ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
|
|
- Ê Κοσμόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6α: Αναζήτηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Μαρία Σατρατζέμη
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Μαρία Σατρατζέμη 3
4 . Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
5 Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου εκτέλεσης ενός αλγόριθμου θα αποδίδεται με τον όρο (χρονική) πολυπλοκότητα ενός αλγόριθμου. Πολυπλοκότητα Χειρότερης περίπτωσης: () = μέγιστος χρόνος εκτέλεσης του αλγορίθμου για οποιαδήποτε είσοδο μεγέθους. Πολυπλοκότητα Μέσης περίπτωσης: () = αναμενόμενος χρόνος εκτέλεσης αλγορίθμου επί όλων των εισόδων μεγέθους. 5
6 Αναζήτηση Το πρόβλημα της αποτελεσματικής αναζήτησης είναι σημαντικό καθώς εμφανίζεται σε πλήθος θεωρητικών και πρακτικών προβλημάτων. Στην ενότητα αυτή συνοψίζονται δεδομένα αποτελέσματα αλλά παρουσιάζονται κατά αναλυτικότερο τρόπο. 6
7 Σειριακή Αναζήτηση Από πού να ξεκινήσω, παρακαλώ Μεγαλειότατε; ρώτησε, Ξεκίνα από την αρχή, είπε ο Βασιλιάς με σοβαρότητα, και συνέχισε μέχρι να φτάσεις στο τέλος: τότε σταμάτα. Lewis Caroll, Alice s Advetures i Woderlad 7
8 Σειριακή Αναζήτηση Η απλούστερη μέθοδος αναζήτησης είναι η σειριακή (sequetial) ή αλλιώς γραμμική (liear search). Η επόμενη διαδικασία Sequetial υποθέτει ότι αναζητείται η τιμή ey στον πίνακα Α που περιέχει αταξινόμητα στοιχεία, και επιστρέφει τη θέση του κλειδιού στον πίνακα ή την τιμή - αν το κλειδί δεν υπάρχει (περίπτωση ανεπιτυχούς αναζήτησης). 8
9 Αλγόριθμος σειριακής αναζήτησης Algorithm Sequetial(ey). i =. while (i ) do 3. if (Α[i] == ey) the retur i 4. else i = i + 5. retur - 9
10 Βελτίωση με κόμβο φρουρό Με την τεχνική του κόμβου φρουρού (setiel), η μέθοδος θα υλοποιηθεί θεωρώντας μια ακόμη θέση στον πίνακα: A[ + ] ey Αν και πρακτικά η διαδικασία θα βελτιωθεί, σε θεωρητικό επίπεδο σε κάθε περίπτωση θα ισχύουν οι επόμενες προτάσεις υποθέτοντας ότι η πιθανότητα αναζήτησης του κλειδιού Α[i] είναι Ρ i = /, για i (δηλαδή η πιθανότητα το κλειδί να βρίσκεται σε οποιαδήποτε θέση είναι ίδια) 0
11 Πρόταση. Η επιτυχής αναζήτηση σε πίνακα με αταξινόμητα κλειδιά έχει πολυπλοκότητα Θ(), Θ() και Θ() στην καλύτερη, στη χειρότερη και στη μέση περίπτωση, αντίστοιχα. Απόδειξη. Η καλύτερη και η χειρότερη περίπτωση συμβαίνουν όταν η αναζήτηση τερματίζεται με την εξέταση της πρώτης και της τελευταίας θέσης του πίνακα, αντίστοιχα. Αρα Θ() και Θ() αντίστοιχα καθώς θα κάνει σύγκριση ή. Για τη μέση περίπτωση θεωρώντας ότι η πιθανότητα αναζήτησης του κλειδιού Α[i] είναι Ρ i = /, για i, άρα η εντολή {3} μπορεί να εκτελεστεί ή ή 3 ή φορές αν το κλειδί βρίσκεται αντίστοιχα στην η ή στη η ή στην - οστή θέση και όλες οι θέσεις να βρεθεί το κλειδί είναι με ίση πιθανότητα / :... από όπου προκύπτει η αλήθεια της πρότασης.
12 Πρόταση. Η ανεπιτυχής αναζήτηση σε πίνακα με αταξινόμητα κλειδιά έχει πολυπλοκότητα Θ() στην καλύτερη, στη χειρότερη και στη μέση περίπτωση. Απόδειξη. Σε κάθε περίπτωση θα σαρωθεί ολόκληρος ο πίνακας και άρα η πρόταση ισχύει. Αν υποθέσουμε ότι ο πίνακας περιέχει ταξινομημένα στοιχεία, τότε για την επιτυχή αναζήτηση ισχύει η ανωτέρω πρόταση αλλά για να επιταχύνουμε την ανεπιτυχή αναζήτηση πρέπει να μετατρέψουμε τη διαδικασία Sequetial ως εξής.
13 Αλγόριθμος σειριακής αναζήτησης για ταξινομημένους πίνακες Algorithm Sequetial(ey). i =. while (i ) do 3. if (Α[i] < ey) the i = i + 4. else if (Α[i] == ey) the retur i 5. else retur - 3
14 Πρόταση 3. Η ανεπιτυχής αναζήτηση σε πίνακα με ταξινομημένα κλειδιά έχει πολυπλοκότητα Θ(), Θ() και Θ() στην καλύτερη, στη χειρότερη και στη μέση περίπτωση, αντίστοιχα. Απόδειξη. Όταν αναζητούμε ένα μη υπαρκτό κλειδί, τότε αυτό μπορεί να ανήκει σε ένα από + μεσοδιαστήματα που (σχηματικά) δημιουργούνται από τις τιμές των στοιχείων του πίνακα επάνω στην ευθεία των ακεραίων. ey A[] A[] A[3] A[i] A[i+] A[] Η καλύτερη περίπτωση όταν το αναζητούμενο ey είναι μικρότερο από το πρώτο στοιχείο του πίνακα και έχουμε Θ(). Η χειρότερη περίπτωση όταν το αναζητούμενο ey είναι μεγαλύτερο από το τελευταίο στοιχείο και έχουμε Θ(). 4
15 Για τη μέση περίπτωση θα πρέπει να εξετάσουμε + περιπτώσεις και να λάβουμε το μέσο όρο τους. Αν το ey είναι μικρότερο από το πρώτο στοιχείο, τότε αρκεί μία σύγκριση για να τερματισθεί η διαδικασία. Αν το ey είναι μεγαλύτερο από το i-οστό και μικρότερο από το (i + )-οστό στοιχείο (για i < ), τότε αρκούν i + συγκρίσεις. A[i]<ey< A[i+] 3 i i+ - συγκρίσεις 3 4 i+ i+ Αν το ey είναι μεγαλύτερο από το -οστό στοιχείο, τότε αρκούν συγκρίσεις. Συνεπώς ισχύει: ( ) 3 από όπου προκύπτει η αλήθεια της πρότασης 5
16 Δυαδική Αναζήτηση Κλασικό παράδειγμα των αλγορίθμων της οικογενείας Διαίρει και Βασίλευε είναι η δυαδική αναζήτηση (biary search). Όπως γνωρίζουμε η αναζήτηση αυτή εφαρμόζεται σε πίνακες που περιέχουν ταξινομημένα στοιχεία. Υπενθυμίζοντας ότι η αποτελεσματικότητα των επαναληπτικών μεθόδων είναι καλύτερη των αναδρομικών (το κόστος κλήσης κάθε υποπρογράμματος δεν είναι αμελητέο), στη συνέχεια παρουσιάζουμε την επαναληπτική διαδικασία Biary_Iterate και την αναδρομική διαδικασία Biary_Rec που δείχνουν την ίδια θεωρητική συμπεριφορά. 6
17 Επαναληπτικός αλγόριθμος δυαδικής αναζήτησης Algorithm Biary_Iterate(ey). bottom = ; top = ;. while (bottom top) do 3. top bottom middle 4. if (A[middle] == ey) the retur middle 5. else if (A[middle] > ey) the top = middle - 6. else bottom = middle + 7. retur - 7
18 Αναδρομικός αλγόριθμος δυαδικής αναζήτησης Algorithm Biary_Rec(ey, left, rίght). if (left > right) the retur -;. left right middle 3. if (A[middle] == ey) the retur middle 4. else if (A[middle] > ey) the 5. Biary_Rec(ey, left, middle - ) 6. else Biary_Rec(ey, middle +, right) 8
19 Μπορούμε να περιγράψουμε τη λογική των προηγούμενων διαδικασιών ως εξής. Έστω ότι αναζητούμε το ακέραιο κλειδί ey σε ένα πίνακα Α[... ] με ταξινομημένους ακεραίους αριθμούς. Συγκρίνουμε το κλειδί ey με το περιεχόμενο της μεσαίας θέσης του πίνακα Α, που είναι η θέση middle. Στο σημείο αυτό τρία ενδεχόμενα μπορεί να συμβούν: τα δύο στοιχεία είναι ίσα, οπότε ο σκοπός µας επιτεύχθηκε, το ey είναι μικρότερο από το A[middle], οπότε είμαστε βέβαιοι ότι το ey αποκλείεται να βρίσκεται στον υποπίνακα A[middle... top]. Έτσι συνεχίζουμε στον υποπίνακα A[bottom... middle - ] εξετάζοντας το μεσαίο στοιχείο του, το ey είναι μεγαλύτερο του Α[middle], οπότε το ey σαφώς δεν βρίσκεται στον υποπίνακα Α[bottom... middle). Έτσι συνεχίζουμε και πάλι εξετάζοντας το μεσαίο στοιχείο του υποπίνακα A[middle +... top] 9
20 Πρόταση 4. Η πολυπλοκότητα της δυαδικής αναζήτησης στη χειρότερη περίπτωση είναι λογαριθμική. Απόδειξη. Κάθε φορά που η σύγκριση του ey µε το µεσαίο στοιχείο του πίνακα δεν καταλήγει σε ισότητα, η σύγκριση επαναλαμβάνεται σε υποπίνακα µισού μεγέθους σε σχέση µε το μέγεθος του αρχικού. Η αναδρομική σχέση που εκφράζει το χειρότερο κόστος του αλγορίθμου ο οποίος διαιρεί σε 3 μέρη το πρόβλημα μπορεί να σχηματισθεί ως εξής, αν θεωρήσουμε με g() το κόστος για να διαιρέσουμε το πρόβλημα σε 3 μέρη: ()= g() + το κόστος για να λύσουμε το ο μέρος + το κόστος για να λύσουμε το ο μέρος + το κόστος για να λύσουμε το 3 ο μέρος Καθώς g()= (σύγκριση με το μεσαίο στοιχείο) και τα 3 μέρη της εργασίας είναι ξένα μεταξύ τους, και το ο μέρος δεν έχει επιπλέον κόστος (περίπτωση το ey ίσο με το μεσαίο στοιχείο) τότε έχουμε την εξής αναδρομική σχέση ()= + max{τ(μέγεθος της αριστερής υπολίστας), 0, Τ(μέγεθος της δεξιάς υπολίστας )} max /, / 0
21 ()= + max{τ(μέγεθος της αριστερής υπολίστας), 0, Τ(μέγεθος της δεξιάς υπολίστας )} () Στην πρώτη εξέταση δυαδικής αναζήτησης έχουμε Αρα η () γίνεται: πλήθος στοιχείων Μέγεθος της αριστερή υπολίστας Μέγεθος της δεξιάς υπολίστας max /, πλήθος στοιχείων (το στοιχείο μεσαίο στοιχείο δεν είναι στοιχείο ούτε της αριστερής ούτε της δεξιάς υπολίστας) Καθώς η δεξιά υπολίστα είναι πάντα τουλάχιστον τόσο μεγάλη όσο και η αριστερή, άρα: max /, / / /
22 0 0 / / Απλοποιούµε τη σχέση αυτή θεωρώντας τη χειρότερη περίπτωση (δηλαδή, αγνοούμε το δεύτερο σκέλος) και επίσης υποθέτουμε ότι = - ( περιττός) για κάποιο ακέραιο αριθμό. Έτσι προκύπτει = + = lοg (+) = lοg lοg (+) = lοg lοg (+) = αν ey = A[middle] αν ey < A[middle] αν ey > A[middle] /
23 3 Με αρχική Τ(0)=0. Εχουμε (με επαναλήψεις της αναδρομής): = + = lοg (+) = lοg lοg (+) = lοg lοg (+) = / i i 0 3 log log Ετσι λοιπόν για = - προκύπτει ότι η πολυπλοκότητα της δυαδικής αναζήτησης είναι λογαριθμική Θ(log ). log (+)=Θ(log ) (δες άσκηση.3-6, απόδειξη με κανόνα του ορίου)
24 Με την Πρόταση 4 αποδείξαμε ότι η πολυπλοκότητα της χειρότερης περίπτωσης της δυαδικής αναζήτησης είναι της τάξης Θ(log ()). Αυτήν την απάντηση την αναμέναμε εφόσον ο αλγόριθμος υποδιπλασιάζει περίπου το μέγεθος του εναπομείναντα πίνακα σε κάθε επανάληψη, ο αριθμός των επαναλήψεων που απαιτούνται για την αναγωγή του αρχικού μεγέθους στο τελικό, είναι περίπου log. Η λογαριθμική συνάρτηση αυξάνει τόσο αργά που οι τιμές της εξακολουθούν να παραμένουν μικρές ακόμη και για πολύ μεγάλες τιμές του. Για την περίπτωση με =000 τότε log (0 3 +)=0 συγκρίσεις. 4
25 Μια ανάλυση της μέσης περίπτωσης επίσης θα δείξει ότι ο μέσος συγκρίσεων είναι ελαφρά μόνο καλύτερος από την χειρότερη περίπτωση. Οι ακριβείς τύποι για το μέσον όρο των συγκρίσεων για επιτυχή και ανεπιτυχή αναζήτηση είναι log - και log (+) αντίστοιχα. Αν και η δυαδική αναζήτηση είναι ένας βέλτιστος αλγόριθμος αναζήτησης αν και περιοριζόμαστε στις επιτελούμενες πράξεις μόνο στις συγκρίσεις μεταξύ των κλειδιών, παρ όλα αυτά υπάρχουν αλγόριθμοι που επιδεικνύουν καλύτερη αποδοτικότητα μέσης περίπτωσης όπως ο κατακερματισμός για παράδειγμα που δεν απαιτεί ο πίνακας να είναι ταξινομημένος. 5
26 Ένα τελευταίο σχόλιο είναι ότι ο αλγόριθμος της δυαδικής αναζήτησης παρουσιάζεται ως αλγόριθμος της κατηγορίας διαίρει και βασίλευε. Ο αλγόριθμος της δυαδικής αναζήτησης είναι μια κατεξοχήν μη τυπική περίπτωση της κατηγορίας διαίρει και βασίλευε. Η τεχνική του διαίρει και βασίλευε διαιρεί ένα πρόβλημα σε μικρότερα υποπροβλήματα που το καθένα απαιτεί λύση. Αυτό δε συνάδει με τη δυαδική αναζήτηση όπου μόνο ένα από τα δυο προκύπτοντα υποπροβλήματα απαιτεί λύση. Αρα ο αλγόριθμος της δυαδικής αναζήτησης μπορεί να θεωρηθεί ως εκφυλισμένη περίπτωση της τεχνικής διαίρει και βασίλευε. 6
27 Τέλος Ενότητας
Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 9: Στατιστικά Διάταξης- Στατιστικά σε Μέσο Γραμμικό Χρόνο Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6β: Ταξινόμηση με εισαγωγή και επιλογή Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve
Ταξινόμηση. 1. Στατιστικά Διάταξης 2. Στατιστικά σε Μέσο Γραμμικό Χρόνο. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Ταξινόμηση. Στατιστικά Διάταξης. Στατιστικά σε Μέσο Γραμμικό Χρόνο Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Στατιστικά Διάταξης Με τον όρο στατιστικά διάταξης (order statistics) εννοούμε την περίπτωση
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 8β: Ταξινόμηση-Ταξινόμηση του Shell Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 7β: Όρια Αλγόριθμων Ταξινόμησης Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos.
Αλγόριθμοι και Δομές Δεδομένων(Θ) Ευάγγελος Γ. Ούτσιος
Αλγόριθμοι και Δομές Δεδομένων(Θ) Ενότητα 5: ΑΝΑΖΗΤΗΣΗ Ευάγγελος Γ. Ούτσιος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Επιλογή. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Επιλογή ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 8α: Ταξινόμηση-Σύγκριση αλγορίθμων ταξινόμησης Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 2: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.
Διάλεξη : Παραδείγματα Ανάλυσης Πολυπλοκότητας / Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, 6 παραδείγματα
Ταξινόμηση. 1. Ταξινόμηση με Εισαγωγή 2. Ταξινόμηση με Επιλογή. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Ταξινόμηση. Ταξινόμηση με Εισαγωγή. Ταξινόμηση με Επιλογή Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση Η ταξινόμηση sortg τοποθετεί ένα σύνολο κόμβων ή εγγραφών σε μία συγκεκριμένη διάταξη
Διάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 6: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ: ΠΡΟΒΛΗΜΑ ΑΝΑΖΗΤΗΣΗΣ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 6: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ: ΠΡΟΒΛΗΜΑ ΑΝΑΖΗΤΗΣΗΣ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος
Δομές Δεδομένων Ενότητα 2
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Θέματα Απόδοσης Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Quicksort. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Quicksort ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Δομές Δεδομένων. Ενότητα 11: Τεχνικές Κατακερματισμού. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής.
Ενότητα 11: Τεχνικές Κατακερματισμού Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 5: Ασκήσεις Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Αλγόριθμοι Αναζήτησης
Αλγόριθμοι Αναζήτησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429
Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Δομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 7α: Μελέτη πολυπλοκότητας των Αλγόριθμων qucksort & mergesort Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 9: ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΕΞΙΣΟΡΡΟΠΗΣΗ, ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 9: ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΕΞΙΣΟΡΡΟΠΗΣΗ, ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αναζήτηση και ταξινόµηση 7 Αναζήτηση (search) Πρόβληµα: αναζήτηση της καταχώρησης key στη
Γ7.5 Αλγόριθμοι Αναζήτησης. Γ Λυκείου Κατεύθυνσης
Γ7.5 Αλγόριθμοι Αναζήτησης Γ Λυκείου Κατεύθυνσης Εισαγωγή Αλγόριθμος αναζήτησης θεωρείται ένας αλγόριθμος, ο οποίος προσπαθεί να εντοπίσει ένα στοιχείο με συγκεκριμένες ιδιότητες, μέσα σε μία συλλογή από
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 4: Αναδρομικές σχέσεις και ανάλυση αλγορίθμων Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος
Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό
Προγραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωμύλος Κορακίτης
Διάλεξη 17η: Ταξινόμηση και Αναζήτηση
Διάλεξη 17η: Ταξινόμηση και Αναζήτηση Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Ταξινόμηση CS100, 2016-2017 1 / 10 Το πρόβλημα της Αναζήτησης
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 2
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 2 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 24: Μη Ντεντερμινιστικές Μηχανές Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Εισαγωγή στους Αλγόριθμους
Εισαγωγή στους Αλγόριθμους Ενότητα 16: Δυαδική αναζήτηση και ταξινόμηση με συγχώνευση Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών
Εισαγωγή στον δομημένο προγραμματισμό
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στον δομημένο προγραμματισμό Ενότητα 5 η : Πίνακες (Προχωρημένα Θέματα) Αν. καθηγητής Στεργίου Κώστας e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην
Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Επιλογή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[ ] με n στοιχεία (όχι ταξινομημένος). Αριθμός k,
Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές
Επιλογή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 21: Υπολογισμοί ΜΤ - Αναδρομικές Γλώσσες Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 2: Ισορροπία Nash Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Προγραμματισμός Η/Υ. Αναζήτηση & Ταξινόμηση. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Αναζήτηση & Ταξινόμηση ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Αναζήτηση Το πρόβλημα της αναζήτησης (searching) ενός στοιχείου σε
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ
1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός
Ταξινόμηση. 1. Γρήγορη ταξινόμηση 2. Ταξινόμηση με Συγχώνευση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Ταξινόμηση. Γρήγορη ταξινόμηση. Ταξινόμηση με Συγχώνευση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Γρήγορη Ταξινόμηση Η γρήγορη ταξινόμηση qucksort), που αλλιώς ονομάζεται και ταξινόμηση µε διαμερισμό
Πρόβληµα Επιλογής. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1
Πρόβληµα Επιλογής Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1 Πρόβληµα Επιλογής Πίνακας Α[ Αριθµός k, 1 k n. ] µε n στοιχεία (όχι ταξινοµηµένος). Υπολογισµός του k-οστού µικρότερου στοιχείου (στοιχείο
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3)
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) 3.1 Ασυμπτωτικός συμβολισμός (Ι) Οι ορισμοί που ακολουθούν μας επιτρέπουν να επιχειρηματολογούμε με ακρίβεια για την ασυμπτωτική συμπεριφορά. Οι f(n) και g(n) συμβολίζουν
Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Επιλογή ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός k, 1 k n. Υπολογισμός
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Προγραμματισμός H/Y Ενότητα 2: Εντολές ελέγχου ροής. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
Προγραμματισμός H/Y Ενότητα 2: Εντολές ελέγχου ροής Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S
Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών,, τα οποίo είναι υποσύνολο του. Υποστηριζόμενες λειτουργίες αναζήτηση(s,x): εισαγωγή(s,x): διαγραφή(s,x): διάδοχος(s,x): προκάτοχος(s,x):
Διαδικαστικός Προγραμματισμός
Διαδικαστικός Προγραμματισμός Ενότητα 8: Παραδείγματα με μονοδιάστατους πίνακες, συναρτήσεις, δείκτες, πέρασμα παραμέτρων με αναφορά Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Αναδρομικοί Αλγόριθμοι
Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Γιάννης Κουτσονίκος Επίκουρος Καθηγητής Οργάνωση Δεδομένων Δομή Δεδομένων: τεχνική οργάνωσης των δεδομένων με σκοπό την
Αλγόριθμοι Ταξινόμησης Μέρος 2
Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;
1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι
Περιεχόμενα Ορισμός και λειτουργία των μηχανών Turing Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Επ. Καθ. Π. Κατσαρός Τμήμ
Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων
Ενότητα 13: B-Δέντρα/AVL-Δέντρα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Ανάλυση Αλγορίθμων Θέματα Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα Προσεγγίσεις: Θεωρητική ανάλυση Εμπειρική ανάλυση Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Θεωρητική
Προγραµµατιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Προγραµµατιστικές Τεχνικές Βασίλειος Βεσκούκης ρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωµύλος Κορακίτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 11: Επιλογή μεταβλητών στην παλινδρόμηση Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 12: Κανονικότητα ή μη των γλωσσών Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ
1η Σειρά Γραπτών Ασκήσεων
1/20 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 1η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 1 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 2 3 4 5 2/20
Ταξινόμηση. 1. Ταξινόμηση του Shell. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Ταξινόμηση. Ταξινόμηση του Shell Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση του Shell Η μέθοδος που προτάθηκε από τον Shell έχει βασικό χαρακτηριστικό ότι χρησιμοποιεί µία ακολουθία ακεραίων
Αναδρομή Ανάλυση Αλγορίθμων
Αναδρομή Ανάλυση Αλγορίθμων Παράδειγμα: Υπολογισμός του παραγοντικού Ορισμός του n! n! = n x (n - 1) x x 2 x 1 Ο παραπάνω ορισμός μπορεί να γραφεί ως n! = 1 αν n = 0 n x (n -1)! αλλιώς Παράδειγμα (συνέχ).
Αλγόριθμοι και πολυπλοκότητα Ταχυταξινόμηση (Quick-Sort)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Ταχυταξινόμηση (Quick-Sort) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Ταχυταξινόμηση (Quick-Sort) 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 2: Ανάλυση Αλγορίθμων. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 2: Ανάλυση Αλγορίθμων Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης
Σύνοψη Προηγούμενου Πίνακες (Arrays Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς Διαδικαστικά θέματα. Aντικείμενο Μαθήματος. Aντικείμενα, Κλάσεις, Μέθοδοι, Μεταβλητές.
Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 4: Δομές Ελέγχου Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Μοντελοποίηση Λογικών Κυκλωμάτων
Μοντελοποίηση Λογικών Κυκλωμάτων Ενότητα 7: Η γλώσσα VHDL, Μοντελοποίηση, διαχείριση χρόνου Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι
Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 4: Διαίρει και Βασίλευε. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 4: Διαίρει και Βασίλευε Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 4: Μετασχηματισμοί Ισοδυναμίας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Προγραμματισμός Η/Υ (ΤΛ2007 )
Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.Ι. Κρήτης Προγραμματισμός Η/Υ (ΤΛ00 ) Δρ. Μηχ. Νικόλαος Πετράκης (npet@chania.teicrete.gr) Ιστοσελίδα Μαθήματος: https://eclass.chania.teicrete.gr/ Εξάμηνο: Εαρινό 01-15
Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Εισαγωγικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Λεξικό, Union Find. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Λεξικό, Union Find ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Περιεχόμενα ΜΤ Τυχαίας Προσπέλασης Θεωρία Υπολογισμού Ενότητα 23: Μηχανές Turing Τυχαίας Προσπέλασης Επ. Καθ. Π. Κατσαρός Τμήμα Πληροφορικής Επ. Καθ.
Θεωρία Υπολογισμού Ενότητα 23: Μηχανές Turing Τυχαίας Προσπέλασης Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Εισαγωγή στην πληροφορική
Εισαγωγή στην πληροφορική Ενότητα 5: ΑΛΓΟΡΙΘΜΟΙ Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 1 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική
Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Συγχωνευτική Ταξινόμηση (Merge Sort) 7 2 9 4 2 4 7 9 7 2 2 7 9 4