περιεχόµενα Μαθήµατος Anchor text Link analysis for ranking Markov Chains Pagerank and variants How can I improve the PageRank of my Web pages? HITS The Web as a Directed Graph Page
Διαβάστε περισσότεραOn a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Διαβάστε περισσότεραAssalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Διαβάστε περισσότεραMath 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Διαβάστε περισσότερα6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ του Γεράσιμου Τουλιάτου
Διαβάστε περισσότεραEcon 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Διαβάστε περισσότεραΕγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade
Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.
Διαβάστε περισσότεραLecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Διαβάστε περισσότεραSUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Διαβάστε περισσότεραPartial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Διαβάστε περισσότεραStrain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Διαβάστε περισσότεραΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
Διαβάστε περισσότεραNowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
Διαβάστε περισσότεραA Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Διαβάστε περισσότεραΟι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)
Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Προσδοκώμενα αποτελέσματα Περιεχόμενο Ενδεικτικές δραστηριότητες
Διαβάστε περισσότεραPractice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Διαβάστε περισσότεραVariational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
Διαβάστε περισσότεραforms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότεραChapter 2 * * * * * * * Introduction to Verbs * * * * * * *
Chapter 2 * * * * * * * Introduction to Verbs * * * * * * * In the first chapter, we practiced the skill of reading Greek words. Now we want to try to understand some parts of what we read. There are a
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραNumerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Διαβάστε περισσότεραANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Διαβάστε περισσότερα7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple
A/ Ονόματα και ένα παράδειγμα 1 Present Simple 7 Present PERFECT Simple 2 Present Continuous 8 Present PERFECT Continuous 3 Past Simple (+ used to) 9 Past PERFECT Simple she eats she is eating she ate
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραFractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότεραLecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότεραMean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Διαβάστε περισσότεραCode Breaker. TEACHER s NOTES
TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Διαβάστε περισσότεραCalculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
Διαβάστε περισσότεραEvery set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Διαβάστε περισσότεραModbus basic setup notes for IO-Link AL1xxx Master Block
n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that
Διαβάστε περισσότεραLESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV. 10 December 2013
LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV 10 December 2013 I get up/i stand up I wash myself I shave myself I comb myself I dress myself Once (one time) Twice (two times) Three times Salary/wage/pay Alone/only
Διαβάστε περισσότερα(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Διαβάστε περισσότερα1) Formulation of the Problem as a Linear Programming Model
1) Formulation of the Problem as a Linear Programming Model Let xi = the amount of money invested in each of the potential investments in, where (i=1,2, ) x1 = the amount of money invested in Savings Account
Διαβάστε περισσότερα