ΕΝΑΛΛΑΚΤΙΚΗ ΕΝΕΡΓΕΙΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΝΑΛΛΑΚΤΙΚΗ ΕΝΕΡΓΕΙΑ"

Transcript

1 Γενικό Λύκειο Αρκαλοχωρίου Σχ. 'Eτος: Εργασία Εφαρμογές Υπολογιστών ΕΝΑΛΛΑΚΤΙΚΗ ΕΝΕΡΓΕΙΑ Ομάδα υλοποίησης Ομάδα 3 Τμήμα: Εφαρμογές Υπολογιστών Μαθητές Κιοκιρλάν Σορίν Μουρτζάκης Μαρίνος Η εργασία είναι διαθέσιμη και στον δικτυακό τόπο της σχολικής μονάδας

2 Κατάλογος περιεχομένων Εναλλακτικοί τρόποι ενέργειας...3 Θερμικοί ηλιακοί συλλέκτες...3 Βιοκλιματικός σχεδιασμός...4 Φωτοβολταϊκά...4 Ανεμογεννήτριες...5 Γεννήτρια Υδρογόνου και αυτοκίνητα...5 Αιολική Ενέργεια...6 Γεωθερμική Ενέργεια...9 A. Πηγές Καβασίλων:...10 Β. Πηγές Αμάραντου:...10 Γ. Περιοχή Συκιών:...11 Υδροηλεκτρική Ενέργεια...12 Πυρινική Ενέργεια...13 Βιομάζα Αγροτικά Υπολείμματα Δασικά Υπολείμματα Κτηνοτροφικά υπολείμματα...22

3 Εναλλακτικοί τρόποι ενέργειας Πόσες φορές κάθε χειμώνα δεν παρακολουθούμε το δελτίο καιρού με αγωνία μήπως χρειαστεί να αγοράσουμε κι άλλο πετρέλαιο θέρμανσης; Το καλοκαίρι, πάλι, η πρόγνωση είναι λίγο-πολύ γνωστή: πρώτα ταμπουρωνόμαστε στο σπίτι αγκαλιά με το κλιματιστικό, μετά πληρώνουμε ένα τετράπαχο λογαριασμό ηλεκτρικού. Ένα λογαριασμό που -σημειωτέονδεν περιλαμβάνει τη ζημιά που κάναμε στον πλανήτη και στην υγεία μας καίγοντας καύσιμα για να παράγουμε αυτό το ρεύμα. Όλα αυτά μοιάζουν με κακόγουστο αστείο. Κι αυτό, γιατί παντού τριγύρω μας υπάρχει άφθονη ενέργεια σε καθαρές, ανανεώσιμες πηγές. Ο Ήλιος λούζει τον πλανήτη μας με ενέργεια κι ο άνεμος χαρίζει απλόχερα το δικό του «καύσιμο». Κι αυτή η ενέργεια είναι δωρεάν, αρκεί να της δώσουμε σημασία ώστε να τη συλλέξουμε και να τη χρησιμοποιήσουμε. Τι μπορεί να κάνει ο καθένας μας γι' αυτό; Πολλά, αν κρίνουμε απ' όσα μάθαμε κάνοντας μια βόλτα στο χώρο των ανανεώσιμων πηγών ενέργειας που μπορεί σήμερα κανείς να εγκαταστήσει σπίτι του. Θερμικοί ηλιακοί συλλέκτες Δεσμεύουν την ηλιακή ακτινοβολία και τη μεταφέρουν σε ένα άλλο μέσον, π.χ. αέρα ή νερό, υπό μορφήν θερμότητας. Η ηλιόλουστη Ελλάδα είναι ιδανική για την αξιοποίηση αυτών των συστημάτων. Ως τώρα, περίπου το 40% των νοικοκυριών χρησιμοποιεί ηλιακούς θερμοσίφωνες. Τα 2,7 εκατομμύρια τετραγωνικά μέτρα συλλεκτών που έχουν εγκατασταθεί στη χώρα μας προσφέρουν μεγαβατώρες το χρόνο, δηλαδή ενέργεια για την οποία θα χρειαζόμαστε ένα ολόκληρο θερμοηλεκτρικό σταθμό (ισχύος 200MW)! Μια επέκταση της ιδέας του ηλιακού θερμοσίφωνα αποτελούν τα κεντρικά συστήματα για τη θέρμανση νερού χρήσης. Στην περίπτωση αυτή, οι ηλιακοί συλλέκτες μπορούν να ενσωματωθούν κατά ένα καλαίσθητο τρόπο στο κτίριο, με το ζεστό νερό σε μια κοινή, και αποδοτικότερη, εγκατάσταση για όλη την πολυκατοικία. Οι θερμικοί ηλιακοί συλλέκτες μπορούν να παίξουν ρόλο επίσης στην κεντρική θέρμανση. Ένα σχετικά απλό και πρακτικό σενάριο είναι αυτό όπου το ηλιακό σύστημα (που θα έχει βέβαια μεγαλύτερη επιφάνεια συλλεκτών) διοχετεύει θερμότητα όχι μόνο στο νερό χρήσης, αλλά και στο νερό που κυκλοφορεί για τη θέρμανση του χώρου. Στη συνέχεια, το όποιο κεντρικό σύστημα θέρμανσης θα καταναλώσει λιγότερη ενέργεια, αφού θα πρέπει να ανεβάσει τη θερμοκρασία ενός ήδη ζεστού νερού. Και επειδή όπου έχουμε ζεστό μπορεί να έχουμε και κρύο, ένα κατάλληλα σχεδιασμένο σύστημα μπορεί να χρησιμοποιεί την περίσσεια θερμότητας το καλοκαίρι για να προσφέρει και δροσιά!

4 Παρακάτω αναφέρουμε τρόπους αντλήσεως ενέργειας απο το Περιβάλλον Βιοκλιματικός σχεδιασμός Μπορούμε να χτίσουμε ένα σπίτι έτσι ώστε να κλιματίζεται κατά μεγάλο μέρος από μόνο του; Η απάντηση είναι ναι! Η παραδοσιακή ελληνική αρχιτεκτονική, με τον σοφό προσανατολισμό του κτιρίου και τους χοντρούς τοίχους από πέτρα, είναι ουσιαστικά ένα παράδειγμα βιοκλιματικής. Ο σχεδιασμός ενός βιοκλιματικού κτίριου αποτελεί ένα γοητευτικό συνδυασμό από διάφορα στοιχεία. Τα υλικά, η διάταξη των χώρων, η φύτευση γύρω από το σπίτι δημιουργούν ένα μικροκλίμα που εξασφαλίζει συνθήκες θερμικής και οπτικής άνεσης. Βεράντες-θερμοκήπια συμπεριφέρονται σαν συστήματα θέρμανσης. Φυλλοβόλα δέντρα και αναρριχητικά φυτά προσφέρουν σκιά το καλοκαίρι. Στέγες, παράθυρα, τοίχοι, ζώνες που έρχονται σε επαφή με το έδαφος, λειτουργούν άλλοτε σαν συλλέκτες και άλλοτε σαν «αναμεταδότες» ζέστης, δροσιάς και φυσικού αερισμού. Το κτίριο μπορεί έτσι να αξιοποιήσει την ηλιακή ενέργεια χωρίς τη μεσολάβηση κάποιας συσκευής, δηλαδή με «παθητικά ηλιακά συστήματα». Μπορούμε, βέβαια, να ενσωματώσουμε στο κτίριο και όποια άλλα ενεργειακά συστήματα ή τεχνολογικούς αυτοματισμούς επιθυμούμε. Πόσο αποδοτικό μπορεί να είναι ενεργειακά ένα βιοκλιματικό κτίριο; Οι προσομοιώσεις του Κέντρου Ανανεώσιμων Πηγών Ενέργειας, με βάση τα πραγματικά στοιχεία από βιοκλιματικά κτίρια που έχουν κατασκευαστεί ως τώρα στην Ελλάδα, είναι εντυπωσιακές. Συνολικά, τα βιοκλιματικά κτίρια παρουσιάζουν εξοικονόμηση ενέργειας της τάξης του 30% σε σχέση με αντίστοιχα κτίρια που διαθέτουν θερμομόνωση. Συγκρίνοντας με τα παλαιότερα, αμόνωτα κτίρια (που αποτελούν και την πλειονότητα), η εξοικονόμηση ενέργειας φθάνει το 80%. Φωτοβολταϊκά Κάθε τετραγωνικό μέτρο επιφάνειας της χώρας μας δέχεται κατά μέσον όρο 4,6 κιλοβατώρες την ημέρα σαν δώρο από τον Ήλιο. Αυτό που κάνουν τα φωτοβολταϊκά είναι να μετατρέπουν ένα μέρος απ' αυτήν την ενέργεια σε ηλεκτρισμό - μια μετατροπή που γίνεται αθόρυβα, αξιόπιστα και με μηδενική ρύπανση! Ένα χαρακτηριστικό των φωτοβολταϊκών είναι ότι εξακολουθούν να αποδίδουν και με το διάχυτο φως μιας συννεφιασμένης μέρας (σε ένα ποσοστό της μέγιστης ισχύος). Επίσης, μπορούν να αποτελέσουν δομικά και διακοσμητικά στοιχεία ενός κτιρίου. Για λόγους ενεργειακής απόδοσης και οικονομίας, τα φωτοβολταϊκά συνιστώνται κυρίως για φωτισμό και χρήση ηλεκτρονικών συσκευών και όχι για τροφοδότηση θερμικών ηλεκτρικών συσκευών (κουζίνες, θερμοσίφωνες κ.λπ.).

5 Μέχρι πριν από δύο περίπου χρόνια, οι περισσότερες εγκαταστάσεις φωτοβολταϊκών στην Ελλάδα αφορούσαν ανεξάρτητα συστήματα, σε περιοχές εκτός δικτύου ΔΕΗ. Τον τελευταίο καιρό, έχουμε μια σημαντική στροφή προς «συνδεδεμένα» συστήματα. Στην περίπτωση αυτή δεν χρειάζονται συσσωρευτές (μπαταρίες) για ενδιάμεση αποθήκευση ενέργειας κι έτσι το σύστημα κοστίζει λιγότερο. Με τα συνδεδεμένα συστήματα, έχουμε επίσης τη δυνατότητα να εγκαταστήσουμε αμφίδρομη σύνδεση με τη ΔΕΗ. Έτσι, όταν δεν καταναλώνουμε ρεύμα από το φωτοβολταϊκό μας σύστημα (π.χ. κατά την απουσία μας), η παραγόμενη ενέργεια πηγαίνει στη ΔΕΗ και συμψηφίζεται με το ρεύμα που θα χρειαστεί κάποια στιγμή να πάρουμε εμείς από το δίκτυο. Ανεμογεννήτριες Μια ανεμογεννήτρια λίγων κιλοβάτ, όπως αυτές που προτείνονται για τις ιδιωτικές κατοικίες, μοιάζει περισσότερο με παιχνίδι. Ένας ιστός ύψους λίγων μέτρων μπορεί να φιλοξενήσει μια μικρή ανεμογεννήτρια, η οποία, συνήθως, εγκαθίσταται μαζί με φωτοβολταϊκά σε ανεξάρτητα συστήματα, έτσι ώστε να καλύπτονται οι ανάγκες σε περιόδους χωρίς ηλιοφάνεια. Για την ηλεκτροδότηση μιας κατοικίας μόνο από αιολική ενέργεια, θα χρειαστούμε φυσικά και τον ανάλογο εξοπλισμό για ενδιάμεση αποθήκευση αυτής της ενέργειας. Μια ανεμογεννήτρια έως 20 κιλοβάτ, μπορεί να εγκατασταθεί χωρίς τις πολύπλοκες διαδικασίες αδειοδότησης που απαιτούνται για τις μεγαλύτερες αδελφές της. Στην περίπτωση συνδεδεμένων συστημάτων, ισχύουν και εδώ όσα είπαμε για τα φωτοβολταϊκά: δεν απαιτείται ενδιάμεση αποθήκευση ενέργειας και το παραγόμενο ρεύμα μπορεί να διοχετεύεται στο δίκτυο και να συμψηφίζεται με το ρεύμα της ΔΕΗ. Γεννήτρια Υδρογόνου και αυτοκίνητα Μπορεί να νερό να γίνει καύσιμο για ένα αυτοκίνητο? Η απάντηση είναι ΝΑΙ!Μπορεί ένα αυτοκίνητο να καίει νερό. Υπάρχει βέβαια ένα μικρό πρόβλημα : Τα αυτοκίνητα που θα καίνε 100% νερό θα περάσουν δεκάδες χρόνια για να παραχθούν σε μαζική κλίμακα. Η τωρινή διαθέσιμη μέθοδος χρησιμοποιεί ακόμη βενζίνη η πετρέλαιο. Το νερό είναι συμπλήρωμα που αυξάνει δραματικά την αυτονομία. Χρησιμοποιείται λίγο ρεύμα από την μπαταρία του αυτοκινήτου σας για να διαχωρίσετε το νερό σε ένα αέριο που ονομάζεται ΗΗΟ. Με αυτήν την τεχνολογία κινούνται ήδη πολλά αυτοκίνητα. Το αέριο ΗΗΟ είναι τρείς φορές πιο δυνατό από την βενζίνη. Οι ελάχιστες συσκευές που κυκλοφορούν νόμιμα εκτός εξαιρέσεων, παράγουν μεν ΗΗΟ αλλά κρατάνε και χρησιμοποιούν μόνο το Υδρογόνο! Αυτό είναι επιθυμητό γιατί μας πηγαίνουν στα Fuel Cells με Υδρογόνο. Την επίσημη τεχνολογία του μέλλοντος. Όπου πάλι θα εξαρτόμαστε από τις ίδιες εταιρείες!

6 Αυτό δεν συνέβη μόνο στην Αμερική αλλά μέχρι την Αυστραλία. Στο παρελθόν, υπήρξαν πολλές αναφορές για απειλές κατά της ζωής, διαρρήξεις και κλοπές και φωτιές στα εργαστήρια. Επίσης πολλοί «περίεργοι» θάνατοι των ερευνητών. Όταν κάνει κάποιος μια εφεύρεση που χτυπά την δύναμη των καρτέλ και τον συνεχιζόμενο πλούτο τους, είναι το πιο επικίνδυνο επάγγελμα στον κόσμο! Χρησιμοποιεί υδρόλυση και νερό βρύσης για να γλυτώσετε λεφτά από τα καύσιμα. Δουλεύει με βενζινοκίνητες και ντιζελοκίνητες μηχανές. Απαιτεί μόνο ελάχιστο νερό από ΤΗΝ ΒΡΥΣΗ με λίγη Baking Soda ως καταλύτη, για πολλές εκατοντάδες χιλιόμετρα οδήγηση χαμηλού κόστους. Οι μηχανές εσωτερικής καύσεως εργάζονται με ένα συνδυασμό καυσίμου και αέρα για να διαμορφώσουν ένα καύσιμο μείγμα. Η διαδικασία αυτή είναι χαμηλής αποδόσεως. Το 75% η καλύτερα τα ¾ της ισχύος του καυσίμου χάνεται γιατί μετατρέπεται σε θερμότητα. Το σύστημα HHO water4gas αντικαθιστά το καύσιμο με αέριο υδρογόνου στην μηχανή σας. Το υδρογόνο καίγεται καλύτερα με τον αέρα, οπότε αυξάνει τα χιλιόμετρα που κάνετε με ένα λίτρο βενζίνη. Αιολική Ενέργεια Ο άνεμος είναι μια ανανεώσιμη πηγή ενέργειας που μπορεί να αξιοποιηθεί στην παραγωγή ηλεκτρισμού. Οι άνθρωποι έχουν ανακαλύψει την αιολική ενέργεια εδώ και χιλιάδες χρόνια. Οι ανεμόμυλοι έδιναν κάποτε κίνηση στις τεράστιες μυλόπετρες, που άλεθαν το σιτάρι μετατρέποντάς το σε αλεύρι Μικρές αντλίες χρησιμοποιούσαν τη δύναμη του ανέμου για να ανεβάσουν το νερό από τα πηγάδια. Πριν 25 χρόνια περίπου οι πρώτες σύγχρονες ανεμογεννήτριες χρησιμοποιήθηκαν στις Η.Π.Α. Από τότε πολλές ακόμη έχουν μπει σε λειτουργία σε ολόκληρο τον κόσμο. Οι άνθρωποι χρησιμοποιούν τους ανέμους εδώ και εκατοντάδες χρόνια. Το πρώτο μεταφορικό μέσο χωρίς μυϊκή δύναμη ήταν τα ιστιοφόρα. Το επόμενο

7 στάδιο εκμετάλλευσης ήταν οι ανεμόμυλοι. Οι αγρότες χρησιμοποιούν ανεμόμυλους για να αλέθουν το σιτάρι και για να αποστραγγίζουν ή να αρδεύουν τις καλλιέργειες τους. Με την ανάπτυξη νέων πηγών ενέργειας οι άνθρωποι σταμάτησαν να χρησιμοποιούν τους ανεμόμυλους. Αλλά με την ενεργειακή κρίση, οι μηχανικοί χρησιμοποιώντας νέες τεχνολογίες και υλικά, αξιοποιούν και πάλι την ενέργεια των ανέμων, με νέα είδη ανεμόμυλων. Για την εκμετάλλευση των ανέμων και παλιά και σήμερα, χρησιμοποιούνται ανεμόμυλοι. Οι ανεμόμυλοι όμως σήμερα δεν χρησιμοποιούνται για να αλέθουν σιτάρι ή να αρδεύουν καλλιεργήσιμες εκτάσεις, αλλά για την παραγωγή ηλεκτρικής ενέργειας. Όλοι οι ανεμόμυλοι έχουν έλικες με πτερύγια που κινούνται με τον άνεμο που φυσά. Η κατασκευή τους είναι τέτοια, ώστε το σύστημα των πτερυγίων να περιστρέφεται και να είναι πάντοτε αντίθετο στη φορά του ανέμου. Η ταχύτητα του ανέμου είναι συνήθως μικρή και γι αυτό είναι δύσκολο να αξιοποιηθεί όλη η ενέργεια που μεταφέρει ο άνεμος. Ακόμα και οι σημερινοί μοντέρνοι και τεράστιοι ανεμόμυλοι παράγουν ηλεκτρική ενέργεια αρκετή μόνο για λίγα σπίτια. Για να παραχθεί η ενέργεια που παράγεται σε έναν απλό σταθμό χρειάζονται περίπου μεγάλοι ανεμόμυλοι. Μια διάταξη ανεμογεννητριών ονομάζεται αιολικό πάρκο. Στο πάρκο στην Καλιφόρνια των Η.Π.Α. επικρατούν δυνατοί άνεμοι, και έτσι η περιοχή είναι ιδανική για ανεμογεννήτριες. Σε ένα αιολικό πάρκο κάθε ανεμογεννήτρια έχει τρία μακριά πτερύγια. Καθώς τα πτερύγια στρέφονται με τον άνεμο, δίνουν κίνηση στη γεννήτρια που παράγει ηλεκτρισμό. Οι προγονοί μας χρησιμοποιούσαν ανεμόμυλους και νερόμυλους, για να αλέθουν το σιτάρι τους. Οι ανεμόμυλοι χρησιμοποιούνται και σήμερα. Για παράδειγμα, κινούν αντλίες που ανυψώνουν το νερό πάνω από το έδαφος ή τροφοδοτούν γεννήτριες για τον φωτισμό απόμακρων περιοχών. Ο άνεμος όμως είναι πολύ ευμετάβλητος. Οι αλλαγές στην κατεύθυνση πάντως αντιμετωπίζονται εύκολα. Το μόνο που χρειάζεται είναι κάποιο σύστημα που κρατάει

8 τα πτερύγια των ανεμόμυλων στη σωστή θέση. Οι αλλαγές στην ταχύτητα του ανέμου είναι ένα άλλο θέμα. Προκαλούν μεταβολές στην παροχή ενέργειας στις γεννήτριες. Κι ακόμη χειρότερα, ο άνεμος σταματάει τελείως για πολλές μέρες ή φυσάει τόσο δυνατά ώστε καταστρέφει τα πτερύγια των ανεμόμυλων. Σε αντίθεση με το νερό, ο άνεμος επίσης δεν μπορεί να περιοριστεί σε φράγματα ώστε να ρυθμίζεται η ροή του. Το ηλεκτρικό ρεύμα, που παράγεται κατά την διάρκεια μεγάλων περιόδων ανέμων, μπορεί να αποθηκεύεται σε μπαταρίες αλλά αυτές είναι ακόμη ακριβές και αναποτελεσματικές. Ο παραδοσιακός ανεμόμυλος μετατρέπει λιγότερη από τη μισή ενέργεια του ανέμου σε ισχύ. Επειδή ο αέρας είναι πολύ αραιότερος από το νερό, τα πτερύγια του ανεμόμυλου πρέπει να είναι 800 φορές μεγαλύτερα από αυτά ενός νερόμυλου, για να κινηθούν με την ίδια ταχύτητα. Γι αυτό το λόγο σχεδιάζονται νέα μοντέλα αερογεννητριών. Ο ανεμοκινητήρας μοιάζει με έλικα. Αυτός που στηρίζεται σε κάθετο άξονα περιστρέφεται όποια κι αν είναι η κατεύθυνση του ανέμου. Υπάρχει ένας ακόμη τρόπος για την εκμετάλλευση της αιολικής ενέργειας, τα κύματα της θάλασσας που σχηματίζονται και αυτά από τον άνεμο. Ένας τρόπος εκμετάλλευσης της ενέργειας τους είναι η χρήση πλωτήρων που ανεβοκατεβαίνουν με το πέρασμα των κυμάτων. Η κίνηση αυτή θα μπορούσε να θέσει σε λειτουργία μια τουρμπίνα. Βελτιωμένη έκδοση του πλωτήρα αποτελούν οι αρθρωτές «σχεδίες» οι οποίες επηρεάζονται και από την παραμικρότερη κίνηση του νερού. Ένα άλλο σύστημα ονομάζεται «πάπια» επειδή αποτελείται από ελάσματα, τα οποία λικνίζονται πάνω κάτω σαν πάπιες στο νερό. Το πιο επιτυχημένο ως τώρα σύστημα, κατασκευάστηκε στη Νορβηγία και κινείται με αέρα, που πιέζεται προς τα πάνω από ένα μεγάλο κύλινδρο, ο οποίος ωθείται από τα κύματα. Αλλά οι μετατροπές της ενέργειας των κυμάτων πρέπει να αντέχουν στις καταιγίδες και είναι άχρηστοι όταν επικρατεί νηνεμία. Επιπλέον κοστίζουν και είναι αναποτελεσματικοί για να έχουν μια αξιόλογη συμβολή στα παγκόσμια ενεργειακά αποθέματα.

9 Γεωθερμική Ενέργεια Είναι η θερμική ενέργεια που προέρχεται από το εσωτερικό της γης και εμπεριέχεται σε φυσικούς ατμούς, σε επιφανειακά ή υπόγεια νερά και σε θερμά ξηρά πετρώματα. Η Ελλάδα λόγω των ειδικών γεωλογικών συνθηκών της είναι πλούσια σε αυτή τη μορφή ενέργειας. Εκμεταλλευόμενοι τη γεωθερμική ενέργεια μπορούμε να πετύχουμε τηλεθέρμανση κτιρίων σε ορισμένες περιοχές της χώρας, ανάπτυξη γεωθερμικών θερμοκηπίων, μονάδων ιχθυοκαλλιεργειών, μονάδων αφαλάτωσης, ξηραντηρίων κλπ. Δεν υπάρχει αυτή τη στιγμή ενεργειακή εκμετάλλευση γεωθερμικών ρευστών στην περιοχή. Όμως υπάρχει γεωθερμικό δυναμικό στην περιοχή της Κόνιτσας. Ειδικότερα υπάρχουν δύο πηγές ρευστού χαμηλής ενθαλπίας στην Κόνιτσα. Το δυναμικό αυτό μπορεί να χρησιμοποιηθεί για παράδειγμα για παροχή θερμού σε ιχθυοτροφεία. Μέχρι σήμερα έχουν βρεθεί τα παρακάτω γεωθερμικά πεδία: A. Πηγές Καβασίλων: Οι πηγές Καβασίλων κοντά στον ποταμό Σαραντάπορο αναλύθηκαν από το ΙΓΜΕ και τα αποτελέσματα δίνονται πιο κάτω. Θερμοκρασία Αέρα Θερμοκρασία Νερού 28,1 o C 28,1 o C

10 Β. Πηγές Αμάραντου: Στα βόρεια της Κόνιτσας κοντά στο Χωριό Αμάραντος υπάρχουν θερμές πηγές. Το φαινόμενο αυτό παρατηρείται στην οροσειρά της Πίνδου. Η θερμοκρασία του ατμού στην έξοδό του μετρήθηκε σε 32 0 C ενώ η θερμοκρασία στο σημείο εξόδου είναι η θερμοκρασία περιβάλλοντος. Γ. Περιοχή Συκιών: Στην υπό έρευνα ευρύτερη περιοχή Συκιών Άρτας, (200 μέτρα νότια του χωριού Συκιές και περίπου 15 Km νότια της Άρτας), πραγματοποιήθηκαν τέσσερις ερευνητικές και μία παραγωγική γεώτρηση βάθους 320 μέτρων. Τέστ παραγωγής, που έλαβε χώρα την 20 η και 21 η Οκτωβρίου 1998, έδειξε δυνατότητα άντλησης νερού, έως και 100 κυβικών μέτρων ανά ώρα, θερμοκρασίας 55 ο C περίπου. Αξίζει να σημειωθεί ότι η κανονική γεωθερμική βαθμίδα είναι 3,3 ο C / 100 m, ενώ στην περιοχή ενδιαφέροντος η τιμή της υπολογίζεται στους 17 ο C / 100 m περίπου. Το γεωθερμικό αυτό πεδίο έχει έκταση 1 Km 2, ενώ η έρευνα θα συνεχιστεί με στόχο τον εντοπισμό της ευρύτερης έκτασής του, που πιθανά να φτάνει κοντά στο πολεοδομικό συγκρότημα της Άρτας.

11 Υδροηλεκτρική Ενέργεια Προέρχεται από την εκμετάλλευση των υδάτων των ποταμών. Η υδροηλεκτρική ενέργεια δεν παράγει βλαβερά αέρια και κατά συνέπεια έχει αισθητά μικρότερη επίδραση στην ατμόσφαιρα. Το μέχρι σήμερα αναξιοποίητο υδροηλεκτρικό δυναμικό της ηπειρωτικής κυρίως Ελλάδος, θα μπορούσε να καλύψει σημαντικό ποσοστό της συνολικής ενεργειακής κατανάλωσης. Σε αρκετές περιοχές της Ηπείρου μπορούν να κατασκευαστούν από ιδιώτες μικροί υδροηλεκτρικοί σταθμοί για την παραγωγή ηλεκτρικής ενέργειας. Μια από τις αναξιοποίητες πλουτοπαραγωγικές πηγές της Ηπείρου αποτελεί το τεράστιο υδάτινο δυναμικό το οποίο σύμφωνα με συντηρητικές εκτιμήσεις φαίνεται να πλησιάζει το 30% του συνολικού φρέσκου νερού της Ελλάδας. Όλοι οι ποταμοί της Ηπείρου έχουν τις πηγές τους στην οροσειρά της Πίνδου. Η οροσειρά της Πίνδου έχει σημαντικές βροχοπτώσεις και εδαφολογία τέτοια ώστε να μπορούμε να εκμεταλλευτούμε το υδάτινο δυναμικό από μεγάλες υψομετρικές διαφορές ενώ από την άλλη πλευρά το έδαφος της οροσειράς είναι τέτοιο που ευνοεί τη δημιουργία τεχνητών λιμνών και δεξαμενών ύδατος. Πρέπει να σημειωθεί εδώ, ότι ενώ η ηλεκτρική ενέργεια παράγεται τη στιγμή που απαιτείται από τους καταναλωτές το νερό το οποίο αποταμιεύεται σε ταμιευτήρες για μελλοντική χρήση για παραγωγή ηλεκτρικής ενέργειας μπορεί να χρησιμοποιηθεί για άρδευση κατά τη διάρκεια ξηρών περιόδων, σαν απόθεμα νερού, εμπλουτισμό λιμνών, αθλητικά γεγονότα, τουρισμό κ.λ.π. Παράλληλα το κύριο κριτήριο για την κατασκευή ή όχι ενός υδροηλεκτρικού εργοστασίου δεν είναι μόνο η δυνατότητα παραγωγής φτηνής και καθαρής για το περιβάλλον ενέργειας αλλά η σωστότερη, οικολογική επέμβαση στη φύση για διατήρηση της φύσης της περιοχής και τη σωστή Περιφερειακή ανάπτυξη της χώρας. Οι μέχρι τώρα έρευνες έδειξαν ότι στην Ήπειρο μπορούν να δημιουργηθούν μέχρι 18 μεγάλα υδροηλεκτρικά εργοστάσια καθώς επίσης μέχρι και 50 περίπου μικρά, που μπορούν να παράγουν 5,000 GWh περίπου ετησίως. Η παραγωγή αυτή ενέργειας αντιστοιχεί στο 25% του αξιοποιήσιμου υδάτινου δυναμικού της χώρας και στο 15% της καταναλισκόμενης ισχύος στην Ελλάδα ανά έτος.

12 Πυρηνική Ενέργεια Το ξέρετε ότι οι πυρηνικοί αντιδραστήρες λειτουργούν χιλιάδες χρόνια στην γή; Αυτή την εκπληκτική ανακάλυψη έκαναν Γάλλοι επιστήμονες αναλύοντας το ουράνιο σε ένα ορυχείο της Αφρικής. Η γεωλογική εξέλιξη και η εμφάνιση του οξυγόνο συνέβαλλαν στη δημιουργία φυσικών αντιδραστήρων που βρίσκονται βαθιά μέσα στο φλοιό της γής. Πολύ αργότερα ο άνθρωπος τους επαναδημιούργησε. Στη δεκαετία του 40, το πετρέλαιο, το κάρβουνο και το νερό παρήγαγαν το μεγαλύτερο μέρος του ηλεκτρισμού στον κόσμο. Όμως, μια νέα πηγή αναδύθηκε από τα εργαστήρια της φυσικής και είναι η σημαντικότερη όλων. Η πυρηνική ενέργεια. Οι πρώτοι πυρηνικοί αντιδραστήρες, οι ατομικές στήλες δεν παρήγαγαν ηλεκτρική ενέργεια. Μας βοήθησαν όμως να ανακαλύψουμε τα μυστικά των πυρηνικών φαινομένων και να τα ελέγξουμε. Πριν πολλά χρόνια χτίστηκαν τσιμεντένια κτίρια που στέγαζαν τους πυρηνικούς αντιδραστήρες. Υπάρχουν πολλά είδη πυρηνικών αντιδραστήρων. Ο πιο κοινός είναι ο αντιδραστήρας πεπιεσμένου ύδατος τον οποίο και θα περιγράψουμε. Αυτό το είδος αντιδραστήρα βασίζεται στην ίδια αρχή που βασίζονται και τα άλλα είδη αντιδραστήρων, δηλαδή την πυρηνική σχάση. Πυρηνική σχάση είναι η ιδιότητα κάποιων ατόμων να διασπόνται παράγοντας μεγάλη ποσότητα ενέργειας. Όλα τα άτομα αποτελούνται από έναν πυρήνα που περιβάλλεται από ένα σύννεφο ηλεκτρονίων. Αυτός ο πυρήνας περιέχει και άλλα δύο είδη σωματιδίων σε διάφορους αριθμούς. Τα νετρόνια και τα πρωτόνια. Αυτά τα σωματίδια αλληλοσυγκρατούνται με μια ισχυρή δύναμη που οι φυσικοί ονομάζουν ενέργεια σύνδεσης. Στη φύση, οι περισσότεροι ατομικοί πυρήνες είναι σταθεροί. Ο μόλυβδος θα είναι πάντα μόλυβδος. Όμως υπάρχει μόνο ένας πυρήνας που μπορεί να διασπασθεί συγκρουόμενος με ένα νετρόνιο και απελευθερώνοντας ένα μέρος της συνδετικής τους ενέργειας. Πρόκειται για τον πυρήνα του ουρανίου 235. Ο αριθμός 235 αντιστοιχεί στην ποσότητα των πρωτονίων και νετρονίων μέσα στον πυρήνα. Και άλλα στοιχεία κατασκευασμένα από τον άνθρωπο, όπως το πλουτώνιο μπορεί επίσης να διασπασθεί. Η σχάση του ουρανίου 235 δεν είναι αυθόρμητη. Για να διασπασθεί ένα νετρόνιο πρέπει να συγκρουσθεί με τον πυρήνα του ουρανίου.

13 Τότε ο πυρήνας διασπάται, απελευθερώνει ενέργεια μαζί με δύο ή τρία άλλα νετρόνια. Καθώς διαφεύγουν, αυτά τα νετρόνια μπορούν να συγκρουστούν με άλλους πυρήνες ουρανίου 235 προκαλώντας πάλι σχάση, απελευθερώνοντας και άλλα νετρόνια και ενέργεια κ. ο. κ. Αυτή είναι η φημισμένη αλυσίδα των αντιδράσεων που αποτελεί πηγή ενέργειας στους πυρηνικούς αντιδραστήρες. Για να διευκολυνθεί αυτή η αλυσίδα αντιδράσεων, οι αντιδραστήρες πεπιεσμένου ύδατος χρησιμοποιούν ένα καύσιμο μέσω μιας σύνθετης διαδικασίας, αυξάνεται η ποσότητα του ουρανίου 235. Πρόκειται για ένα εμπλουτισμένο ουράνιο. Το ουράνιο 235 αποτελείται κυρίως από το ουράνιο 238, ένα άτομο που δεν έχει τη δυνατότητα διάσπασης. Αν χρησιμοποιείται το φυσικό ουράνιο θα γινόταν μόνο μια σύγκρουση των νετρονίων με τον πυρήνα του ουρανίου 235, και έτσι η αλυσίδα αντιδράσεων θα εξελίσσονταν πιο δύσκολα. Επίσης τα απελευθερωμένα νετρόνια ταξιδεύουν με τόσο μεγάλη ταχύτητα που θα υπήρχε μικρή πιθανότητα με τον πυρήνα ενός ουρανίου. Για να αυξηθούν οι πιθανότητες σύγκρουσης, πρέπει να μειωθεί η ταχύτητα των νετρονίων. Αυτό γίνεται με έναν μετατροπέα. Μια ουσία, που επιβραδύνει τα νετρόνια χωρίς να τα απορροφά. Στον αντιδραστήρα πεπιεσμένου ύδατος, το νερό είναι αυτός ο μετατροπέας. Η αλυσίδα των αντιδράσεων γίνεται στην καρδιά του αντιδραστήρα, μια ατσάλινη δεξαμενή με πεπιεσμένο νερό γεμάτη. Το καύσιμο που είναι σε μορφή σβώλων, είναι μέσα σε μεταλλικές θήκες που ονομάζονται μολυβδίδες. Το νερό κυκλοφορεί ανάμεσα στις μολυβδίδες, επιβραδύνει τα νετρόνια που βγαίνουν από τη μια μολυβδίδα στην άλλη και έτσι ξεκινά μια αυτοσυντήρητη αλυσίδα αντιδράσεων. Το νερό όμως, που κυκλοφορεί στην καρδιά του αντιδραστήρα δεν ενεργεί μόνο ως μετατροπέας. Χρησιμοποιείται και ως μέσο ελέγχου της θερμοκρασίας και αποτρέπει την υπερθέρμανση της καρδιάς του αντιδραστήρα. Αυτό το νερό που ονομάζεται και πρωτεύων νερό, έχει μια ακόμα σημαντική λειτουργία: Θερμόμενο από το καύσιμο, εισχωρεί σε μυριάδες σωλήνες στη γεννήτρια ατμού γύρω από την οποία επίσης κυκλοφορεί νερό. Το νερό που κυκλοφορεί γύρω από αυτές τις σωλήνες, το δευτερεύων νερό, εξατμίζεται. Ο ατμός μεταβιβάζεται σε μια τεράστια τουρμπίνα που ενεργοποιεί έναν μεταλλάκτη ο οποίος παράγει ηλεκτρισμό. Ο ατμός δεν αποβάλλεται στο περιβάλλον. Υγροποιείται σε επαφή με ένα τρίτο κύκλωμα, το κύκλωμα ψύξης. Ένας σταθμός με αντλίες τροφοδοτεί το τρίτο κύκλωμα με κρύο νερό από τη θάλασσα ή από κάποιο ποτάμι. Το νερό από κάθε κύκλωμα επιστρέφει στο αρχικό του σημείο. Το τριτεύον νερό επιστρέφει στη θάλασσα ή στο ποτάμι, το δευτερεύον νερό επιστρέφει στη γεννήτρια ατμού και το πρωτεύον στη δεξαμενή του αντιδραστήρα.

14 Αυτά τα τρία κυκλώματα ανταλλάσσουν θερμότητα, αλλά ποτέ υπό φυσιολογικές συνθήκες, νερό. Έτσι μειώνονται οι πιθανότητες μόλυνσης του περιβάλλοντος αφού μόνο το πρωτεύον νερό είναι ραδιενεργό που έρχεται σε επαφή με τα στοιχεία του καυσίμου. Αν δεν δημιουργηθεί διαρροή η ραδιενέργεια αυτή δεν μεταβιβάζεται στο δευτερεύον νερό. Η πυρηνική ενέργεια έχει και τα μειονεκτήματά της, αλλά από άποψη αποτελεσματικότητας είναι αξεπέραστη. Η σχάση ενός ουρανίου 235 παράγει τόση ενέργεια, όση δύο τόνοι κάρβουνο σε ένα κλασσικό σταθμό ηλεκτρικής ενέργειας. Η ασφαλής λειτουργία ενός σταθμού πυρηνικής ενέργειας, αποτελεί μια τεράστια πρόκληση. Μπορεί να επιτευχθεί μόνο με την αύξηση των φραγμάτων, ανάμεσα στον πυρηνικό αντιδραστήρα και το περιβάλλον. Χιροσίμα, 6 Αυγούστου Εκείνη τη μέρα η ανθρωπότητα ανακάλυψε με τρόμο τη φοβερή δύναμη του ατόμου. Ευτυχώς οι φυσικοί έμαθαν πώς να δαμάζουν αυτήν την ενέργεια για ειρηνικούς σκοπούς. Μεγάλα βήματα έχουν γίνει σήμερα αν αναλογιστούμε ότι η πυρηνική ενέργεια παράγει το 20% του ηλεκτρισμού σε όλο τον κόσμο, και γενικά οι επιδράσεις της στην υγεία και το περιβάλλον έχουν ελαχιστοποιηθεί. Εκτός βέβαια από κάποιες εξαιρέσεις, όπως το τρομερό ατύχημα στο Τσέρνομπιλ. Είναι γεγονός, πως η ασφάλεια ενός πυρηνικού αντιδραστήρα απαιτεί πολλά σύνθετα και δαπανηρά μέτρα και τεχνικές. Η ασφάλεια ενός πυρηνικού αντιδραστήρα, βασίζεται, σε μια αρχή που λέγεται άμυνα σε βάθος. Αντικειμενικός στόχος της άμυνας σε βάθος, είναι η μείωση των πιθανών ατυχημάτων τα οποία θα μολύνουν το εργατικό δυναμικό, το περιβάλλον, ακόμα και τον πληθυσμό. Μια από τις μεθόδους που χρησιμοποιούνται είναι η δημιουργία ασπίδων όσο πιο αξεπέραστων γίνεται ανάμεσα στην καρδία του πυρηνικού αντιδραστήρα και τον εξωτερικό κόσμο. Οι πυρηνικοί αντιδραστήρες πεπιεσμένου ύδατος, έχουν τρεις τέτοιες ασπίδες. Είναι διατεταγμένες όπως περίπου οι ρώσικές κούκλες. Η πρώτη ασπίδα αποτελείται από αεροστεγές μέταλλο, μέσα στην οποία είναι σφραγισμένοι οι σβώλοι του καυσίμου. Η δεύτερη ασπίδα είναι μια δεξαμενή πάχους 20 εκατοστών. Μέσα σ αυτή τη δεξαμενή που είναι γεμάτη με νερό και κλείνεται με ένα βαρύ μολύβι, βρίσκονται οι μολυβδίδες του καυσίμου. Η Τρίτη ασπίδα είναι ένας τσιμεντένιος τοίχος, που ονομάζεται κτίριο του αντιδραστήρα. Το κτίριο του αντιδραστήρα έχει σχεδιασθεί έτσι ώστε να αντέχει σε μεγάλα εξωτερικά χτυπήματα όπως η πτώση ενός αεροπλάνου ή ένας πολύ μεγάλος σεισμός. Σύμφωνα με τους ειδικούς, αυτή η τριπλή ασπίδα, εξουδετερώνει κάθε κίνδυνο μόλυνσης τους περιβάλλοντος. Για να περάσουν τα ραδιενεργά στοιχεία προς τα έξω, πρέπει να υπάρχει

15 ταυτόχρονη διαρροή και στις τρεις ασπίδες και είναι ελάχιστη η πιθανότητα για να συμβεί κάτι τέτοιο. Ένας σταθμός πυρηνικής ενέργειας παράγει συνεχώς και ελαφρός ραδιενεργά απόβλητα, αλλά αυτά τα υγρά και τα αέρια απολυμαίνονται και ελέγχονται αυστηρά πριν απελευθερωθούν στο περιβάλλον. Μέσα στο εργοστάσιο λαμβάνονται πολλά μέτρα ασφαλείας που διασφαλίζουν την προστασία του προσωπικού. Οι υπάλληλοι υποβάλλονται σε συστηματικούς ελέγχους για μόλυνση και το επίπεδο έκθεσης σε ραδιενέργεια. Η ασφάλεια των πυρηνικών αντιδραστήρων όμως, δεν περιλαμβάνει μόνο τον έλεγχο του πεδίου έκθεσης σε ραδιενέργεια των ανθρώπων, αλλά αποσκοπεί και στη μείωση των πιθανοτήτων σοβαρών ατυχημάτων. Γι αυτό οι αντιδραστήρες εξοπλίζονται με συστήματα που επιβραδύνουν ή σταματούν την αλυσίδα των αντιδράσεων. Ειδικοί ράβδοι, βυθίζονται στην καρδιά του αντιδραστήρα σε διάφορα βάθη. Οι ράβδοι απορροφούν τα νετρόνια που συμβάλουν στην συνέχιση της αλυσίδας των αντιδράσεων. Αυτό ή επιβραδύνει τις αντιδράσεις ή τις σταματά εντελώς. Ο αντιδραστήρας μπορεί να σταματήσει είτε αυτόματα είτε με το χέρι από την αίθουσα ελέγχου. Αν οι ράβδοι δεν λειτουργήσουν όπως πρέπει, μπορεί να προκληθεί μια αλυσίδα ανεξέλεγκτων αντιδράσεων και συνεπώς κάποιο ατύχημα. Σ αυτό το είδος πυρηνικού αντιδραστήρα μπορεί να συμβεί ατύχημα αν το νερό που ψύχει τον αντιδραστήρα σταματήσει να κυκλοφορεί. Στην χειρότερη περίπτωση η θερμοκρασία αυξάνεται στο κρίσιμο σημείο τήξης της καρδιάς του αντιδραστήρα. Αυτή είναι η χειρότερη καταστροφή που μπορεί να συμβεί σ αυτό το είδος αντιδραστήρα. Το μολυσμένο νερό που βρίσκεται στη δεξαμενή του αντιδραστήρα θα αρχίσει να βράζει και στη συνέχεια η δεξαμενή θα εκραγεί. Τήξη της καρδιάς του αντιδραστήρα συνέβη μια φορά στις ΗΠΑ, αλλά ευτυχώς δεν απελευθερώθηκε ενέργεια στο περιβάλλον. Μια πολλά υποσχόμενη τεχνική αποτελεί χρήση ενός ισχυρού Computer που αναπαριστά και μελετάει πώς συμπεριφέρεται ένας πυρηνικός αντιδραστήρας σε επικίνδυνες περιστάσεις. Αυτό το σύστημα αναπαράγει σε πραγματικό χρόνο τη συμπεριφορά ενός αντιδραστήρα σε κάθε περίσταση. Από την αίθουσα ελέγχου αναπαριστώνται διάφορα ατυχήματα, όπως η διαρροή ή η αποτυχία μιας ασπίδωσης. Μια άλλη οθόνη που ονομάζεται σταθμός εκπαίδευσης, οπτικοποιεί ένα μέρος ή όλο τον αντιδραστήρα για να παρατηρούνται τα φυσικά φαινόμενα που γίνονται μέσα. Από την αίθουσα ελέγχου γίνονται προσπάθειες να διατηρηθεί η κατάσταση υπό έλεγχο. Π. χ. Για να διατηρηθεί η θερμοκρασία ή η πίεση του αντιδραστήρα μέσα σε ασφαλή πλαίσια. Αυτό το εργαλείο επιτρέπει στους επιστήμονες να βρίσκουν τρόπους αντιμετώπισης κάθε πιθανής καταστροφής.

16 Σήμερα κάθε χώρα που έχει αναπτύξει πυρηνική βιομηχανία, αντιμετωπίζει ένα πολύ λεπτό πρόβλημα. Πώς να διαθέσει τους τόνους ραδιενεργών αποβλήτων που συνεχίζουν να συσσωρεύονται. Η πυρηνική ενέργεια ανακαλύφθηκε πριν λίγες δεκαετίες μόνο και ήδη οι χρήσεις της είναι αμέτρητες. Σήμερα είναι από τις καλύτερες πηγές ελεγχόμενης ενέργειας. Η εικόνα όμως δεν είναι τελείως ρόδινη. Όπως όλες οι ανθρώπινες δραστηριότητες, η πυρηνική ενέργεια παράγει απόβλητα, και ως σήμερα το πρόβλημα των πυρηνικών αποβλήτων είναι άλυτο. Αυτό που κάνει τα πυρηνικά απόβλητα τόσο επικίνδυνα είναι η ραδιενέργειά τους. Ένα σώμα είναι ραδιενεργό όταν τα άτομά του είναι ασταθή. Προσπαθώντας να επανέλθουν στη σταθερή τους κατάσταση τα άτομα απελευθερώνουν ραδιενέργεια σε μορφή σωματιδίων ή ενέργειας. Αυτή η ραδιενέργεια είναι πολύ τοξική για όλα τα έμβια όντα. Πέρα από κάποια συγκεκριμένα επίπεδα προκαλεί καρκίνο και μεταλλάξεις για παράδειγμα. Ευτυχώς τα ραδιενεργά στοιχεία δεν είναι αθάνατα. Εκπέμποντας ραδιενέργεια γίνονται νέα στοιχεία που τελικά η ενέργειά τους εξαντλείται. Ο χρόνος που απαιτείται για τη δραστηριότητα ενός συγκεκριμένου ραδιενεργού στοιχείου να μειώσει κατά το ήμισυ την αρχική του τιμή ραδιενέργειας, ονομάζεται ημιπερίοδος ζωής. Οι ημοπερίοδοι της ζωής, ποικίλουν σημαντικά. Κυμαίνονται από μερικά δέκατα του δευτερολέπτου μέχρι πολλά δισεκατομμύρια χρόνια. Τα πιο επικίνδυνα στοιχεία έχουν μια μέση ημιπερίοδο ζωής. Π. χ. το ιώδιο 131 έχει διάρκεια ζωής 8 ημέρες, το πλουτώνιο 239, (είκοσι τέσσερις χιλιάδες χρόνια). Κατά κανόνα η ραδιενέργεια ενός στοιχείου μειώνεται πολύ σταδιακά. Υπολογίζεται ότι χρειάζεται δέκα (10) ημιπεριόδους ζωής, για να σταματήσει ένα στοιχείο να απειλεί σοβαρά. Υπάρχουν διάφορα είδη πυρηνικών αποβλήτων. Ανάλογα με την προέλευσή τους και τη δραστηριότητά τους. Ως επί το πλείστον έχουν ελάχιστη ή μέτρια δραστηριότητα και σύντομο διάστημα ζωής. Μεταξύ αυτών είναι τα ρούχα ή τα γάντια, οι λαμπτήρες και οι βελόνες των νοσοκομείων. Ενώ αποτελούν το 95% του συνόλου των πυρηνικών αποβλήτων εκπέμπουν λιγότερο από το 1% της συνολικής ραδιενέργειας και γι αυτό δεν αποτελούν σοβαρό πρόβλημα. Μπορούν να αποθηκευτούν σε τσιμεντένιες χωματερές, ανάλογες με τους αρχαίους τύμβους. Τα πυρηνικά απόβλητα που προκαλούν τη μεγαλύτερη ανησυχία είναι αυτά με υψηλή περιεκτικότητα σε ραδιενέργεια. Αυτά αποτελούν το 1% των συνολικών πυρηνικών αποβλήτων αλλά εκπέμπουν το 99% της συνολικής ραδιενέργειας και κυρίως η διάρκεια ζωής τους είναι δεκάδες χιλιάδες χρόνια. Αυτά τα απόβλητα προέρχονται κυρίως από τα σβησμένα καύσιμα των

17 σταθμών πυρηνικής ενέργειας. Σε ένα σταθμό ενέργεια ένα καύσιμο σπάνια διαρκεί πάνω από 3-4 χρόνια και μετά παύει να είναι αποτελεσματικό. Το πρόβλημα είναι πώς θα διατεθούν αυτά τα σβησμένα καύσιμα. Ορισμένες τα χώρες ανακυκλώνουν. Τα σβησμένα καύσιμα δεν περιέχουν μόνο άχρηστες ουσίες αλλά και υλικά που μπορούν να ανακυκλωθούν για να παράγουν νέο πυρηνικό καύσιμο. Βιομάζα Μια από τις ανερχόμενες και περισσότερο αξιοποιήσιμες, τώρα τελευταία ανανεώσιμες πηγές ενέργειας είναι η Βιομάζα. Με τον όρο βιομάζα υποδηλώνονται τα παραπροϊόντα και κατάλοιπα της φυτικής, ζωικής, και δασικής παραγωγής, τα παραπροϊόντα τα οποία προέρχονται από τη βιομηχανική επεξεργασία των υλικών αυτών, τα αστικά λύματα και σκουπίδια, οι φυσικές ύλες που προέρχονται, είτε από φυσικά οικοσυστήματα (π.χ. αυτοφυή φυτά, δάση), είτε από τεχνητές φυτείες αγροτικού ή δασικού τύπου. Η Ήπειρος έχει σημαντικό ενεργειακό δυναμικό βιομάζας, το οποίο πρακτικά θα μπορούσε να καλύψει μεγάλο μέρος της ενεργειακής της κατανάλωσης. Συγκεκριμένα, τα κατά έτος διαθέσιμα γεωργικά και δασικά υπολείμματα αντιστοιχούν ενεργειακά με 300 Κton περίπου. Με αξιοποίηση της βιομάζας μπορούμε να πάρουμε σημαντική ποσότητα ενέργειας με σαφώς μικρότερες εκπομπές βλαβερών ουσιών στο περιβάλλον από αυτές που προέρχονται από την καύση συμβατικών καυσίμων. Σύμφωνα με μελέτη που συνέταξε το Ίδρυμα Εγνατία Ηπείρου για την Βιομάζα και την αξιοποίηση της στη Ήπειρο το Δυναμικό Βιομάζας που διαθέτει η Ήπειρος στις τρεις σημαντικότερες πηγές Βιομάζας είναι :

18 1. Αγροτικά Υπολείμματα. Η έκταση που χαρακτηρίζεται σαν αγροτική αποτελεί το 13,8% της συνολικής έκτασης της Περιφέρειας Ηπείρου (σε σχέση με το 29,7% του μέσου όρου της αγροτικής έκτασης της Ελλάδος). Το θεωρητικό δυναμικό και το ενεργειακό περιεχόμενο της βιομάζας από αγροτικά παραπροϊόντα και υπολείμματα δίνεται στον παρακάτω πίνακα : Είδος υπολείμματος Ήπειρος (τόνοι / έτος) Ήπειρος / Ελλάδα (%) Ενεργειακό περιεχόμενο (GWh/έτος) Αχυρο ,4 69,4 Φύλλα, Κλαδιά, κ.λ.π. (από καλλιέργειες καπνού, καλαμποκιού) Υπολείμματα ελαιοπαραγωγής (πχ. Πυρηνέλαιο) ,8 358, ,1 16,2 Σύνολο ,3 444,1 2. Δασικά Υπολείμματα Το 26,3% της έκτασης της Περιφέρειας καλύπτεται από δάση. Τα περισσότερα βρίσκονται στην Βόρεια και Ανατολική περιοχή της Περιφέρειας (στις περιοχές Αρτας και Ιωαννίνων). Το εκμεταλλεύσιμο δυναμικό ξυλείας είναι m 3 που αντιπροσωπεύει το 11,4% της παραγωγής τη Ελλάδος. Το συνολικό δυναμικό της περιοχής φαίνεται στον παρακάτω πίνακα: Είδος υπολείμματος Ήπειρος (τόνοι / Ήπειρος / Ελλάδα Ενεργειακό περιεχόμενο

19 έτος) (%) GWh/έτος) Καυσόξυλο (αγροτικά προερχόμενο) Καυσόξυλο (δασικά προερχόμενο) Από κλάδεμα δένρων και θάμνων Υπολείμματα Δασοκομίας , , , ,8 220 Σύνολο ,4 725 Οι παραπάνω τιμές παρουσιάζουν την συνολική εκτίμηση για το δυναμικό της περιοχής. Το εκμεταλλεύσιμο δυναμικό όμως δεν είναι το παραπάνω - για παράδειγμα το δυναμικό που αναφέρεται σαν καυσόξυλο δεν είναι εκμεταλλεύσιμο γιατί ήδη χρησιμοποιείται σαν καύσιμη ύλη. Παρ όλα αυτά οι συσκευές που χρησιμοποιούν τέτοια καύσιμη ύλη έχουν πολύ μικρό βαθμό απόδοσης και θα μπορούσαν να χρησιμοποιηθούν συσκευές καλύτερου βαθμού απόδοσης και να διπλασιαστεί ή να τριπλασιαστεί η θερμαντική τους ικανότητα. Ως αναφορά τα φύλλα και τα κλαδιά (που συμπεριλαμβάνονται στα δασικά υπολείμματα) είναι αμφίβολη η ικανότητα τους να εμπλουτίσουν το έδαφος αν παραμείνουν σ αυτό. 3. Κτηνοτροφικά υπολείμματα Στην ευρύτερη Περιφέρεια Ηπείρου εκτρέφονται 1,500,000 αιγοπρόβατα, 2,700,000 πουλερικά, 140,000 χοίροι και 35,000 βοοειδή. Ιδιαίτερα ανεπτυγμένα είναι η εκτροφή χοίρων και πουλερικών που αντιπροσωπεύουν το 14,5 % και το 17 % της συνολικής Ελληνικής παραγωγής. Η ενέργεια που μπορεί να παραχθεί στην Ήπειρο από ζωικής προέλευσης υπολείμματα εκτιμάται σε 55,5GWh το χρόνο χωρίς να λαμβάνονται υπόψη τα υπολείμματα από πρόβατα και κατσίκες. Όμως μόνο τα ζωικά υπολείμματα από μεγάλες μονάδες μπορούν να

20 αξιοποιηθούν. Ο παρακάτω πίνακας παρουσιάζει την παραγωγή ζωικών υπολειμμάτων ανά έτος καθώς και το ενεργειακό περιεχόμενο αυτών από μεγάλες κτηνοτροφικές μονάδες. Ζώα Μονάδες Αριθμ ός Ζώων Ζωικά Υπολείμ ματα m 3 /έτος Ενεργειακό περιεχόμενο (GWh/έτος) Βόδια ,2 Γουρούν ια ,3 Πουλερι κά ,2 Σύνολο ,7

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Αιολική ενέργεια

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Αιολική ενέργεια ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Αιολική ενέργεια Ο άνεμος είναι μια ανανεώσιμη πηγή ενέργειας που μπορεί να αξιοποιηθεί στην παραγωγή ηλεκτρισμού. Οι άνθρωποι έχουν ανακαλύψει την αιολική ενέργεια εδώ και

Διαβάστε περισσότερα

ΧΡΙΣΤΟΣ ΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣ ΚΑΝΕΛΛΟΣ ΓΙΩΡΓΟΣ ΔΙΒΑΡΗΣ ΠΑΠΑΧΡΗΣΤΟΥ ΣΤΙΓΚΑ ΠΑΝΑΓΙΩΤΗΣ ΣΩΤΗΡΙΑ ΓΑΛΑΚΟΣ ΚΑΖΑΤΖΙΔΟΥ ΔΕΣΠΟΙΝΑ ΜΠΙΣΚΟΣ ΚΥΡΙΑΚΟΣ ΚΟΡΝΕΖΟΣ

ΧΡΙΣΤΟΣ ΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣ ΚΑΝΕΛΛΟΣ ΓΙΩΡΓΟΣ ΔΙΒΑΡΗΣ ΠΑΠΑΧΡΗΣΤΟΥ ΣΤΙΓΚΑ ΠΑΝΑΓΙΩΤΗΣ ΣΩΤΗΡΙΑ ΓΑΛΑΚΟΣ ΚΑΖΑΤΖΙΔΟΥ ΔΕΣΠΟΙΝΑ ΜΠΙΣΚΟΣ ΚΥΡΙΑΚΟΣ ΚΟΡΝΕΖΟΣ ΚΑΡΑΔΗΜΗΤΡΙΟΥΧΡΙΣΤΟΣ ΝΙΚΟΛΑΣΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣΚΑΝΕΛΛΟΣ ΘΑΝΑΣΗΣΔΙΒΑΡΗΣ ΚΩΣΤΑΝΤΙΝΟΣΠΑΠΑΧΡΗΣΤΟΥ ΑΛΕΞΑΝΔΡΟΣΣΤΙΓΚΑ ΠΑΠΑΓΕΩΡΓΙΟΥΠΑΝΑΓΙΩΤΗΣ ΖΗΝΤΡΟΥΣΩΤΗΡΙΑ ΝΙΚΗΦΟΡΟΣΓΑΛΑΚΟΣ ΣΟΦΙΑΚΑΖΑΤΖΙΔΟΥ ΣΠΥΡΟΠΟΥΛΟΥΔΕΣΠΟΙΝΑ

Διαβάστε περισσότερα

Εργασία Πρότζεκτ β. Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι

Εργασία Πρότζεκτ β. Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι Εργασία Πρότζεκτ β Τετραμήνου Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι Λίγα λόγια για την ηλιακή ενέργεια Ηλιακή ενέργεια χαρακτηρίζεται

Διαβάστε περισσότερα

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04)

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04) ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη (ΠΕ02) Βασιλική Χατζηκωνσταντίνου (ΠΕ04) Β T C E J O R P Υ Ν Η Μ Α Ρ Τ ΤΕ Α Ν Α Ν Ε Ω ΣΙ Μ ΕΣ Π Η ΓΕ Σ ΕΝ Ε Ρ ΓΕ Ι Α Σ. Δ Ι Ε Ξ Δ Σ Α Π ΤΗ Ν Κ Ρ Ι ΣΗ 2 Να

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ορισμός «Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) είναι οι μη ορυκτές ανανεώσιμες πηγές ενέργειας, δηλαδή η αιολική, η ηλιακή και η γεωθερμική ενέργεια, η ενέργεια κυμάτων, η παλιρροϊκή ενέργεια, η υδραυλική

Διαβάστε περισσότερα

Β ΨΥΚΤΙΚΩΝ ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΣΤΟΙΧΕΙΑ ΥΠΕΥΘΥΝΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΑΓΤΖΙΔΟΥ ΠΑΝΑΓΙΩΤΑ ΚΟΥΡΟΥΣ ΣΠΥΡΙΔΩΝ

Β ΨΥΚΤΙΚΩΝ ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΣΤΟΙΧΕΙΑ ΥΠΕΥΘΥΝΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΑΓΤΖΙΔΟΥ ΠΑΝΑΓΙΩΤΑ ΚΟΥΡΟΥΣ ΣΠΥΡΙΔΩΝ ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ 2013 2014 Β ΨΥΚΤΙΚΩΝ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΣΤΟΙΧΕΙΑ ΥΠΕΥΘΥΝΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΑΓΤΖΙΔΟΥ ΠΑΝΑΓΙΩΤΑ ΚΟΥΡΟΥΣ ΣΠΥΡΙΔΩΝ ΕΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ Εξοικονόμηση ενέργειας ονομάζεται οποιαδήποτε

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ανανεώσιμες Πηγές Ενέργειας Εισηγητές : Βασιλική Σπ. Γεμενή Διπλ. Μηχανολόγος Μηχανικός Δ.Π.Θ Θεόδωρος Γ. Μπιτσόλας Διπλ. Μηχανολόγος Μηχανικός Π.Δ.Μ Λάρισα 2013 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΑΠΕ 2. Ηλιακή ενέργεια

Διαβάστε περισσότερα

Ήπιες µορφές ενέργειας

Ήπιες µορφές ενέργειας ΕΒ ΟΜΟ ΚΕΦΑΛΑΙΟ Ήπιες µορφές ενέργειας Α. Ερωτήσεις πολλαπλής επιλογής Επιλέξετε τη σωστή από τις παρακάτω προτάσεις, θέτοντάς την σε κύκλο. 1. ΥΣΑΡΕΣΤΗ ΟΙΚΟΝΟΜΙΚΗ ΣΥΝΕΠΕΙΑ ΤΗΣ ΧΡΗΣΗΣ ΤΩΝ ΟΡΥΚΤΩΝ ΚΑΥΣΙΜΩΝ

Διαβάστε περισσότερα

Πηγές ενέργειας - Πηγές ζωής

Πηγές ενέργειας - Πηγές ζωής Πηγές ενέργειας - Πηγές ζωής Κέντρο Περιβαλλοντικής Εκπαίδευσης Καστρίου 2014 Παράγει ενέργεια το σώμα μας; Πράγματι, το σώμα μας παράγει ενέργεια! Για να είμαστε πιο ακριβείς, παίρνουμε ενέργεια από τις

Διαβάστε περισσότερα

1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ

1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ 1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ 1.1. ΕΙΣΑΓΩΓΗ Η ενέργεια είναι κύρια ιδιότητα της ύλης που εκδηλώνεται με διάφορες μορφές (κίνηση, θερμότητα, ηλεκτρισμός, φως, κλπ.) και γίνεται αντιληπτή (α) όταν μεταφέρεται

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ανανεώσιμες Πηγές Ενέργειας Εργασία από παιδιά του Στ 2 2013-2014 Φυσικές Επιστήμες Ηλιακή Ενέργεια Ηλιακή είναι η ενέργεια που προέρχεται από τον ήλιο. Για να μπορέσουμε να την εκμεταλλευτούμε στην παραγωγή

Διαβάστε περισσότερα

οικονομία- Τεχνολογία ΜΑΘΗΜΑ: : OικιακήO : Σχολικό έτος:2011 Β2 Γυμνασίου Νεάπολης Κοζάνης

οικονομία- Τεχνολογία ΜΑΘΗΜΑ: : OικιακήO : Σχολικό έτος:2011 Β2 Γυμνασίου Νεάπολης Κοζάνης ΜΑΘΗΜΑ: : OικιακήO οικονομία- Τεχνολογία Σχολικό έτος:2011 :2011-20122012 Β2 Γυμνασίου Νεάπολης Κοζάνης ΠΕΡΙΕΧΟΜΕΝΟ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΣΥΜΒΑΤΙΚΕΣ ΑΝΑΝΕΩΣΙΜΕΣ ΜΑΘΗΤΕΣ ΠΟΥ ΕΡΓΑΣΤΗΚΑΝ: J ΧΡΗΣΤΟΣ ΣΑΝΤ J ΣΤΕΡΓΙΟΣ

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΕΦΑΡΜΟΓΕΣ ΣΕ ΚΑΤΟΙΚΙΕΣ

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΕΦΑΡΜΟΓΕΣ ΣΕ ΚΑΤΟΙΚΙΕΣ ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΕΦΑΡΜΟΓΕΣ ΣΕ ΚΑΤΟΙΚΙΕΣ Τι είναι οι Ανανεώσιμες Πηγές Ενέργειας; Ως Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) ορίζονται οι ενεργειακές πηγές, οι οποίες

Διαβάστε περισσότερα

Ανανεώσιμες πηγές ενέργειας. Project Τμήμα Α 3

Ανανεώσιμες πηγές ενέργειας. Project Τμήμα Α 3 Ανανεώσιμες πηγές ενέργειας Project Τμήμα Α 3 Ενότητες εργασίας Η εργασία αναφέρετε στις ΑΠΕ και μη ανανεώσιμες πήγες ενέργειας. Στην 1ενότητα θα μιλήσουμε αναλυτικά τόσο για τις ΑΠΕ όσο και για τις μη

Διαβάστε περισσότερα

Ανανεώσιμες πηγές ενέργειας

Ανανεώσιμες πηγές ενέργειας Ανανεώσιμες πηγές ενέργειας Κέντρο Περιβαλλοντικής Εκπαίδευσης Καστρίου 2013 Ενέργεια & Περιβάλλον Το ενεργειακό πρόβλημα (Ι) Σε τι συνίσταται το ενεργειακό πρόβλημα; 1. Εξάντληση των συμβατικών ενεργειακών

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ «ΠΡΑΣΙΝΟ» ΣΠΙΤΙ

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ «ΠΡΑΣΙΝΟ» ΣΠΙΤΙ ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ «ΠΡΑΣΙΝΟ» ΣΠΙΤΙ Καλαντίδου Πολυνίκη Επιβλέπων καθηγητής: Κονιτόπουλος Γεώργιος Θεσσαλονίκη 2013 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος....σελ.

Διαβάστε περισσότερα

Τα Αίτια Των Κλιματικών Αλλαγών

Τα Αίτια Των Κλιματικών Αλλαγών Τα Αίτια Των Κλιματικών Αλλαγών Το Φαινόμενο του θερμοκηπίου Η τρύπα του όζοντος Η μόλυνση της ατμόσφαιρας Η μόλυνση του νερού Η μόλυνση του εδάφους Όξινη βροχή Ρύπανση του περιβάλλοντος Ραδιενεργός ρύπανση

Διαβάστε περισσότερα

Α Τοσίτσειο Αρσκάκειο Λύκειο Εκάλης. Αναγνωστάκης Νικόλας Γιαννακόπουλος Ηλίας Μπουρνελάς Θάνος Μυλωνάς Μιχάλης Παύλοβιτς Σταύρος

Α Τοσίτσειο Αρσκάκειο Λύκειο Εκάλης. Αναγνωστάκης Νικόλας Γιαννακόπουλος Ηλίας Μπουρνελάς Θάνος Μυλωνάς Μιχάλης Παύλοβιτς Σταύρος Α Τοσίτσειο Αρσκάκειο Λύκειο Εκάλης Αναγνωστάκης Νικόλας Γιαννακόπουλος Ηλίας Μπουρνελάς Θάνος Μυλωνάς Μιχάλης Παύλοβιτς Σταύρος Εισαγωγή στις ήπιες μορφές ενέργειας Χρήσεις ήπιων μορφών ενέργειας Ηλιακή

Διαβάστε περισσότερα

Λύσεις Εξοικονόμησης Ενέργειας

Λύσεις Εξοικονόμησης Ενέργειας Λύσεις Εξοικονόμησης Ενέργειας Φωτοβολταϊκά Αστείρευτη ενέργεια από τον ήλιο! Η ηλιακή ενέργεια είναι μια αστείρευτη πηγή ενέργειας στη διάθεση μας.τα προηγούμενα χρόνια η τεχνολογία και το κόστος παραγωγής

Διαβάστε περισσότερα

Αυτόνομο Ενεργειακά Κτίριο

Αυτόνομο Ενεργειακά Κτίριο Αυτόνομο Ενεργειακά Κτίριο H τάση για αυτονόμηση και απεξάρτηση από καθετί που σχετίζεται με έξοδα αλλά και απρόσμενες αυξήσεις, χαρακτηρίζει πλέον κάθε πλευρά της ζωής μας. Φυσικά, όταν πρόκειται για

Διαβάστε περισσότερα

1 ΕΠΑΛ Αθηνών. Β` Μηχανολόγοι. Ειδική Θεματική Ενότητα

1 ΕΠΑΛ Αθηνών. Β` Μηχανολόγοι. Ειδική Θεματική Ενότητα 1 ΕΠΑΛ Αθηνών Β` Μηχανολόγοι Ειδική Θεματική Ενότητα ΘΕΜΑ Ανανεώσιμες πήγες ενεργείας ΣΚΟΠΟΣ Η ευαισθητοποίηση των μαθητών για την χρήση ήπιων μορφών ενεργείας. Να αναγνωρίσουν τις βασικές δυνατότητες

Διαβάστε περισσότερα

Πρακτικός Οδηγός Εφαρμογής Μέτρων

Πρακτικός Οδηγός Εφαρμογής Μέτρων Πρακτικός Οδηγός Εφαρμογής Μέτρων Φ ο ρ έ α ς υ λ ο π ο ί η σ η ς Ν Ο Ι Κ Ο Κ Υ Ρ Ι Α Άξονες παρέμβασης Α. Κτιριακές υποδομές Β. Μεταφορές Γ. Ύ δρευση και διαχείριση λυμάτων Δ. Δ ιαχείριση αστικών στερεών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης ΕΙΣΑΓΩΓΗ Ο όρος βιομάζα μπορεί να δηλώσει : α) Τα υλικά ή τα υποπροϊόντα και κατάλοιπα της φυσικής, ζωικής δασικής και αλιευτικής παραγωγής

Διαβάστε περισσότερα

Η γεωθερμική ενέργεια είναι η ενέργεια που προέρχεται από το εσωτερικό της Γης. Η θερμότητα αυτή προέρχεται από δύο πηγές: από την θερμότητα του

Η γεωθερμική ενέργεια είναι η ενέργεια που προέρχεται από το εσωτερικό της Γης. Η θερμότητα αυτή προέρχεται από δύο πηγές: από την θερμότητα του Η γεωθερμική ενέργεια είναι η ενέργεια που προέρχεται από το εσωτερικό της Γης. Η θερμότητα αυτή προέρχεται από δύο πηγές: από την θερμότητα του αρχικού σχηματισμού της Γης και από την ραδιενεργό διάσπαση

Διαβάστε περισσότερα

Η συµβολή των Ανανεώσιµων Πηγών Ενέργειας στην επίτευξη Ενεργειακού Πολιτισµού

Η συµβολή των Ανανεώσιµων Πηγών Ενέργειας στην επίτευξη Ενεργειακού Πολιτισµού Η συµβολή των Ανανεώσιµων Πηγών Ενέργειας στην επίτευξη Ενεργειακού Πολιτισµού ρ. Ηλίας Κούτσικος, Φυσικός - Γεωφυσικός Πάρεδρος Παιδαγωγικού Ινστιτούτου ιδάσκων Πανεπιστηµίου Αθηνών Ε ι σ α γ ω γ ή...

Διαβάστε περισσότερα

1 ο Λύκειο Ναυπάκτου Έτος: Τμήμα: Α 5 Ομάδα 3 : Σίνης Γιάννης, Τσιλιγιάννη Δήμητρα, Τύπα Ιωάννα, Χριστοφορίδη Αλεξάνδρα, Φράγκος Γιώργος

1 ο Λύκειο Ναυπάκτου Έτος: Τμήμα: Α 5 Ομάδα 3 : Σίνης Γιάννης, Τσιλιγιάννη Δήμητρα, Τύπα Ιωάννα, Χριστοφορίδη Αλεξάνδρα, Φράγκος Γιώργος 1 ο Λύκειο Ναυπάκτου Έτος: 2017-2018 Τμήμα: Α 5 Ομάδα 3 : Σίνης Γιάννης, Τσιλιγιάννη Δήμητρα, Τύπα Ιωάννα, Χριστοφορίδη Αλεξάνδρα, Φράγκος Γιώργος Θέμα : Εξοικονόμηση ενέργειας σε διάφορους τομείς της

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΣΙΑ ΤΟΥ PROJECT

ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΣΙΑ ΤΟΥ PROJECT ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΣΙΑ ΤΟΥ PROJECT Οι μαθήτριες : Αναγνωστοπούλου Πηνελόπη Αποστολοπούλου Εύα Βαλλιάνου Λυδία Γερονικόλα Πηνελόπη Ηλιοπούλου Ναταλία Click to edit Master subtitle style ΑΠΡΙΛΙΟΣ 2012 Η ΟΜΑΔΑ

Διαβάστε περισσότερα

ΘΕΜΑ : ΕΝΕΡΓΕΙΑ ΠΗΓΕΣ / ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΔΙΑΡΚΕΙΑ: 1 περίοδος

ΘΕΜΑ : ΕΝΕΡΓΕΙΑ ΠΗΓΕΣ / ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΔΙΑΡΚΕΙΑ: 1 περίοδος ΘΕΜΑ : ΕΝΕΡΓΕΙΑ ΠΗΓΕΣ / ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΡΚΕΙΑ: 1 περίοδος ΤΙ ΕΙΝΑΙ ΕΝΕΡΓΕΙΑ; Η ενέργεια υπάρχει παντού παρόλο που δεν μπορούμε να την δούμε. Αντιλαμβανόμαστε την ύπαρξη της από τα αποτελέσματα της.

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΙΝΣΤΙΤΟΥΤΟ ΕΝΕΡΓΕΙΑΣ ΝΟΤΙΟΑΝΑΤΟΛΙΚΗΣ ΕΥΡΩΠΗΣ Εφαρμογές Α.Π.Ε. σε Κτίρια και Οικιστικά Σύνολα Μαρία Κίκηρα, ΚΑΠΕ - Τμήμα Κτιρίων Αρχιτέκτων MSc Αναφορές: RES Dissemination, DG

Διαβάστε περισσότερα

Πράσινο & Κοινωνικό Επιχειρείν

Πράσινο & Κοινωνικό Επιχειρείν Πράσινο & Κοινωνικό Επιχειρείν 1 Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) Eίναι οι ενεργειακές πηγές (ο ήλιος, ο άνεμος, η βιομάζα, κλπ.), οι οποίες υπάρχουν σε αφθονία στο φυσικό μας περιβάλλον Το ενδιαφέρον

Διαβάστε περισσότερα

Μελέτη κάλυψης ηλεκτρικών αναγκών νησιού με χρήση ΑΠΕ

Μελέτη κάλυψης ηλεκτρικών αναγκών νησιού με χρήση ΑΠΕ Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ Μελέτη κάλυψης ηλεκτρικών αναγκών νησιού με χρήση ΑΠΕ Σπουδαστές: ΤΣΟΛΑΚΗΣ ΧΡΗΣΤΟΣ ΧΡΥΣΟΒΙΤΣΙΩΤΗ ΣΟΦΙΑ Επιβλέπων καθηγητής: ΒΕΡΝΑΔΟΣ ΠΕΤΡΟΣ

Διαβάστε περισσότερα

2015 Η ενέργεια είναι δανεική απ τα παιδιά μας

2015 Η ενέργεια είναι δανεική απ τα παιδιά μας Εκπαιδευτικά θεματικά πακέτα (ΚΙΤ) για ευρωπαϊκά θέματα Τ4Ε 2015 Η ενέργεια είναι δανεική απ τα παιδιά μας Teachers4Europe Οδηγιεσ χρησησ Το αρχείο που χρησιμοποιείτε είναι μια διαδραστική ηλεκτρονική

Διαβάστε περισσότερα

ΕΛΙΝΑ ΒΑΓΙΑΝΟΥ ΓΛΥΚΕΡΙΑ ΔΕΝΔΡΙΝΟΥ 20-ΝΟΕ

ΕΛΙΝΑ ΒΑΓΙΑΝΟΥ ΓΛΥΚΕΡΙΑ ΔΕΝΔΡΙΝΟΥ 20-ΝΟΕ Ορισμός : Κάθε υλικό σώμα περικλείει ενέργεια, που μπορεί να μετατραπεί σε έργο. Η ιδιότητα των σωμάτων να παράγουν έργο ονομάζεται ενέργεια. Η ενέργεια που ορίζεται ως η ικανότητα για παραγωγή έργου,

Διαβάστε περισσότερα

ΦΥΣΑ ΑΕΡΑΚΙ ΦΥΣΑ ΜΕ!

ΦΥΣΑ ΑΕΡΑΚΙ ΦΥΣΑ ΜΕ! ΦΥΣΑ ΑΕΡΑΚΙ ΦΥΣΑ ΜΕ! Το 2019 θα το θυμόμαστε ως την χρονιά που κάτι άλλαξε. Τα παιδιά βγήκαν στους δρόμους απαιτώντας από τους μεγάλους να δράσουν κατά της κλιματικής αλλαγής. Αυτό το βιβλίο που κρατάτε

Διαβάστε περισσότερα

Η Γεωθερμία στην Ελλάδα

Η Γεωθερμία στην Ελλάδα ΤΕΙ ΠΕΙΡΑΙΑ Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Η Γεωθερμία στην Ελλάδα Ομάδα Παρουσίασης Επιβλέπουσα Θύμιος Δημήτρης κ. Ζουντουρίδου Εριέττα Κατινάς Νίκος Αθήνα 2014 Τι είναι η γεωθερμία; Η Γεωθερμική ενέργεια

Διαβάστε περισσότερα

Ο δευτερογενής τομέας παραγωγής, η βιομηχανία, παράγει την ηλεκτρική ενέργεια και τα καύσιμα που χρησιμοποιούμε. Η ΒΙΟΜΗΧΑΝΙΑ διακρίνεται σε

Ο δευτερογενής τομέας παραγωγής, η βιομηχανία, παράγει την ηλεκτρική ενέργεια και τα καύσιμα που χρησιμοποιούμε. Η ΒΙΟΜΗΧΑΝΙΑ διακρίνεται σε στον κόσμο Οι κινήσεις της Ευρώπης για «πράσινη» ενέργεια Χρειαζόμαστε ενέργεια για όλους τους τομείς παραγωγής, για να μαγειρέψουμε το φαγητό μας, να φωταγωγήσουμε τα σπίτια, τις επιχειρήσεις και τα σχολεία,

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΑΥΣΗ

ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΑΥΣΗ ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΑΥΣΗ Την εργασία επιμελήθηκαν οι: Αναστασοπούλου Ευτυχία Ανδρεοπούλου Μαρία Αρβανίτη Αγγελίνα Ηρακλέους Κυριακή Καραβιώτη Θεοδώρα Καραβιώτης Στέλιος Σπυρόπουλος Παντελής Τσάτος Σπύρος

Διαβάστε περισσότερα

Βιοκλιματικός Σχεδιασμός

Βιοκλιματικός Σχεδιασμός Βιοκλιματικός Σχεδιασμός Αρχές Βιοκλιματικού Σχεδιασμού Η βιοκλιματική αρχιτεκτονική αφορά στο σχεδιασμό κτιρίων και χώρων (εσωτερικών και εξωτερικών-υπαίθριων) με βάση το τοπικό κλίμα, με σκοπό την εξασφάλιση

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΑΝΑΝΕΩΣΗΜΕΣ & ΜΗ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ. Λάζαρος Λαφτσής Παναγιώτης Μιχαηλίδης

ΠΑΡΟΥΣΙΑΣΗ ΑΝΑΝΕΩΣΗΜΕΣ & ΜΗ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ. Λάζαρος Λαφτσής Παναγιώτης Μιχαηλίδης ΠΑΡΟΥΣΙΑΣΗ ΑΝΑΝΕΩΣΗΜΕΣ & ΜΗ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Λάζαρος Λαφτσής Παναγιώτης Μιχαηλίδης ΑΝΑΝΕΩΣΙΜΕΣ ΚΑΙ ΜΗ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Ηλιακή ονομάζουμε την ενέργεια που μας δίνει ο ήλιος. Μερικές

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία Ι. Μάθημα 4: Σημερινό Πλαίσιο Λειτουργίας Αγοράς Ηλεκτρικής Ενέργειας

Εισαγωγή στην Ενεργειακή Τεχνολογία Ι. Μάθημα 4: Σημερινό Πλαίσιο Λειτουργίας Αγοράς Ηλεκτρικής Ενέργειας Μάθημα 4: Σημερινό Πλαίσιο Λειτουργίας Αγοράς Ηλεκτρικής Ενέργειας Μεταβολές στο πλαίσιο λειτουργίας των ΣΗΕ (δεκαετία 1990) Κύριοι λόγοι: Απελευθέρωση αγοράς ΗΕ. Δίκτυα φυσικού αερίου. Φαινόμενο θερμοκηπίου

Διαβάστε περισσότερα

Πυρηνική σχάση. Αλέξανδρος Παπαδόπουλος-Ζάχος Τάσος Παντελίδης Project A 2

Πυρηνική σχάση. Αλέξανδρος Παπαδόπουλος-Ζάχος Τάσος Παντελίδης Project A 2 Πυρηνική σχάση Αλέξανδρος Παπαδόπουλος-Ζάχος Τάσος Παντελίδης Project 2012-13 A 2 Το ουράνιο (U) που υπάρχει στη φύση αποτελείται από 0,72% U-235, από 99,27% U-238 και από ίχνη U-234 σε ποσοστό 0,0055%.

Διαβάστε περισσότερα

Ανανεώσιμες πηγές ενέργειας

Ανανεώσιμες πηγές ενέργειας Ανανεώσιμες πηγές ενέργειας Σε αυτή την παρουσίαση δούλεψαν: Ο Ηλίας Μπάμπουλης, που έκανε έρευνα στην υδροηλεκτρική ενέργεια. Ο Δανιήλ Μπαλαμπανίδης, που έκανε έρευνα στην αιολική ενέργεια. Ο Παναγιώτης

Διαβάστε περισσότερα

Κεφάλαιο 8: Λοιπές Πηγές Ενέργειας. Αιολική & Ηλιακή ενέργεια 30/5/2016. Αιολική ενέργεια. Αιολική ενέργεια. Αιολική ισχύς στην Ευρώπη

Κεφάλαιο 8: Λοιπές Πηγές Ενέργειας. Αιολική & Ηλιακή ενέργεια 30/5/2016. Αιολική ενέργεια. Αιολική ενέργεια. Αιολική ισχύς στην Ευρώπη Ενεργειακές Πηγές & Ενεργειακές Πρώτες Ύλες Αιολική ενέργεια Κεφάλαιο 8: Λοιπές Πηγές Ενέργειας Ανεμογεννήτριες κατακόρυφου (αριστερά) και οριζόντιου άξονα (δεξιά) Κίμων Χρηστάνης Τομέας Ορυκτών Πρώτων

Διαβάστε περισσότερα

28 Ιουνίου Πυρηνική σύντηξη. Επιστήμες / Πυρηνική Φυσική - Πυρηνική Ενέργεια. Αθανάσιος Κ. Γεράνιος, Υφηγητής Αν. Καθηγητής Πανεπιστημίου Αθηνών

28 Ιουνίου Πυρηνική σύντηξη. Επιστήμες / Πυρηνική Φυσική - Πυρηνική Ενέργεια. Αθανάσιος Κ. Γεράνιος, Υφηγητής Αν. Καθηγητής Πανεπιστημίου Αθηνών 28 Ιουνίου 2011 Πυρηνική σύντηξη Επιστήμες / Πυρηνική Φυσική - Πυρηνική Ενέργεια Αθανάσιος Κ. Γεράνιος, Υφηγητής Αν. Καθηγητής Πανεπιστημίου Αθηνών Οι ελπίδες ότι θα δοθεί ένα τέλος στο ενεργειακό πρόβλημα

Διαβάστε περισσότερα

Πρόλογος.. σελ. 5 Εισαγωγή.. σελ. 6

Πρόλογος.. σελ. 5 Εισαγωγή.. σελ. 6 ΠΕΡΙΕΧΟΜΕΝΑ: Πρόλογος.. σελ. 5 Εισαγωγή.. σελ. 6 ΚΕΦΑΛΑΙΟ Ι: ΗΠΙΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ Κατηγορίες ήπιων μορφών ενέργειας..... σελ. 8 Ηλιακή Ενέργεια..... σελ. 10 Αιολική Ενέργεια. σελ. 13 Γεωθερμική Ενέργεια..

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΤΑΞΗ Β ΤΜΗΜΑΤΑ: ΗΛΕΚΤΡΟΛΟΓΩΝ, ΜΗΧΑΝΟΛΟΓΩΝ

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΤΑΞΗ Β ΤΜΗΜΑΤΑ: ΗΛΕΚΤΡΟΛΟΓΩΝ, ΜΗΧΑΝΟΛΟΓΩΝ 1 ο ΕΠΑΛ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2012-13 ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΤΑΞΗ Β ΤΜΗΜΑΤΑ: ΗΛΕΚΤΡΟΛΟΓΩΝ, ΜΗΧΑΝΟΛΟΓΩΝ ΥΠΕΥΘΥΝΟΣ ΕΚΠΑΙΔΕΥΤΙΚΟΣ: ΘΕΟΔΩΡΟΣ ΓΚΑΝΑΤΣΟΣ ΦΥΣΙΚΟΣ-ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ: 1.

Διαβάστε περισσότερα

Τοπυρηνικόατύχηµατης Fukushima I. Καινουργιάκης Εµµανουήλ

Τοπυρηνικόατύχηµατης Fukushima I. Καινουργιάκης Εµµανουήλ Τοπυρηνικόατύχηµατης Fukushima I Καινουργιάκης Εµµανουήλ Μερικά στοιχεία για την Ιαπωνία Η Ιαπωνία διαθέτει 55 πυρηνικούς αντιδραστήρες. Από αυτούς παράγεται το 29% της ενέργειας που καταναλώνεται στην

Διαβάστε περισσότερα

ΕΝΩΣΗ ΕΛΛΗΝΩΝ ΦΥΣΙΚΩΝ 4ος Πανελλήνιος Διαγωνισμός Φυσικών Στ' Δημοτικού. Α Φάση - 31/3/2016

ΕΝΩΣΗ ΕΛΛΗΝΩΝ ΦΥΣΙΚΩΝ 4ος Πανελλήνιος Διαγωνισμός Φυσικών Στ' Δημοτικού. Α Φάση - 31/3/2016 ΕΝΩΣΗ ΕΛΛΗΝΩΝ ΦΥΣΙΚΩΝ 4ος Πανελλήνιος Διαγωνισμός Φυσικών Στ' Δημοτικού Α Φάση - 31/3/2016 ΘΕΜΑ 1ο Γράψτε στα κενά Σ αν η πρόταση είναι σωστή και Λ αν είναι λανθασμένη. 1. Το νερό των κυμάτων και η γεωθερμία

Διαβάστε περισσότερα

Φωτίζοντας την πόλη μας δίνουμε ζωή!

Φωτίζοντας την πόλη μας δίνουμε ζωή! Φωτίζοντας την πόλη μας δίνουμε ζωή! 1 Τα τελευταία χρόνια, η παραγωγή ενέργειας παρουσιάζει πολλές αρνητικές επιπτώσεις στον άνθρωπο και το περιβάλλον. Εμφανίζονται στον άνθρωπο με την μορφή των αναπνευστικών

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ «Περιβάλλον και Ανάπτυξη των Ορεινών Περιοχών» Υδατικό Περιβάλλον και Ανάπτυξη

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ «Περιβάλλον και Ανάπτυξη των Ορεινών Περιοχών» Υδατικό Περιβάλλον και Ανάπτυξη http://www.circleofblue.org/waternews/2010/world/water-scarcity-prompts-different-plans-to-reckon-with-energy-choke-point-in-the-u-s/ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ «Περιβάλλον και Ανάπτυξη των Ορεινών

Διαβάστε περισσότερα

Εργαστήριο ΑΠΕ I. Εισαγωγικά στοιχεία: Δομή εργαστηρίου. Τεχνολογίες ΑΠΕ. Πολυζάκης Απόστολος Καλογήρου Ιωάννης Σουλιώτης Εμμανουήλ

Εργαστήριο ΑΠΕ I. Εισαγωγικά στοιχεία: Δομή εργαστηρίου. Τεχνολογίες ΑΠΕ. Πολυζάκης Απόστολος Καλογήρου Ιωάννης Σουλιώτης Εμμανουήλ Εργαστήριο ΑΠΕ I Εισαγωγικά στοιχεία: Δομή εργαστηρίου. Τεχνολογίες ΑΠΕ. Πολυζάκης Απόστολος Καλογήρου Ιωάννης Σουλιώτης Εμμανουήλ Ενότητες Εργαστηρίου ΑΠΕ Ι και Ασκήσεις Ενότητα 1 - Εισαγωγή: Τεχνολογίες

Διαβάστε περισσότερα

Επεμβάσεις Εξοικονόμησης Ενέργειας EUROFROST ΝΙΚΟΛΑΟΣ ΚΟΥΚΑΣ

Επεμβάσεις Εξοικονόμησης Ενέργειας EUROFROST ΝΙΚΟΛΑΟΣ ΚΟΥΚΑΣ Επεμβάσεις Εξοικονόμησης Ενέργειας EUROFROST ΝΙΚΟΛΑΟΣ ΚΟΥΚΑΣ Εξοικονόμηση χρημάτων σε υφιστάμενα και νέα κτίρια Ένα υφιστάμενο κτίριο παλαιάς κατασκευής διαθέτει εξοπλισμό χαμηλής ενεργειακής απόδοσης,

Διαβάστε περισσότερα

Πράσινη θερµότητα Ένας µικρός πρακτικός οδηγός

Πράσινη θερµότητα Ένας µικρός πρακτικός οδηγός Πράσινη θερµότητα Ένας µικρός πρακτικός οδηγός Αν δεν πιστεύετε τις στατιστικές, κοιτάξτε το πορτοφόλι σας. Πάνω από τη µισή ενέργεια που χρειάζεται ένα σπίτι, καταναλώνεται για τις ανάγκες της θέρµανσης

Διαβάστε περισσότερα

Ενσωμάτωση Βιοκλιματικών Τεχνικών και Ανανεώσιμων Πηγών Ενέργειας στα Σχολικά Κτήρια σε Συνδυασμό με Περιβαλλοντική Εκπαίδευση

Ενσωμάτωση Βιοκλιματικών Τεχνικών και Ανανεώσιμων Πηγών Ενέργειας στα Σχολικά Κτήρια σε Συνδυασμό με Περιβαλλοντική Εκπαίδευση Ενσωμάτωση Βιοκλιματικών Τεχνικών και Ανανεώσιμων Πηγών Ενέργειας στα Σχολικά Κτήρια σε Συνδυασμό με Περιβαλλοντική Εκπαίδευση Κατερίνα Χατζηβασιλειάδη Αρχιτέκτων Μηχανικός ΑΠΘ 1. Εισαγωγή Η προστασία

Διαβάστε περισσότερα

Η μεγάλη απελευθέρωση ενέργειας που παρατηρείται στις πυρηνικές αντιδράσεις οδήγησε στη μελέτη, κατασκευή και παραγωγή πανίσχυρων όπλων που την

Η μεγάλη απελευθέρωση ενέργειας που παρατηρείται στις πυρηνικές αντιδράσεις οδήγησε στη μελέτη, κατασκευή και παραγωγή πανίσχυρων όπλων που την Η μεγάλη απελευθέρωση ενέργειας που παρατηρείται στις πυρηνικές αντιδράσεις οδήγησε στη μελέτη, κατασκευή και παραγωγή πανίσχυρων όπλων που την εκρηκτική τους δύναμη αντλούν ακριβώς από τέτοιου είδους

Διαβάστε περισσότερα

Η ΕΞΥΠΝΗ ΕΝΕΡΓΕΙΑ ΓΙΑ ΤΟ ΜΕΛΛΟΝ ΜΑΣ

Η ΕΞΥΠΝΗ ΕΝΕΡΓΕΙΑ ΓΙΑ ΤΟ ΜΕΛΛΟΝ ΜΑΣ Η ΕΞΥΠΝΗ ΕΝΕΡΓΕΙΑ ΓΙΑ ΤΟ ΜΕΛΛΟΝ ΜΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Για περισσότερες πληροφορίες απευθυνθείτε στα site: ΑΝΕΜΟΓΕΝΝΗΤΡΙΕΣ ΥΔΡΟΗΛΕΚΤΡΙΚΟΙ ΣΤΑΘΜΟΙ ΗΛΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑ

Διαβάστε περισσότερα

4 ο ΕΡΕΥΝΗΤΙΚΟ ΠΕΔΙΟ:

4 ο ΕΡΕΥΝΗΤΙΚΟ ΠΕΔΙΟ: 4 ο ΕΡΕΥΝΗΤΙΚΟ ΠΕΔΙΟ: Με ποιους τρόπους συμβάλει ο βιοκλιματικός σχεδιασμός των κτιρίων, στην βελτίωση των συνθηκών διαβίωσης των ανθρώπων. Ομάδα Εργασίας : Αλεξόπουλος Πέτρος, Δημαρά Κατερίνα, Καλεμάκη

Διαβάστε περισσότερα

ΜΗ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ

ΜΗ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Το μεγαλύτερο μέρος των ενεργειακών μας αναγκών καλύπτεται από τα ορυκτά καύσιμα, το πετρέλαιο, τους ορυκτούς άνθρακες και το φυσικό αέριο. Τα αποθέματα όμως του πετρελαίου

Διαβάστε περισσότερα

9 00 ο2 κει Λύ Ζά ννε ιο Χρονοδιάγραμμα Περίληψη Παρουσίαση Προβλήματος Σκοπού Έρευνας Χρησιμότητα Έρευνας Περιορισμοί Έρευνας Μεθοδολογία Έρευνας Ιστορική Αναδρομή Γενικά Στοιχεία Ορισμοί Έρευνα στην

Διαβάστε περισσότερα

ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΛΥΣΗ ΓΙΑ ΤΟ ΠΕΡΙΒΒΑΛΟΝ ΑΛΛΑ ΚΑΙ ΓΙΑ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ

ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΛΥΣΗ ΓΙΑ ΤΟ ΠΕΡΙΒΒΑΛΟΝ ΑΛΛΑ ΚΑΙ ΓΙΑ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΛΥΣΗ ΓΙΑ ΤΟ ΠΕΡΙΒΒΑΛΟΝ ΑΛΛΑ ΚΑΙ ΓΙΑ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ 3ο ΓΕΛ ΗΡΑΚΛΕΙΟΥ ΣΧ.ΕΤΟΣ 2011-2012 Α ΛΥΚΕΙΟΥ ΣΥΜΜΕΤΕΧΟΝΤΕΣ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.

Διαβάστε περισσότερα

ΠΑΡΑΓΩΓΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΤΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΑΡΑΓΩΓΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΤΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΠΑΡΑΓΩΓΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΤΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Προβλήματα και προοπτικές Π. Μουρούζης Υπεύθυνος Ε.Κ.Φ.Ε. Κέρκυρας Ενέργεια: το κλειδί της ευημερίας αλλά και η αιτία των πολέμων 2/40 Πώς ένας άρχοντας απολάμβανε

Διαβάστε περισσότερα

Όνομα και Επώνυμο:.. Όνομα Πατέρα:. Όνομα Μητέρας:... Δημοτικό Σχολείο:.. Τάξη/Τμήμα:. Εξεταστικό Κέντρο:...

Όνομα και Επώνυμο:.. Όνομα Πατέρα:. Όνομα Μητέρας:... Δημοτικό Σχολείο:.. Τάξη/Τμήμα:. Εξεταστικό Κέντρο:... Όνομα και Επώνυμο:.. Όνομα Πατέρα:. Όνομα Μητέρας:..... Δημοτικό Σχολείο:.. Τάξη/Τμήμα:. Εξεταστικό Κέντρο:... Παρατήρησε την παρακάτω εικόνα: Αναγνώρισε τις μορφές ενέργειας στις περιοχές ή στα σώματα

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ : ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ

ΕΡΓΑΣΙΑ : ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΕΡΓΑΣΙΑ : ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΤΑΞΗ Ε ΤΜΗΜΑ 2 ΟΜΑ Α PC1 ΣΤΕΦΑΝΙΑ & ΤΖΙΡΑ ΡΑΦΑΗΛΙΑ Η ύπαρξη ζωής στη γη οφείλεται στον ήλιο. Τα φυτά, για τη φωτοσύνθεση, χρειάζονται ηλιακό φως. Τα φυτοφάγα ζώα τρέφονται με

Διαβάστε περισσότερα

«Περιβάλλον Ενεργειακή Επανάσταση-Ανανεώσιμες Πηγές Ενέργειας». Σύνθημά μας: «Θέλουμε να ζήσουμε σε ένα ανθρώπινο πλανήτη!

«Περιβάλλον Ενεργειακή Επανάσταση-Ανανεώσιμες Πηγές Ενέργειας». Σύνθημά μας: «Θέλουμε να ζήσουμε σε ένα ανθρώπινο πλανήτη! Η ιαδραστική Τηλεδιάσκεψη στην Υπηρεσία του Σύγχρονου Σχολείου Πρόγραµµα Οδυσσέας 1 ος Κύκλος 2009 «Περιβάλλον Ενεργειακή Επανάσταση-Ανανεώσιμες Πηγές Ενέργειας». Σύνθημά μας: «Θέλουμε να ζήσουμε σε ένα

Διαβάστε περισσότερα

ΦΟΙΤΗΤΗΣ: ΔΗΜΑΣ ΝΙΚΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΦΟΙΤΗΤΗΣ: ΔΗΜΑΣ ΝΙΚΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΦΟΙΤΗΤΗΣ: ΔΗΜΑΣ ΝΙΚΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ Θέμα της εργασίας είναι Η αξιοποίηση βιομάζας για την παραγωγή ηλεκτρικής ενέργειας. Πρόκειται

Διαβάστε περισσότερα

ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ. Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών

ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ. Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών Παγκόσμια ενεργειακή κατάσταση Συνολική παγκόσμια κατανάλωση ενέργειας 2009: 135.000 ΤWh (Ελλάδα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ Σελίδα 13 ΚΕΦΑΛΑΙΟ 1. ΕΝΕΡΓΕΙΑ (ΓΕΝΙΚΑ) «17

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ Σελίδα 13 ΚΕΦΑΛΑΙΟ 1. ΕΝΕΡΓΕΙΑ (ΓΕΝΙΚΑ) «17 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ Σελίδα 13 ΚΕΦΑΛΑΙΟ 1. ΕΝΕΡΓΕΙΑ (ΓΕΝΙΚΑ) «17 1.1.Ορισμός, ιστορική αναδρομή «17 1.2. Μορφές ενέργειας «18 1.3. Θερμική ενέργεια «19 1.4. Κινητική ενέργεια «24 1.5. Δυναμική ενέργεια

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ Με τον όρο Ηλιακή Ενέργεια χαρακτηρίζουμε το σύνολο των διαφόρων μορφών ενέργειας που προέρχονται από τον Ήλιο. Το φως και η θερμότητα που ακτινοβολούνται, απορροφούνται

Διαβάστε περισσότερα

Η Γη κινδυνεύει. Σήμερα 40% ΜΕ 70% ΤΩΝ ΠΑΓΚΟΣΜΙΩΝ ΕΚΠΟΜΠΩΝ ΑΝΘΡΑΚΑ ΟΦΕΙΛΕΤΑΙ ΣΤΙΣ ΠΟΛΕΙΣ

Η Γη κινδυνεύει. Σήμερα 40% ΜΕ 70% ΤΩΝ ΠΑΓΚΟΣΜΙΩΝ ΕΚΠΟΜΠΩΝ ΑΝΘΡΑΚΑ ΟΦΕΙΛΕΤΑΙ ΣΤΙΣ ΠΟΛΕΙΣ Σχεδιασμός πόλεων Η Γη κινδυνεύει Σήμερα 40% ΜΕ 70% ΤΩΝ ΠΑΓΚΟΣΜΙΩΝ ΕΚΠΟΜΠΩΝ ΑΝΘΡΑΚΑ ΟΦΕΙΛΕΤΑΙ ΣΤΙΣ ΠΟΛΕΙΣ Η πόλη μας 1912 Οι πόλεις αλλάζουν 2012 1874 : Το πρώτο σχέδιο της Αλεξανδρούπολης Μια μικρή πόλη

Διαβάστε περισσότερα

ΣΥΝΤΗΞΗ: Ένας Ήλιος στο Εργαστήριο

ΣΥΝΤΗΞΗ: Ένας Ήλιος στο Εργαστήριο ΣΥΝΤΗΞΗ: Ένας Ήλιος στο Εργαστήριο Παρασκευάς Λαλούσης Ινστιτούτο Ηλεκτρονικής Δομής και Λέϊζερ, Ίδρυμα Τεχνολογίας και Έρευνας, Ηράκλειο Κρήτης. lalousis@iesl.forth.gr Νεάπολη, 23/12/2013. Σε τι οφείλεται

Διαβάστε περισσότερα

Σύµφωνα µε την θεωρία της σχετικότητας, η ενέργεια και η ύλη αποτελούν δύο διαφορετικές µορφές οι οποίες µπορούν να µετατραπούν η µία στην άλλη. Μπορο

Σύµφωνα µε την θεωρία της σχετικότητας, η ενέργεια και η ύλη αποτελούν δύο διαφορετικές µορφές οι οποίες µπορούν να µετατραπούν η µία στην άλλη. Μπορο ιαθεµατική Εργασία µε Θέµα: Οι Φυσικές Επιστήµες στην Καθηµερινή µας Ζωή «Η Πυρηνική Ενέργεια και οι Χρήσεις της» Τµήµα: β3 Γυµνασίου Υπεύθυνος Καθηγητής:Παζούλης Παναγιώτης Συντακτική Οµάδα: Σένδρου Καλλιόπη,

Διαβάστε περισσότερα

Σώστε τη γη. Κρεσφόντης Χρυσοσπάθης

Σώστε τη γη. Κρεσφόντης Χρυσοσπάθης Επειδή ο πληθυσμός της γης και οι ανθρώπινες δραστηριότητες αυξάνοντας συνεχώς, χρησιμοποιούμε όλο και περισσότερο γλυκό νερό. Με τον τρόπο αυτό, όπως υποστηρίζουν οι επιστήμονες, το γλυκό νερό ρυπαίνεται

Διαβάστε περισσότερα

Εκπαιδευτικός Οργανισµός Ν. Ξυδάς 1

Εκπαιδευτικός Οργανισµός Ν. Ξυδάς 1 Εκπαιδευτικός Οργανισµός Ν. Ξυδάς 1 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1: Η ΕΝΕΡΓΕΙΑ ΕΧΕΙ ΠΟΛΛΑ Εισαγωγή Στην παραπάνω εικόνα βλέπεις έναν ανεµόµυλο. H φτερωτή του κινείται µε τη βοήθεια του ανέµου. Την κίνηση

Διαβάστε περισσότερα

1 ο ΕΠΑ.Λ ΚΑΡΠΑΘΟΥ. Τάξη: Α. Μάθημα: ΖΩΝΗ ΔΗΜΙΟΥΡΓΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ. Θέμα εργασίας:

1 ο ΕΠΑ.Λ ΚΑΡΠΑΘΟΥ. Τάξη: Α. Μάθημα: ΖΩΝΗ ΔΗΜΙΟΥΡΓΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ. Θέμα εργασίας: 1 ο ΕΠΑ.Λ ΚΑΡΠΑΘΟΥ Τάξη: Α Μάθημα: ΖΩΝΗ ΔΗΜΙΟΥΡΓΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ Θέμα εργασίας: Η επιλογή του θέματος, η αναζήτηση και επεξεργασία του υλικού καθώς και η δημιουργία της παρουσίασης για το μάθημα Ζώνη

Διαβάστε περισσότερα

Ανάπτυξη τεχνολογιών για την Εξοικονόμηση Ενέργειας στα κτίρια

Ανάπτυξη τεχνολογιών για την Εξοικονόμηση Ενέργειας στα κτίρια ΠΡΩΤΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ΓΙΑ ΑΝΑΠΤΥΞΙΑΚΕΣ ΚΑΙ ΚΟΙΝΩΝΙΚΕΣ ΠΡΟΚΛΗΣΕΙΣ ΕΙΔΙΚΟΥΣ ΣΤΟΧΟΥΣ και ΕΝΔΕΙΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΠΟΥ ΠΡΟΚΥΠΤΟΥΝ ΑΠΟ ΤΗ ΔΙΑΒΟΥΛΕΥΣΗ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΠΛΑΤΦΟΡΜΑΣ ΕΝΕΡΓΕΙΑΣ ΤΗΣ ΓΓΕΤ με ενσωματωμένα

Διαβάστε περισσότερα

ΟΝΟΜΑΤΑ ΜΑΘΗΤΩΝ Δέσποινα Δημητρακοπούλου Μαρία Καραγκούνη Δημήτρης Κασβίκης Θανάσης Κατσαντώνης Νίκος Λουκαδάκος

ΟΝΟΜΑΤΑ ΜΑΘΗΤΩΝ Δέσποινα Δημητρακοπούλου Μαρία Καραγκούνη Δημήτρης Κασβίκης Θανάσης Κατσαντώνης Νίκος Λουκαδάκος ΟΝΟΜΑΤΑ ΜΑΘΗΤΩΝ Δέσποινα Δημητρακοπούλου Μαρία Καραγκούνη Δημήτρης Κασβίκης Θανάσης Κατσαντώνης Νίκος Λουκαδάκος ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Αιολική Ενέργεια Βιομάζα Γεωθερμική Ενέργεια Κυματική Ενέργεια

Διαβάστε περισσότερα

Θέμα : Παραγωγή ενέργειας μέσω του ήλιου

Θέμα : Παραγωγή ενέργειας μέσω του ήλιου 1ο ΓΕ.Λ. Ελευθερίου-Κορδελιού Ερευνητική εργασία Α Λυκείου 2011-2012. Τμήμα PR4 ΠΡΑΣΙΝΗ ΕΝΕΡΓΕΙΑ. ΜΙΑ ΕΥΚΑΙΡΙΑ ΓΙΑ ΤΟΝ ΠΛΑΝΗΤΗ Θέμα : Παραγωγή ενέργειας μέσω του ήλιου Όνομα Ομάδας : Ηλιαχτίδες Σεϊταρίδου

Διαβάστε περισσότερα

Ηλιακή ενέργεια. Φωτοβολταϊκά Συστήματα

Ηλιακή ενέργεια. Φωτοβολταϊκά Συστήματα Ηλιακή ενέργεια Είναι η ενέργεια που προέρχεται από τον ήλιο και αξιοποιείται μέσω τεχνολογιών που εκμεταλλεύονται τη θερμική και ηλεκτρομαγνητική ακτινοβολία του ήλιου με χρήση μηχανικών μέσων για τη

Διαβάστε περισσότερα

e-newsletter Περιεχόμενα - ΚΤΙΡΙΑ ΜΗΔΕΝΙΚΩΝ ΕΚΠΟΜΠΩΝ ΑΝΘΡΑΚΑ ΚΑΙ ΟΙ ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΥ ΜΠΟΡΟΥΝ ΝΑ ΧΡΗΣΙΜΟΠΟΙΗΘΟΥΝ ΓΙΑ ΤΟ ΣΚΟΠΟ ΑΥΤΟ

e-newsletter Περιεχόμενα - ΚΤΙΡΙΑ ΜΗΔΕΝΙΚΩΝ ΕΚΠΟΜΠΩΝ ΑΝΘΡΑΚΑ ΚΑΙ ΟΙ ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΥ ΜΠΟΡΟΥΝ ΝΑ ΧΡΗΣΙΜΟΠΟΙΗΘΟΥΝ ΓΙΑ ΤΟ ΣΚΟΠΟ ΑΥΤΟ July 2017 ΜΑΙΧ +302821035020 Tεύχος 4 Ιωάννης Βουρδουμπάς, Επιστημονικός υπεύθυνος του έργου ZEROCO2 Γεώργιος Αγγελάκης, Υπεύθυνος διαχείρισης του έργου ZEROCO2 Ιστοσελίδα του έργου: www.interregeurope.eu/zeroco2

Διαβάστε περισσότερα

Το θέμα με το οποίο επιλέξαμε να ασχοληθούμε κατά τη φετινή χρονιά είναι: «Ενέργεια Τρόποι εξοικονόμησής της».

Το θέμα με το οποίο επιλέξαμε να ασχοληθούμε κατά τη φετινή χρονιά είναι: «Ενέργεια Τρόποι εξοικονόμησής της». Το σχολείο μας συνεχίζει φέτος, για τρίτη σχολική χρονιά, να συμμετέχει στο Ευρωπαϊκό εκπαιδευτικό και περιβαλλοντικό Πρόγραμμα Οικολoγικά Σχολεία, το οποίο προσφέρει στους μαθητές μια νέα εμπειρία. Το

Διαβάστε περισσότερα

ΤΟ ΦΑΙΝOΜΕΝΟ ΤΟΥ ΘΕΡΜΟΚΗΠΙΟΥ

ΤΟ ΦΑΙΝOΜΕΝΟ ΤΟΥ ΘΕΡΜΟΚΗΠΙΟΥ ΤΟ ΦΑΙΝOΜΕΝΟ ΤΟΥ ΘΕΡΜΟΚΗΠΙΟΥ Η ηλιακή ακτινοβολία που πέφτει στην επιφάνεια της Γης απορροφάται κατά ένα μέρος από αυτήν, ενώ κατά ένα άλλο μέρος εκπέμπεται πίσω στην ατμόσφαιρα με την μορφή υπέρυθρης

Διαβάστε περισσότερα

Πρακτικός Οδηγός Εφαρμογής Μέτρων

Πρακτικός Οδηγός Εφαρμογής Μέτρων Πρακτικός Οδηγός Εφαρμογής Μέτρων Φ ο ρ έ α ς υ λ ο π ο ί η σ η ς Δ Η Μ Ο Σ Ι Ο Σ Τ Ο Μ Ε Α Σ Άξονες παρέμβασης Α. Κτιριακές υποδομές Β. Μεταφορές Γ. Ύ δρευση και διαχείριση λυμάτων Δ. Διαχείριση αστικών

Διαβάστε περισσότερα

Φωτοβολταϊκά από µονοκρυσταλλικό πυρίτιο

Φωτοβολταϊκά από µονοκρυσταλλικό πυρίτιο 1 ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ Τα φωτοβολταϊκά συστήµατα αποτελούν µια από τις εφαρµογές των Ανανεώσιµων Πηγών Ενέργειας, µε τεράστιο ενδιαφέρον για την Ελλάδα. Εκµεταλλευόµενοι το φωτοβολταϊκό φαινόµενο το

Διαβάστε περισσότερα

ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΑΘΗΤΩΝ ΓΙΑ ΕΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΣΧΟΛΙΚΟ ΚΤΙΡΙΟ ΗΜΟΒΕΛΗΣ ΠΕΤΡΟΣ. ΕΙ ΙΚΟΤΗΤΑ : ΠΕ20- ΠΛΗΡΟΦΟΡΙΚΗΣ e-mail : dimoveli@sch.

ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΑΘΗΤΩΝ ΓΙΑ ΕΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΣΧΟΛΙΚΟ ΚΤΙΡΙΟ ΗΜΟΒΕΛΗΣ ΠΕΤΡΟΣ. ΕΙ ΙΚΟΤΗΤΑ : ΠΕ20- ΠΛΗΡΟΦΟΡΙΚΗΣ e-mail : dimoveli@sch. ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΑΘΗΤΩΝ ΓΙΑ ΕΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΣΧΟΛΙΚΟ ΚΤΙΡΙΟ ΗΜΟΒΕΛΗΣ ΠΕΤΡΟΣ ΕΙ ΙΚΟΤΗΤΑ : ΠΕ20- ΠΛΗΡΟΦΟΡΙΚΗΣ e-mail : dimoveli@sch.gr Το Πρόβληµα Η εξάντληση των φυσικών πόρων Ρύπανση του περιβάλλοντος

Διαβάστε περισσότερα

Μελέτη και οικονομική αξιολόγηση φωτοβολταϊκής εγκατάστασης σε οικία στη νήσο Κω

Μελέτη και οικονομική αξιολόγηση φωτοβολταϊκής εγκατάστασης σε οικία στη νήσο Κω Μελέτη και οικονομική αξιολόγηση φωτοβολταϊκής εγκατάστασης σε οικία στη νήσο Κω ΙΩΑΝΝΙΔΟΥ ΠΕΤΡΟΥΛΑ /04/2013 ΓΑΛΟΥΖΗΣ ΧΑΡΑΛΑΜΠΟΣ Εισαγωγή Σκοπός αυτής της παρουσίασης είναι μία συνοπτική περιγραφή της

Διαβάστε περισσότερα

ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ?

ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ? ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ? Αντώνης Θ. Αλεξανδρίδης Καθηγητής Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

ΘΕΜΑ: ΥΔΡΟΗΛΕΚΤΡΙΚΟ ΕΡΓΟΣΤΑΣΙΟ

ΘΕΜΑ: ΥΔΡΟΗΛΕΚΤΡΙΚΟ ΕΡΓΟΣΤΑΣΙΟ ΘΕΜΑ: ΥΔΡΟΗΛΕΚΤΡΙΚΟ ΕΡΓΟΣΤΑΣΙΟ ΜΑΛΙΣΙΟΒΑΣ ΒΑΣΙΛΗΣ ΜΑΘΗΤΗΣ ΤΟΥ 2 ου ΓΥΜΝΑΣΙΟΥ ΜΕΤΑΜΟΡΦΩΣΗΣ ΤΜΗΜΑ Α2 ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: ΣΠΑΝΤΙΔΑΚΗΣ ΑΝΤΩΝΙΟΣ ΣΧΟΛ.ΕΤΟΣ:2014-2015 1 η Ενότητα ΑΝΑΛΥΣΗ ΤΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΝΟΤΗΤΑΣ

Διαβάστε περισσότερα

Εξοικονόμηση ενέργειας και χρήση συστημάτων ηλιακής ενέργειας στα κτίρια. Εμμανουήλ Σουλιώτης

Εξοικονόμηση ενέργειας και χρήση συστημάτων ηλιακής ενέργειας στα κτίρια. Εμμανουήλ Σουλιώτης Εξοικονόμηση ενέργειας και χρήση συστημάτων ηλιακής ενέργειας στα κτίρια Εμμανουήλ Σουλιώτης Πρόβλεψη για τις ΑΠΕ μέχρι το 2100 ΗΛΙΟΣ ΑΝΕΜΟΣ ΒΙΟΜΑΖΑ ΓΕΩΘΕΡΜΙΑ ΝΕΡΟ ΠΥΡΗΝΙΚΗ ΟΡΥΚΤΑ ΚΑΥΣΙΜΑ Οι προβλέψεις

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΟΙΚΙΑΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΘΕΜΑ ΕΠΙΛΟΓΗΣ: ΠΕΡΙΒΑΛΛΟΝΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΤΗΣ ΠΟΛΗΣ ΜΟΥ ΤΟΥ ΜΑΘΗΤΗ: ΑΣΚΟΡΔΑΛΑΚΗ ΜΑΝΟΥ ΕΤΟΣ

ΕΡΓΑΣΙΑ ΟΙΚΙΑΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΘΕΜΑ ΕΠΙΛΟΓΗΣ: ΠΕΡΙΒΑΛΛΟΝΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΤΗΣ ΠΟΛΗΣ ΜΟΥ ΤΟΥ ΜΑΘΗΤΗ: ΑΣΚΟΡΔΑΛΑΚΗ ΜΑΝΟΥ ΕΤΟΣ ΕΡΓΑΣΙΑ ΟΙΚΙΑΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΘΕΜΑ ΕΠΙΛΟΓΗΣ: ΠΕΡΙΒΑΛΛΟΝΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΤΗΣ ΠΟΛΗΣ ΜΟΥ ΤΟΥ ΜΑΘΗΤΗ: ΑΣΚΟΡΔΑΛΑΚΗ ΜΑΝΟΥ ΕΤΟΣ 2013-2014 ΤΑΞΗ:B ΤΜΗΜΑ: Β1 ΡΥΠΑΝΣΗ- ΕΠΙΠΤΩΣΕΙΣ Η καθαριότητα και η λειτουργικότητα

Διαβάστε περισσότερα

ΠΡΟΣΤΑΤΕΥΩ ΤΟ ΠΕΡΙΒΑΛΛΟΝ! - ΠΡΟΣΤΑΤΕΥΩ ΤΟ ΣΠΙΤΙ ΜΟΥ!

ΠΡΟΣΤΑΤΕΥΩ ΤΟ ΠΕΡΙΒΑΛΛΟΝ! - ΠΡΟΣΤΑΤΕΥΩ ΤΟ ΣΠΙΤΙ ΜΟΥ! ΕΠΑΓΓΕΛΜΑΤΙΚΟ ΛΥΚΕΙΟ ΦΙΛΙΑΤΩΝ ΠΡΟΣΤΑΤΕΥΩ ΤΟ ΠΕΡΙΒΑΛΛΟΝ! - ΠΡΟΣΤΑΤΕΥΩ ΤΟ ΣΠΙΤΙ ΜΟΥ! Η δράση των μαθητών του σχολείου μας για το περιβάλλον Με την υποστήριξη της Γενικής Γραμματείας Νέας Γενιάς στο πλαίσιο

Διαβάστε περισσότερα

Γεωθερµικό Σύστηµα: Γεωθερµική Αντλία Θερµότητας

Γεωθερµικό Σύστηµα: Γεωθερµική Αντλία Θερµότητας Γεωθερµικό Σύστηµα: Γεωθερµική Αντλία Θερµότητας Η Αντλία Θερµότητας ανήκει στην κατηγορία των Ανανεώσιµων Πηγών Ενέργειας. Για την θέρµανση, το ζεστό νερό χρήσης και για την ψύξη, το 70-80% της ενέργειας

Διαβάστε περισσότερα

Ενεργειακή αποδοτικότητα στο δομημένο περιβάλλον

Ενεργειακή αποδοτικότητα στο δομημένο περιβάλλον Κέντρο Ανανεώσιμων Πηγών και Εξοικονόμησης Ενέργειας Ενεργειακή αποδοτικότητα στο δομημένο περιβάλλον Εξοικονόμηση Ενέργειας Στα Κτίρια Πάρος 15 Οκτωβρίου 2012 Ελπίδα Πολυχρόνη Μηχανολόγος Μηχανικός M.Sc.

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΚΟΥΙΤΙΜ ΓΚΡΕΜΙ, ΓΙΑΝΝΗΣ ΧΙΜΠΡΟΪ

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΚΟΥΙΤΙΜ ΓΚΡΕΜΙ, ΓΙΑΝΝΗΣ ΧΙΜΠΡΟΪ 21ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΑΘΗΝΩΝ ΤΑΞΗ Α ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΥΠΕΥΘYΝΟΙ ΚΑΘΗΓΗΤΕΣ: κ. ΠΑΠΑΟΙΚΟΝΟΜΟΥ, κ. ΑΝΔΡΙΤΣΟΣ ΟΜΑΔΑ : ΑΡΝΤΙ ΒΕΪΖΑΪ, ΣΑΜΠΡΙΝΟ ΜΕΜΙΚΟ, ΚΟΥΙΤΙΜ ΓΚΡΕΜΙ, ΓΙΑΝΝΗΣ ΧΙΜΠΡΟΪ ΕΤΟΣ:2011/12

Διαβάστε περισσότερα

Παγκόσμια Κατανάλωση Ενέργειας

Παγκόσμια Κατανάλωση Ενέργειας ΘΕΜΕΛΙΩΔΕΙΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Ήλιος Κίνηση και ελκτικό δυναμικό του ήλιου, της σελήνης και της γης Γεωθερμική ενέργεια εκλύεται από ψύξη του πυρήνα, χημικές αντιδράσεις και ραδιενεργό υποβάθμιση στοιχείων

Διαβάστε περισσότερα

ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ

ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΔΟΜΗ ΜΑΘΗΜΑΤΟΣ - ΕΙΣΑΓΩΓΗ 1o Μάθημα Διδάσκων: Επ. Καθηγητής Ε. Αμανατίδης ΤΕΤΑΡΤΗ 11/10/2017 Τμήμα Χημικών Μηχανικών Πανεπιστήμιο Πατρών Στόχος μαθήματος Βασικές αρχές παραγωγής

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Πολυτεχνική σχολή Τμήμα Χημικών Μηχανικών Ακαδημαϊκό Έτος 2007-20082008 Μάθημα: Οικονομία Περιβάλλοντος για Οικονομολόγους Διδάσκων:Σκούρας Δημήτριος ΚΑΤΑΛΥΤΙΚΗ ΑΝΤΙΔΡΑΣΗ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Α ΘΕΡΜΟΤΗΤΑ ΣΤΟ ΥΠΕΔΑΦΟΣ ΚΑΤΑΛΛΗΛΗ ΓΙΑ: ΘΕΡΜΑΝΣΗ & ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ ΜΕΣΩ ΤΟΥ ΑΤΜΟΥ, ΟΠΩΣ ΜΕ ΤΗΝ ΣΥΜΒΑΤΙΚΗ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Α ΘΕΡΜΟΤΗΤΑ ΣΤΟ ΥΠΕΔΑΦΟΣ ΚΑΤΑΛΛΗΛΗ ΓΙΑ: ΘΕΡΜΑΝΣΗ & ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ ΜΕΣΩ ΤΟΥ ΑΤΜΟΥ, ΟΠΩΣ ΜΕ ΤΗΝ ΣΥΜΒΑΤΙΚΗ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Α ΓΕΩΘΕΡΜΙΑ ΘΕΡΜΟΤΗΤΑ ΣΤΟ ΥΠΕΔΑΦΟΣ ΚΑΤΑΛΛΗΛΗ ΓΙΑ: ΘΕΡΜΑΝΣΗ & ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ ΜΕΣΩ ΤΟΥ ΑΤΜΟΥ, ΟΠΩΣ ΜΕ ΤΗΝ ΣΥΜΒΑΤΙΚΗ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ 1 ΓΕΩΘΕΡΜΙΑ : πώς γίνεται αντιληπτή στην επιφάνεια

Διαβάστε περισσότερα

ΤΟ ΥΔΡΟΓΟΝΟ ΩΣ ΠΟΛΥΔΙΑΣΤΑΤΟΣ ΜΕΤΑΦΟΡΕΑΣ ΕΝΕΡΓΕΙΑΣ. Η ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΚΥΨΕΛΩΝ ΥΔΡΟΓΟΝΟΥ ΣΤΗ ΣΧΟΛΙΚΗ ΤΑΞΗ

ΤΟ ΥΔΡΟΓΟΝΟ ΩΣ ΠΟΛΥΔΙΑΣΤΑΤΟΣ ΜΕΤΑΦΟΡΕΑΣ ΕΝΕΡΓΕΙΑΣ. Η ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΚΥΨΕΛΩΝ ΥΔΡΟΓΟΝΟΥ ΣΤΗ ΣΧΟΛΙΚΗ ΤΑΞΗ ΤΟ ΥΔΡΟΓΟΝΟ ΩΣ ΠΟΛΥΔΙΑΣΤΑΤΟΣ ΜΕΤΑΦΟΡΕΑΣ ΕΝΕΡΓΕΙΑΣ. Η ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΚΥΨΕΛΩΝ ΥΔΡΟΓΟΝΟΥ ΣΤΗ ΣΧΟΛΙΚΗ ΤΑΞΗ Κ.Π. Χατζηαντωνίου-Μαρούλη, Ι. Μπρίζας Εργ. Οργανικής Χημείας και ΔιΧηΝΕΤ, Τμήμα Χημείας, Σχολή Θετικών

Διαβάστε περισσότερα

ΕΝΣΩΜΑΤΩΣΗ ΒΙΟΚΛΙΜΑΤΙΚΩΝ ΤΕΧΝΙΚΩΝ ΚΑΙ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΑ ΣΧΟΛΙΚΑ ΚΤΗΡΙΑ ΣΕ ΣΥΝΔΥΑΣΜΟ ΜΕ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΕΝΣΩΜΑΤΩΣΗ ΒΙΟΚΛΙΜΑΤΙΚΩΝ ΤΕΧΝΙΚΩΝ ΚΑΙ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΑ ΣΧΟΛΙΚΑ ΚΤΗΡΙΑ ΣΕ ΣΥΝΔΥΑΣΜΟ ΜΕ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Συνέδριο ΤΕΕ Ενέργεια: Σημερινή εικόνα - Σχεδιασμός - Προοπτικές ΕΝΣΩΜΑΤΩΣΗ ΒΙΟΚΛΙΜΑΤΙΚΩΝ ΤΕΧΝΙΚΩΝ ΚΑΙ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΑ ΣΧΟΛΙΚΑ ΚΤΗΡΙΑ ΣΕ ΣΥΝΔΥΑΣΜΟ ΜΕ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Κατερίνα

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας Ήπιες Μορφές Ενέργειας Ενότητα 1: Ελευθέριος Αμανατίδης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Κατανόηση βασικών αρχών παραγωγής ενέργειας από ανανεώσιμες πηγές με ιδιαίτερη έμφαση σε αυτές που έχουν

Διαβάστε περισσότερα