Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός"

Transcript

1 Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 12: 07/04/2014 1

2 Τα μαθηματικά του PageRank 2

3 Η αρχική εξίσωση αθροίσματος Το PageRank μιας σελίδας είναι το άθροισμα του PageRank των σελίδων που δείχνουν σ αυτή: Το πρόβλημα με τη εξίσωση αυτή είναι ότι δεν ξέρουμε το PageRank τωνσελίδωνπου δείχνουν στη P i Το πρόβλημα επιλύθηκε με επαναληπτική διαδικασία Αρχικά κάθε σελίδα έχει το ίδιο PageRank, ίσο με 1/n Ακολουθούμε την παραπάνω εξίσωση επαναληπτικά 3

4 Η επαναληπτική διαδικασία (1/2) Έστω ότι r k+1 (P i ) είναι το PageRank της σελίδας P i στην επανάληψη k+1: Η διαδικασία ξεκινά με r 0 (P i )=1/n για κάθε σελίδα Συνεχίζεται με την ελπίδα ότι τελικά θα συγκλίνει 4

5 Η επαναληπτική διαδικασία (2/2) Εφαρμόζοντας την επαναληπτική διαδικασία στο μικρό γράφημα αριστερά, μετά από μερικές επαναλήψεις έχουμε τον πίνακα δεξιά: 5

6 PageRank: Παράδειγμα 1 it took about 20 iterations before the network began to settle on these values Look at Page D - it has a PR of 0.15 even though no-one is voting for it. So, for Page D, no backlinks means the equation looks like this: PR(A) = (1-d) + d * (0)= 0.15 Observation: every page has at least a PR of 0.15 to share out But this may only be in theory - there are rumours that Google undergoes a post-spidering phase whereby any pages that have no incoming links at all are completely deleted from the index 6

7 PageRank: Παράδειγμα 2 As you d expect, the home page has the most PR it has the most incoming links! But what s happened to the average? It s only 0.378!!! That doesn t tie up with what I said earlier so something is wrong somewhere! Well no, everything is fine. But take a look at the external site pages what s happening to their PageRank? They re not passing it on, they re not voting for anyone, they re wasting their PR!!! 7

8 PageRank: Παράδειγμα 3 That s better - it does work after all! And look at the PR of our home page! All those incoming links sure make a difference we ll talk more about that later. 8

9 PageRank: Παράδειγμα 4 9

10 PageRank: Παράδειγμα 5 Our home page has 2 and a half times as much PR as the child pages! Excellent! Observation: a hierarchy concentrates votes and PR into one page 10

11 PageRank: Παράδειγμα 6 This is what we d expect. All the pages have the same number of incoming links, all pages are of equal importance to each other, all pages get the same PR of 1.0 (i.e. the average probability). 11

12 PageRank: Παράδειγμα 7 Yes, the results are the same as the Looping example above and for the same reasons 12

13 PageRank: Παράδειγμα 8 We ll assume there s an external site that has lots of pages and links with the result that one of the pages has the average PR of 1.0. We ll also assume the webmaster really likes us there s just one link from that page and it s pointing at our home page In example 5 the home page only had a PR of 1.92 but now it is 3.31! Excellent! Not only has site A contributed 0.85 PR to us, but the raised PR in the About, Product and More pages has had a lovely feedback effect, pushing up the home page s PR even further! Priciple: a well structured site will amplify the effect of any contributed PR 13

14 PageRank: Παράδειγμα 9 Well, the PR of our home page has gone up a little, but what s happened to the More page? The vote of the Product page has been split evenly between it and the external site. We now value the external Site B equally with our More page. The More page is getting only half the vote it had before this is good for Site B but very bad for us 14

15 PageRank: Παράδειγμα 10 (1/2) That s much better. The More page is still getting less share of the vote than in example 7 of course, but now the Product page has kept three quarters of its vote within our site - unlike example 9 where it was giving away fully half of it s vote to the external site! Keeping just this small extra fraction of the vote within our site has had a very nice effect on the Home Page too PR of 2.28 compared with just 1.66 in example 9 15

16 PageRank: Παράδειγμα 10 (2/2) Observation: increasing the internal links in your site can minimize the damage to your PR when you give away votes by linking to external sites. Principle: If a particular page is highly important use a hierarchical structure with the important page at the top. Where a group of pages may contain outward links increase the number of internal links to retain as much PR as possible. Where a group of pages do not contain outward links the number of internal links in the site has no effect on the site s average PR. You might as well use a link structure that gives the user the best navigational experience 16

17 PageRank: Παράδειγμα 11 Lets try to fix our site to artificially concentrate the PR into the home page. That looks good, most of the links seem to be pointing up to page A so we should get a nice PR Oh it s much worse than just an ordinary hierarchy! What s going on is that pages C and D have such weak incoming links that they re no help to page A at all! Principle: trying to abuse the PR calculation is harder than you think 17

18 PageRank: Παράδειγμα 12 (1/2) A common web layout for long documentation is to split the document into many pages with a Previous and Next link on each plus a link back to the home page. The home page then only needs to point to the first page of the document In this simple example, where there s only one document, the first page of the document has a higher PR than the Home Page! This is because page B is getting all the vote from page A, but page A is only getting fractions of pages B, C and D 18

19 PageRank: Παράδειγμα 12 (1/2) Principle: in order to give users of your site a good experience, you may have to take a hit against your PR. There s nothing you can do about this - and neither should you try to or worry about it! If your site is a pleasure to use lots of other webmasters will link to it and you ll get back much more PR than you lost. Can you also see the trend between this and the previous example? As you add more internal links to a site it gets closer to the Fully Meshed example where every page gets the average PR for the mesh. Observation: as you add more internal links in your site, the PR will be spread out more evenly between the pages 19

20 PageRank: Παράδειγμα 13 let s see if we can get 1,000 pages pointing to our home page, but only have one link leaving it Yup, those spam pages are pretty worthless but they sure add up! Observation: it doesn t matter how many pages you have in your site, your average PR will always be 1.0 at best. But a hierarchical layout can strongly concentrate votes, and therefore the PR, into the home page! 20

21 Συμπεράσματα (1/2) From the Brin and Page paper, the average Actual PR of all pages in the index is 1.0! So if you add pages to a site you re building the total PR will go up by 1.0 for each page (but only if you link the pages together so the equation can work), but the average will remain the same. If you want to concentrate the PR into one, or a few, pages then hierarchical linking will do that. If you want to average out the PR amongst the pages then "fully meshing" the site (lots of evenly distributed links) will do that - examples 5, 6, and 7 above. 21

22 Συμπεράσματα (2/2) Getting inbound links to your site is the only way to increase your site's average PR. How that PR is distributed amongst the pages on your site depends on the details of your internal linking and which of your pages are linked to. If you give outbound links to other sites then your site's average PR will decrease (you're not keeping your vote "in house" as it were). Again the details of the decrease will depend on the details of the linking. Given that the average of every page is 1.0 we can see that for every site that has an actual ranking in the millions (and there are some!) there must be lots and lots of sites who's Actual PR is below 1.0 (particularly because the absolute lowest Actual PR available is (1 - d)) 22

23 Αναπαράσταση της επανάληψης με πίνακα Η προηγούμενες εξισώσεις υπολογίζουν το PageRank τωνσελίδωνμιασελίδακάθεφορά Με χρήση πινάκων αντικαθιστούμε το σύμβολο Σ Εισαγάγουμε τον πίνακα H, και το 1x n διάνυσμα π Τ Ο H είναι ένας row-normalized πίνακας υπερσυνδέσεων με H ij =1/ P i, εάν υπάρχει σύνδεσμος από τον κόμβο i στον j, αλλιώς H ij =0 Παρόλο που ο H έχει την ίδια μη-μηδενική δομή με τον δυαδικό πίνακα γειτνιάσεων, τα μη μηδενικά στοιχεία του H είναι πιθανότητες 23

24 Παράδειγμα αναπαράστασης με πίνακα Τα μη-μηδενικά στοιχεία της γραμμής i αναπαριστούν τους εξερχόμενους συνδέσμους της σελίδας i Τα μη-μηδενικά στοιχεία της στήλης i αναπαριστούν τους εισερχόμενους συνδέσμους στη σελίδα i Η προηγούμενη εξίσωση γίνεται τώρα: 24

25 Επίδοση της αναπαράστασης με πίνακα 1. Κάθε επανάληψη της προηγούμενης εξίσωσης απαιτεί έναν πολλαπλασιασμό, άρα O(n 2 ) πολυπλοκότητα 2. Ο H είναι γενικά πολύ αραιός (sparse), άρα Απαιτεί μικρό αποθηκευτικό χώρο Ο πολλαπλασιασμός είναι πιο οικονομικός σε σχέση με το O(n 2 ) Απαιτεί μόνο O(nnz(H)), όπου nnz(h) είναι ο αριθμός των μημηδενικών Μετρήσεις δείχνουν ότι το nnz(h) ~ 10n Άρα υπολογιστικό κόστος της τάξης O(n) 3. Η επαναληπτική διαδικασία είναι απλά μια linear stationary process: είναι η κλασική power method πάνω στον H 4. O H μοιάζει με στοχαστικό πίνακα πιθανοτήτων μετάβασης, όμως είναι substochastic, γιατί υπάρχουν dangling nodes, δηλ., χωρίς εξερχόμενους συνδέσμους 25

26 Προβλήματα της επαναληπτικής διαδικασίας Θα συγκλίνει; Κάτω από ποιες προϋποθέσεις ή ιδιότητες του H θα συγκλίνει; Θα συγκλίνει σε κάτι που έχει μαθηματικό νόημα; Θα συγκλίνει σε ένα ή περισσότερα διανύσματα; Η σύγκλιση εξαρτάται από το αρχικό διάνυσμα π (0)Τ ; Πόσογρήγοραθασυγκλίνει; 26

27 Προβλήματα της επαναληπτικής διαδικασίας Αρχικά, η επαναληπτική διαδικασία ξεκίνησε με π (0)Τ =1/ne Τ (όπου e Τ είναι διάνυσμα-γραμμή με όλα 1) Προέκυψε το πρόβλημα της καταβόθρας (rank sinks) σελίδες που αυξάνουν συνεχώς το PageRank τους Στο παρακάτω παράδειγμα το κόμβος 3, ενώ στο προηγούμενο παράδειγμα η ομάδα των κόμβων 4, 5, και 6 Μετά από 13 επαναλήψεις, π (13)Τ =( /3 1/3 1/5) DK1 27

28 Διαφάνεια 27 DK1 Δεν αθροίζει στο 1. Γιατί? Dimitrios Katsaros; 14/4/2011

29 Προβλήματα της επαναληπτικής διαδικασίας Επίσης, καθώς οι κόμβοι αυξάνουν συνεχώς το PageRank τους, μερικοί δεν έχουν καθόλου Τότε, ποιο είναι το νόημα της ταξινόμησης με βάση το PageRank, όταν η πλειονότητα έχει PageRank ίσο με 0; Υπάρχει το πρόβλημα των κύκλων Εάν, ξεκινήσουμε με π (0)Τ =(1 0), καταλήγουμε σε ατέρμονη διαδικασία Στο διάνυσμα π (k)τ =(1 0) για άρτιο k Στο διάνυσμα π (k)τ =(0 1) για περιττό k 28

30 Υπενθύμιση εννοιών Markov chains Με οποιοδήποτε διάνυσμα ξεκινήσουμε, όταν εφαρμοστεί η power method σε έναν Markov πίνακα P, συγκλίνει σε ένα μοναδικό θετικό διάνυσμα, το οποίο αποκαλείται stationary vector Προϋποθέσεις σύγκλισης O P είναι stochastic: οι γραμμές αθροίζουν στο 1 O P είναι irreducible: το υποκείμενο γράφημα είναι strongly-connected O P είναι aperiodic: για οποιεσδήποτε σελίδες P i και P j υπάρχουν μονοπάτια από την P i στην P j (με οποιεσδήποτε επαναλήψεις) οποιουδήποτε μήκους, εκτός από ένα πεπερασμένοσύνολομηκών Irreducible + aperiodic = primitive (πρωτογενής) Τα προβλήματα σύγκλισης του PageRank θα ξεπεραστούν εάν ο H τροποποιηθεί, ώστε να ικανοποιεί τις παραπάνω προϋποθέσεις 29

31 Πρώιμες προσαρμογές στο βασικό μοντέλο Οι Sergey Brin και Lawrence Page δεν χρησιμοποίησαν την έννοια της Markov chain, αλλά την έννοια του random surfer Μετά από άπειρο χρόνο ταξιδιού, το ποσοστό του χρόνου που ο random surfer περνά σε μια σελίδα είναι ένα μέτρο της σημαντικότητας της σελίδας Δυστυχώς, υπάρχουν παγίδες για τον random surfer pdf image data tables 30

32 Προσαρμογή στοχαστικότητας (1/2) Οι γραμμές 0 T του Η αντικαθίστανται με 1/ne T Άρα ο random surfer, όταν συναντήσει έναν dangling node μπορεί από κει να μεταβεί σε οποιαδήποτε άλλη σελίδα Τον στοχαστικό πίνακα που προέκυψε από τον H τον συμβολίζουμε με S Για το γράφημα με τους 6 κόμβους είναι ο παρακάτω: 31

33 Προσαρμογή στοχαστικότητας (2/2) Ο S παράγεται από μια rank-one update του H S = Η + a(1/ne T ) a i = 1 εάν η σελίδα i είναι dangling node a i = 0 εάν η σελίδα i δεν είναι dangling node O S είναι συνδυασμός του αρχικού Η με τον rank-one πίνακα a(1/ne T ) Η προσαρμογή αυτή εγγυάται ότι ο S είναι πίνακας μιας Markov chain Δεν εγγυάται όμως τη σύγκλιση 32

34 Προσαρμογή πρωτογένειας (1/2) Ο random surfer δεν ακολουθεί πάντα υπερσυνδέσμους Εγκαταλείπει την πλοήγηση και μεταβαίνει σε ένα τυχαίο URL Τηλεμεταφέρεται (teleportation step) και ξεκινά ξανά την πλοήγηση Προκύπτει ο πίνακας G, Google matrix G = αs + (1-α)1/nee T α (ελληνικό άλφα) έχει τιμή μεταξύ 0 και 1, και ελέγχει το ποσοστό του χρόνου που random surfer ακολουθεί υπερσυνδέσμους ή τηλεμεταφέρεται Η τελεμεταφορά είναι τυχαία, γιατί ο πίνακας τηλεμεταφοράς E=1/nee T είναι ομοιόμορφος 33

35 Συνέπειες της προσαρμογής πρωτογένειας Ο G είναι stochastic: κυρτός συνδυασμός δυο στοχαστικών πινάκων S και E Ο G είναι irreducible: κάθε σελίδα συνδέεται άμεσα με κάθε άλλη Ο G είναι aperiodic: οι βρόχοι (G ii > 0 για κάθε i) δημιουργούν aperiodicity Ο G είναι primitive: επειδή G k > 0 για κάποιο k (για k=1) Υπάρχει ένα μοναδικό π Τ και όταν εφαρμόσουμε την power method στον G, θα συγκλίνει σ αυτό 34

36 Συνέπειες της προσαρμογής πρωτογένειας Ο G είναι πολύ πυκνός, ευτυχώς μπορεί να γραφεί ως rank-one update του πολύ αραιού πίνακα υπερσυνδέσμων H Ο G είναι τεχνητός Το stationary vector δεν υπάρχει για τον H Αλλά υπάρχει για τον G 35

37 Σύμβολα H: πολύ αραιός, substochastic πίνακας υπερσυνδέσμων S: αραιός, στοχαστικός, πιθανώς reducible πίνακας G: τελείως πυκνός, στοχαστικός, πρωτογενής πίνακας E: τελείως πυκνός, rank-one πίνακας τηλεμεταφοράς n: αριθμός σελίδων στη μηχανή της Google α: παράμετρος μεταξύ 0 και 1 π Τ : stationary row vector, PageRank διάνυσμα a Τ : δυαδικό διάνυσμα dangling nodes 36

38 ΗμέθοδοςτουPageRank που είναι απλά η power method εφαρμοζόμενη στον G 37

39 Το παράδειγμα γραφήματος με 6 κόμβους 38

40 Υπολογισμός του διανύσματος PageRank Το πρόβλημα μπορεί να περιγραφεί με δυο τρόπους Επίλυση του παρακάτω προβλήματος ιδιοδιανυσμάτων του π Τ Επίλυση του γραμμικού ομογενούς συστήματος για το π Τ 39

41 Υπολογισμός του διανύσματος PageRank Στο πρώτο σύστημα, ο στόχος είναι να βρεθεί το κανονικοποιημένο κυρίαρχο αριστερό ιδοδιάνυσμα που αντιστοιχεί στην κυρίαρχη ιδιοτιμή λ 1 =1 Στο δεύτερο σύστημα ο στόχος είναι να βρεθεί το κανονικοποιημένο αριστερό null vector του (I-G) Η εξίσωση κανονικοποίσης υπάρχει για να εγγυηθεί ότι το π Τ είναι διάνυσμα πιθανοτήτων 40

42 Power method υπολογισμού του PageRank Είναι η παλιότερη και απλούστερη μέθοδος εύρεσης της κυρίαρχης (dominant) ιδιοτιμής και ιδιοδιανύσματος ενός πίνακα Άρα μπορεί να χρησιμοποιηθεί για εύρεση του stationary vector μιας Markov chain To stationary vector είναι απλά το κυρίαρχο αριστερό ιδιοδιάνυσμα Είναι εξαιρετικά αργή μέθοδος, μεταξύ των Gauss- Seidel, Jacobi, restarted GMRES Γιατί χρησιμοποιήθηκε; 41

43 Power method υπολογισμού του PageRank Είναι προγραμματιστικά απλή Εφαρμοζόμενη στον G μπορεί να γραφεί ως εφαρμογή στον πολύ αραιό H Εκτελείται πάνω στον Η και όχι πάνω στους S ή G Αποθηκεύονται μόνο οι a, e 42

44 Power method υπολογισμού του PageRank Οι άλλες μέθοδοι αναγκάζονται να προσπελάσουν τα στοιχεία του πίνακα, ενώ η power method μόνο διαμέσου του πολλαπλασιασμού διανύσματος-πίνακα Εκτός από την αποθήκευση του H και a απαιτεί μόνο την αποθήκευση του π Τ και όχι πολλαπλά διανύσματα όπως οι άλλες μέθοδοι Απαιτεί πολύ λίγες επαναλήψεις για να επιτευχθεί η σύγκλιση Το ερώτημα που προκύπτει είναι από ποιο/ποιους παράγοντες εξαρτάται/καθορίζεται η σύγκλιση 43

45 Ρυθμός σύγκλισης (1/2) Ο ασυμπτωτικός ρυθμός σύγκλισης της power method όταν εφαρμόζεται σε κάποιο Markov πίνακα εξαρτάται από το κλάσμα των δυο ιδιοτιμών που έχουν το μεγαλύτερο μέγεθος, λ 1, λ 2 Για τους στοχαστικούς πίνακες, όπως ο G, ισχύει ότι λ 1 =1 Άρα η σύγκλιση εξαρτάται από την τιμή του λ 2 Επειδή ο G είναι πρωτογενής, ισχύει ότι λ 2 <1 Η εύρεση του είναι χρονοβόρα, οπότε δεν είναι φρόνιμο να σπαταλήσουμε πόρους για να έχουμε μια εκτίμηση του ρυθμού σύγκλισης 44

46 Ρυθμός σύγκλισης (2/2) Στις επόμενες διαφάνειες θα δείξουμε ότι εάν οι ιδιοτιμές του S είναι σ(s)={1,μ 2,μ 3,μ n } και του G είναι σ(g)={1,λ 2,λ 3,λ n }, τότε λ k = αμ k k=2,3, n Η δομή του Παγκοσμίου Ιστού είναι τέτοια που καθιστά πολύ πιθανό να ισχύει ότι μ 2 =1 (ή μ 2 1) Άρα λ 2 (G)=α (ή λ 2 (G) α) Με α=.85, σημαίνει ότι μετά από 50 επαναλήψεις α 50 = , δηλ., 2-3 θέσεις ακρίβειας που είναι αρκετά ικανοποιητικές όταν το ranking συνδυάζεται με το περιεχόμενο 45

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληποφοπίαρ Διδάζκων Δημήηριος Καηζαρός Διάλεξη 11: 12/04/2016 1 Τα μαθημαηικά ηοσ PageRank 2 Η αρχική εξίσωση αθροίσματος Το PageRank μιας σελίδας είναι το άθροισμα του PageRank των σελίδων που

Διαβάστε περισσότερα

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη 9η: 25/04/2007 1 Τα µαθηµατικά του PageRank

Διαβάστε περισσότερα

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη 9η: 25/04/2007 1 Τα µαθηµατικά του PageRank

Διαβάστε περισσότερα

Ανάκληση Πληπουοπίαρ. Διδάζκων Δημήηπιορ Καηζαπόρ

Ανάκληση Πληπουοπίαρ. Διδάζκων Δημήηπιορ Καηζαπόρ Ανάκληση Πληπουοπίαρ Διδάζκων Δημήηπιορ Καηζαπόρ Διάλεξη 11: 05/04/2017 1 Τα μαθημαηικά ηος PageRank 2 Η αρχική εξίσωση αθροίσματος Το PageRank μιας σελίδας είναι το άθροισμα του PageRank των σελίδων που

Διαβάστε περισσότερα

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη 8η: 18/04/2007 1 Ανάλυση υπερσυνδέσµων Πρακτικές

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 13η: 28/04/2014 1 Παράμετροι του μοντέλου PageRank 2 Ηπαράμετροςα(1/2) Η παράμετρος αυτή ελέγχει στην ουσία την προτεραιότητα που δίνεται στη δομή

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Ανάλυση υπερσυνδέσµων

Ανάλυση υπερσυνδέσµων Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη 8η: 18/04/2007 1 Ανάλυση υπερσυνδέσµων Πρακτικές

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 15η: 12/05/2014 1 Το πρόβλημα PageRank ως γραμμικό σύστημα 2 PageRank ως γραμμικό σύστημα Το πρόβλημα του PageRank μπορεί να γραφεί είτε ως Πρόβλημα

Διαβάστε περισσότερα

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ του Γεράσιμου Τουλιάτου

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple A/ Ονόματα και ένα παράδειγμα 1 Present Simple 7 Present PERFECT Simple 2 Present Continuous 8 Present PERFECT Continuous 3 Past Simple (+ used to) 9 Past PERFECT Simple she eats she is eating she ate

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014 LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο

Διαβάστε περισσότερα

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη 11η: 09/05/2007 1 Ζητήµατα Μεγάλης-Κλίµακας

Διαβάστε περισσότερα

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό. Ζητήµατα Μεγάλης-Κλίµακας Υλοποίησης του PageRank. Αρχιτεκτονική Μηχανής Αναζήτησης

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό. Ζητήµατα Μεγάλης-Κλίµακας Υλοποίησης του PageRank. Αρχιτεκτονική Μηχανής Αναζήτησης Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη η: 09/0/00 Ζητήµατα Μεγάλης-Κλίµακας Υλοποίησης

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 16η: 14/05/2014 1 Ζητήματα Μεγάλης-Κλίμακας Υλοποίησης του PageRank 2 Αρχιτεκτονική Μηχανής Αναζήτησης 3 Ευρετήρια (Indexes) Ευρετήρια Περιεχομένου

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Block Ciphers Modes. Ramki Thurimella

Block Ciphers Modes. Ramki Thurimella Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 14η: 07/05/2014 1 Ευαισθησία του PageRank 2 Ευαισθησία του PageRank: Εισαγωγικά Η ευαισθησία του PageRank μπορεί να αναλυθεί εξετάζοντας ξεχωριστά

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

«ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΣΕΞΟΥΑΛΙΚΗ» ΠΑΝΕΥΡΩΠΑΪΚΗ ΕΡΕΥΝΑ ΤΗΣ GAMIAN- EUROPE

«ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΣΕΞΟΥΑΛΙΚΗ» ΠΑΝΕΥΡΩΠΑΪΚΗ ΕΡΕΥΝΑ ΤΗΣ GAMIAN- EUROPE «ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΣΕΞΟΥΑΛΙΚΗ» ΠΑΝΕΥΡΩΠΑΪΚΗ ΕΡΕΥΝΑ ΤΗΣ GAMIAN- EUROPE We would like to invite you to participate in GAMIAN- Europe research project. You should only participate if you want to and choosing

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV. 10 December 2013

LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV. 10 December 2013 LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV 10 December 2013 I get up/i stand up I wash myself I shave myself I comb myself I dress myself Once (one time) Twice (two times) Three times Salary/wage/pay Alone/only

Διαβάστε περισσότερα

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook Βήμα 1: Step 1: Βρείτε το βιβλίο που θα θέλατε να αγοράσετε και πατήστε Add to Cart, για να το προσθέσετε στο καλάθι σας. Αυτόματα θα

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

FINAL TEST B TERM-JUNIOR B STARTING STEPS IN GRAMMAR UNITS 8-17

FINAL TEST B TERM-JUNIOR B STARTING STEPS IN GRAMMAR UNITS 8-17 FINAL TEST B TERM-JUNIOR B STARTING STEPS IN GRAMMAR UNITS 8-17 Name: Surname: Date: Class: 1. Write these words in the correct order. /Γράψε αυτέσ τισ λέξεισ ςτη ςωςτή ςειρά. 1) playing / his / not /

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Διαστημικό εστιατόριο του (Μ)ΑστροΈκτορα Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Μόλις μια παρέα πελατών κάτσει σε ένα

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Προσδοκώμενα αποτελέσματα Περιεχόμενο Ενδεικτικές δραστηριότητες

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληποφοπίαρ Διδάζκων Δημήηριος Καηζαρός Διάλεξη 18η: 17/05/2017 1 Η μέθοδος BrowseRank 2 Εισαγωγή Η page importance, που αναπαριστά την αξία μιας σελίδας του Web, είναι παράγων-κλειδί για την

Διαβάστε περισσότερα

BECAUSE WE REALLY WANT TO KNOW WHAT YOU THINK ABOUT SCHOOL AND YOUR GARDEN. Fairly true If I decide to learn something hard, I can.

BECAUSE WE REALLY WANT TO KNOW WHAT YOU THINK ABOUT SCHOOL AND YOUR GARDEN. Fairly true If I decide to learn something hard, I can. BECAUSE WE REALLY WANT TO KNOW WHAT YOU THINK ABOUT SCHOOL AND YOUR GARDEN Name GRADE Science Teacher A. What do I think about School? bit I try hard to do well in school. I look forward to coming to school.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Ειδική διάλεξη 2: Εισαγωγή στον κώδικα της εργασίας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Ειδική διάλεξη 2: Εισαγωγή στον κώδικα της εργασίας ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Ειδική διάλεξη 2: Εισαγωγή στον κώδικα της εργασίας Χειμερινό εξάμηνο 2008 Αρχίζοντας... Αρχίζοντας... http://folk.ntnu.no/nilsol/ssiim/

Διαβάστε περισσότερα

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony Ελληνικά Ι English 1/7 Δημιουργία Λογαριασμού Διαχείρισης Επιχειρηματικής Τηλεφωνίας μέσω της ιστοσελίδας

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ. 7. How much money do you plan to spend on Kos per person? (Excluding tickets)

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ. 7. How much money do you plan to spend on Kos per person? (Excluding tickets) ΤΟΥΡΙΣΜΟΣ Στο συγκεκριμένο project μελετήσαμε τον τουρισμό και κυρίως αυτόν στο νησί μας. Πιο συγκεκριμένα, κατά πόσο αυτός είναι σωστά ανεπτυγμένος και οργανωμένος. Για την ουσιαστικότερη προσέγγιση του

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your

Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your GP practice in Islington Σε όλα τα Ιατρεία Οικογενειακού

Διαβάστε περισσότερα