Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
|
|
- Θεοδοσία Κουρμούλης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα - Γραμμική και Δυαδική Αναζήτηση, Ανάλυση Αναδρομικών Αλγορίθμων - H Μέθοδος της Αντικατάστασης, Master Theorem ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 1
2 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι Παράδειγμα 1: Υπολογισμός Χρόνου Εκτέλεσης Υποθέστε ότι ένα πρόβλημα επιλύνεται με τον πιο κάτω κώδικα: Ανάλυση k+=i; for(i=0; i<; i++) it i,k=0; for (i=0; i<; i++) k+=i; H βασική πράξη η οποία χρειάζεται Ο(1) χρόνο Ο αλγόριθμος εκτελεί την βασική πράξη φορές 1 i= 0 1 = ή 1 = i o O αλγόριθμος έχει πολυπλοκότητα της τάξης O() o Στην βέλτιστη περίπτωση χρειάζεται Ω() è O() & Ω() è Θ()
3 Υπολογισμός Χρόνου Εκτέλ. με φωλιασμ. βρόγχους Σε ένα βρόχο (for loop) o συνολικός χρόνος που απαιτείται είναι: Βασική Πράξη x Αριθμό Επαναλήψεων Φωλιασμένοι Βρόχοι: η ανάλυση γίνεται από τα μέσα προς τα έξω: Παράδειγμα: for (i=0; i<; i++) for (j=0; j<; j++) //statemet e.g., k+=i; Συνεχόμενες Εντολές: Ο χρόνος εκτέλεσης T της εντολής S και μετά S παίρνει χρόνο ίσο του αθροίσματος των χρόνων εκτέλεσης των T(S) + T(S ). Συνθήκες if: Ο χρόνος εκτέλεσης T της εντολής if b the S else S παίρνει χρόνο ίσο με max(t(b)+t(s), T(b)+T(S )) ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 3
4 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4 Παράδειγμα : Υπολογισμός Χρόνου Εκτέλεσης Υποθέστε ότι ένα πρόβλημα επιλύνεται με τον πιο κάτω κώδικα: Ανάλυση Εσωτερικός Βρόγχος: Εξωτερικός Βρόγχος: Σύνολο: it i, j, sum=0; for (i=0; i<; i++) for (j=0; j<; j++) sum++; i= 1 j= 1 IL i=1 1 = i= 1 = 1 = 1 = 1 IL j= 0 j= 1 = Ο( Εξωτερικός Βρόγχος Εσωτερικός Βρόγχος IL ), Ω( = ) Θ( )
5 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 5 Παράδειγμα 3: Υπολογισμός Χρόνου Εκτέλεσης Υποθέστε ότι ένα πρόβλημα επιλύνεται με τον πιο κάτω κώδικα: Ανάλυση it i, j, sum=0; for (i=0; i<; i++) Εσωτερικός Βρόγχος: for (j=0; j< i*i; j++) sum++; IL j= 0 Εξωτερικός Βρόγχος Εσωτερικός Βρόγχος Παρατηρούμε ότι ο χρόνος εκτέλεσης του εσωτερικού βρόχου εξαρτάται από την τιμή i, οποία καθορίζεται από τον εξωτερικό βρόχο. i = 1 = i
6 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 6 Παράδειγμα 3: Υπολογισμ. Χρόνου Εκτέλεσης (συν.) Ο πιο κάτω πίνακας δείχνει το πόσες φορές εκτελείται ο εσωτερικός βρόγχος σαν συνάρτηση του i: i IL = i (- 1) Εξωτερικός Βρόγχος: (- 1) Σύνολο: Ο χρόνος εκτέλεσης του προγράμματος είναι ίσος με το άθροισμα του χρόνου εκτέλεσης κάθε επανάληψης του εσωτερικού βρόχου: i= 1 i = ( + 1)( + 1) = ( ) Θ( ) 6 6
7 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 7 Παράδειγμα 4: Υπολογισμός Χρόνου Εκτέλεσης Υποθέστε ότι ένα πρόβλημα επιλύνεται με τον πιο κάτω κώδικα: Ανάλυση Εσωτερικός Βρόγχος A: Εσωτερικός Βρόγχος B: Εξωτερικός Βρόγχος: Σύνολο: it i, j, k, sum=0; for (i=0; i<; i++) for (j=0; j<; j++) Θ( 3 ) for (k=0; k<; k++) sum++; IL A 1 = k = Εξωτερικός Βρόγχος Εσωτερικός Βρόγχος B Εσωτερικός Βρόγχος A ILB = ILA = = = j j OL = ILB = = = i j 3
8 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 8 Παράδειγμα 5: Υπολογισμός Χρόνου Εκτέλεσης Υποθέστε ότι ένα πρόβλημα επιλύνεται με τον πιο κάτω κώδικα: Ανάλυση it i, j, sum=0; Εσωτερικός Βρόγχος: for (i=1; i<=; i=*i) for (j=0; j< ; j++) sum++; IL = 1 Εξωτερικός Βρόγχος Εσωτερικός Βρόγχος Εξωτερικός Βρόγχος: Κάθε φορά, το i πολλαπλασιάζεται επί. j Παράδειγμα: για =10 το i θα είναι 1,, 4, 8, 16> break = Πόσες φορές εκτελείται;;;
9 Παράδειγμα 5: Υπολογισμ. Χρόνου Εκτέλεσης (συν.) Ας υποθέσουμε ότι το είναι μία δύναμη του è = κ Ο πιο κάτω πίνακας δείχνει το πόσες φορές εκτελείται ο εσωτερικός βρόγχος σαν συνάρτηση του k: k k = k k τιμές i - 1 1, 1,,4 1,,4,8 επαναλ k Συμπέρασμα: i=k, άρα για = i θα χρειαστούν i επαναλ. Ερώτηση: πως μπορούμε να βρούμε το την τιμή i έχοντας σαν δεδομένο το i ; Απάντηση: με χρήση λογάριθμου (log): log i = i ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 9
10 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 10 Παράδειγμα 5: Υπολογισμός Χρόνου Εκτέλεσης Υποθέστε ότι ένα πρόβλημα επιλύνεται με τον πιο κάτω κώδικα: Ανάλυση it i, j, sum=0; Εσωτερικός Βρόγχος: for (i=1; i<=; i=*i) for (j=0; j< ; j++) sum++; IL = 1 j Εξωτερικός Βρόγχος: (log i = log ) log IL = log = Εξωτερικός Βρόγχος Εσωτερικός Βρόγχος Σύνολο: Θ ( log )
11 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 11 Παράδειγμα 6: Υπολογισμός Χρόνου Εκτέλεσης Υποθέστε ότι ένα πρόβλημα επιλύνεται με τον πιο κάτω κώδικα: Ανάλυση =περιττός è Εσωτερικός Βρόγχος (else): =άρτιος è Εσωτερικός Βρόγχος (if): Εξωτερικός Βρόγχος: Σύνολο: it i, j, sum=0; for (i=0; i<; i++) Θ( ) if( (%)==0 ) for (j=0; j<; j++) sum++; else sum- - ; Εξωτερικός Βρόγχος Εσωτερικός Βρόγχος (if) Εσωτερικός Βρόγχος (else) IL ( if ) = 1 = OL = j max( ILif, ILelse) = ILif = = i IL ( else) i = 1 i
12 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 1 Παράδειγμα 7: Χρόνος Εκτέλεσης BubbleSort Η BubbleSort ταξινομεί κάποιο πίνακα με συνεχή εναλλαγή των στοιχείων του αν δεν είναι στη σωστή σειρά. Παράδειγμα: it x = {3,, 4, 1, 5; swap o swap Πέρασμα Πέρασμα Πέρασμα Πέρασμα
13 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 13 Παράδειγμα 7: Χρόνος Εκτέλεσης BubbleSort (συν.) void bubblesort( it X[], it ){ it i, j, temp; bool swapped; for (i=0;i<- 1;i++) { swapped = false; for (j=0;j<- i- 1;j++) { if (X[j] > X[j+1]) { temp = X[j]; X[j] = X[j+1]; X[j+1] = temp; swapped = true; Εσωτερικός Βρόγχος if (swapped==false) retur; Εξωτερικός Βρόγχος
14 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 14 Παράδειγμα 7: Χρόνος Εκτέλεσης BubbleSort (συν.) void bubblesort( it X[], it ){ for (i=0;i<- 1;i++) { for (j=0;j<- i- 1;j++) { Εσωτερικός Βρόγχος Ανάλυση Εσωτερικός Βρόγχος: Εξωτερικός Βρόγχος: Σύνολο: Θ( ) Εξωτερικός Βρόγχος = IL i = 1 i= 0 ( 1) j= = 1 i= 0 ( 1) = 1 i 1 1 i= 0 ( )( 1) 1 OL = IL = i 1 = 1 i i= 0
15 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 15 Γραμμική vs. Δυαδική Διερεύνηση Δεδομένα Εισόδου: Πίνακας Χ με στοιχεία, ταξινομημένος από το μικρότερο στο μεγαλύτερο, και ακέραιος k. Στόχος: Να εξακριβώσουμε αν το k είναι στοιχείο του Χ. Γραμμική Διερεύνηση: εξερευνούμε τον πίνακα από τα αριστερά στα δεξιά. it liear( it X[], it, it k){ it i=0; while ( i < ) { if (X[i] == k) retur i; if (X[i] > k) retur - 1; i++; retur - 1; Xείριστη περίπτωση: Ο() (ο βρόχος εκτελείται φορές)
16 Αναδρομική Γραμμική Διερεύνηση ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 16 it rliear( it X[], it, it k, it pos ){ if ( pos == ) retur - 1; //ot foud if ( X[pos] == k ) retur pos; //foud elseif ( X[pos] > k ) retur - 1; //foud larger skip rest retur rliear( X,, k, pos+1 ); Xείριστη περίπτωση: Ο() rliear) (εκτελούνται αναδρομικές κλήσεις της
17 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 17 Δυαδική Διερεύνηση Δυαδική Διερεύνηση: βρίσκουμε το μέσο του πίνακα και αποφασίζουμε αν το k ανήκει στο δεξιό ή αριστερό μισό. Επαναλαμβάνουμε την ίδια διαδικασία στο μισό που μας ενδιαφέρει: it biary (it X[], it, it key) { it low=0; it high = - 1; it mid; while( low <= high) { mid = (low + high) / ; if( key < X[mid]) high = mid- 1; else if (key > X[mid]) low = mid+1; else { retur mid; break; retur - 1;
18 Αναδρομική Δυαδική Διερεύνηση ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 18 it rbiary_aux (it X[], it low, it high, it key) { it mid; if( low <= high) { mid = (low + high) / ; if( key == X[mid]) retur mid; else if( key < X[mid]) retur rbiary_aux( X, low, mid- 1, key); else retur rbiary_aux( X, mid+1, high, key); retur - 1; it rbiary (it X[], it, it key) { it low = 0; it high = - 1; retur rbiary_aux( X, low, high, key);
19 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 19 Δυαδική Διερεύνηση Χρόνος Εκτέλεσης Η βασική πράξη (σύγκριση) εκτελείται Ο(log ) φορές δηλαδή: Εκτέλεση 1 - > Μας απομένει* / του πίνακα, Εκτέλεση - > Μας απομένει /4 του πίνακα, Εκτέλεση 3 - > Μας απομένει /8 του πίνακα, Εκτέλεση Χ - > Μας απομένει 1 στοιχείο του πίνακα, Στην εκτέλεση Χ είτε βρήκαμε το στοιχείο είτε όχι δηλ., έχουμε την ακολουθία, /, /4, /8,, 4,, 1, <==> 0, 1,, 3,, x Το x εκφράζει πόσες φορές εκτελούμε το while loop x x => log log => x log Biary Search Ο(log )
20 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 0 Πολυπλοκότητα Αναδρομικών Διαδικασιών Μέχρι τώρα συζητήσαμε τεχνικές για την ανάλυση επαναληπτικών αλγορίθμων (με while, for, κτλ.) Ωστόσο, πολλοί αλγόριθμοι ορίζονται αναδρομικά (π.χ. biary search, Fiboacci, κτλ.) Θέλουμε κάποια μεθοδολογία για να αναλύουμε την πολυπλοκότητα τέτοιων αναδρομικών εξισώσεων. π.χ. Τ() = T(/) Τ()=*T(- 1), >0 κτλ. Σημειώστε ότι υπάρχουν διάφοροι τύποι αναδρομικών εξισώσεων. Πολλοί τύποι χρειάζονται ειδικά εργαλεία τα οποία δεν θα δούμε σε αυτό το μάθημα. Ένα τύπο που θα μελετήσουμε θα είναι οι Αναδρομικές Εξισώσεις τύπου «Διαίρει και Βασίλευε» Θα τις επιλύσουμε με την Μέθοδο της Αντικατάστασης και θα τις επαληθεύουμε με το Θεώρημα Master
21 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 1 Ανάλυση Αναδρομικής Δυαδικής Διερεύνησης Ας ξαναδούμε την αναδρομική έκδοση της δυαδικής αναζήτησης Από ότι βλέπουμε σε κάθε εκτέλεση το biary_search μοιράζει μια ακολουθία στοιχείων σε / στοιχεία (εάν είναι ζυγός). Επομένως το πρόβλημα μεγέθους έγινε τώρα /. Σε κάθε βήμα χρειαζόμαστε και δυο συγκρίσεις (τα δυο if statemets) O χρόνος εκτέλεσης της biary_search εκφράζεται με την αναδρομική συνάρτηση: f() = f(/) + // αναδρομικό βήμα f(1) = // συνθήκη τερματισμού
22 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι Μέθοδος της Αντικατάστασης Μέθοδος της Αντικατάστασης: Χρησιμοποιούμε το βήμα της αναδρομής επαναληπτικά, μέχρι να εκφράσουμε το Τ() ως συνάρτηση της βασικής περίπτωσης, δυνάμεις του και σταθερές τιμές. Εφαρμογή Έχουμε την αναδρομική εξίσωση της δυαδικής διερεύνησης (τύπου Διαίρει και Βασίλευε) Τ() = T(/) +, για κάθε T(1) = Τότε, αντικαθιστώντας το Τ(/) με την τιμή του παίρνουμε Τ() = T(/) + = T(/4) + + = T(/8) = (Μπορούμε τώρα να μαντέψουμε ότι ) = $! +...! + #! +! + " log Επομένως η δυαδική αναζήτηση εκτελείται log βήματα
23 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 3 Ανάλυση Αναδρομικής Δυαδικής Διερεύνησης Στην δυαδική διερεύνηση η ακολουθία μοιράζεται ως εξής:, /, /4,,, 1. Προσοχή: Δεν σημαίνει ότι έχουμε +/+ / =- 1 εκτελέσεις. Έχουμε μονάχα log εκτελέσεις Ανάλογα με το σε πόσα κομμάτια «διαιρείται» το πρόβλημα κάθε φορά, αλλάζει και η βάση του λογάριθμου. log log 3 0 = 1 1 = 3 = = = = = = 1,073,741, Αριθμός πράξεων , $! /,! /4, #!!,,1 " Στοιχε ία:log, $! /3,! /9, #!!, 3,1 " Στοιχε ία:log3 Όσο μεγαλύτερη η βάση του λογάριθμου τόσο πιο λίγες εκτελέσεις του αλγόριθμου έχουμε! Ωστόσο, αυξάνονται οι συγκρίσεις σε κάθε εκτέλεση! Π.χ., δυαδική διερεύνηση: lg εκτελέσεις, 1 έλεγχο σε κάθε βήμα.
24 Master Theorem To Master Theorem μας επιτρέπει να βρίσκουμε ή να επαληθεύουμε την χρονική πολυπλοκότητα αναδρομικών εξισώσεων τύπου διαίρει και βασίλευε. Διαίρει και Βασίλευε: πχ. Τ() = T(/) + αλλά όχι Τ()=*T(- 1) Αυτό το θεώρημα δεν χρειάζεται να το απομνημονεύσετε αλλά μπορείτε να τον χρησιμοποιήσετε για την επαλήθευση ασκήσεων. Master Theorem: Έστω ότι η f είναι μία αύξουσα που ικανοποιεί τη λειτουργία της επανάληψης: f()=af(/b)+c d όταν το = b k, όπου k είναι ένας θετικός ακέραιος, a 1, b>1, και c,d είναι πραγματικοί αριθμοί, c 0, d 0. Τότε ισχύει: f()is{ Ο( d )&if a< b d log b ())&if a= b log b (a) )&if a> b d ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4
25 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 5 Master Theorem - Εφαρμογή O χρόνος εκτέλεσης της δυαδικής διερεύνησης εκφράζεται με την αναδρομική συνάρτηση: Τ() = Τ(/) + // αναδρομικό βήμα Τ(1) = // συνθήκη τερματισμού T() = (a=1) x T ( /(b=) ) + (c=)x d=0 a=1, b=, c=, d=0 a=1 και b d = 0 = 1 a=b d T() is O( d log) T() is O( 0 log) T() is O(log)
26 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 6 Μέθοδος της αντικατάστασης: Παράδειγμα 1 Έχουμε την αναδρομική εξίσωση Τ() = 4 T(/) +, για κάθε T(1) = 1 Τότε, αντικαθιστώντας το Τ(/) με την τιμή του παίρνουμε Τ() = 4 T(/) + // Εκτέλεση 1 = 4(4 T(/4) + /) + // Εκτέλεση = 4² Τ(/4) + + // Πράξεις = 4³ Τ(/8) + ² + + // Εκτέλεση 3 =... = 4 k Τ(1) + k ² + + // k = è k=log log 1 = 4 + * = + ( 1) = O( + *( log i log log i= 0 = ) 1) a=4, b=, c=1, d=1, a=4>b d = 1 = T() O( log(4) )è T() O( )
27 Μέθοδος της αντικατάστασης: Παράδειγμα Άσκηση Να λύσετε την πιο κάτω αναδρομική εξίσωση με την μέθοδο της αντικατάστασης (προσοχή δεν είναι τύπου διαίρει & βασίλευε) Τ(0)=1 Τ()=*T(- 1), >0 Λύση Τ() = **T(- 1) = * *(- 1)*T(- ) = 3* *(- 1)*(- )*T(- 3) = = **(- 1)*(- )*...**1*T(0) = *! ε Ο(!) ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 7
28 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι -8 Εργασία 1 Να λύσετε την πιο κάτω αναδρομική εξίσωση: T(1) = 1 Τ() = T(/) +1000
29 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι -9 Εργασία Να λύσετε την πιο κάτω αναδρομική εξίσωση: T(1) = 1 T() = 7 T(/) + 18²
30 Εργασία 3 Nα υπολογίσετε τον χρόνο εκτέλεσης της παρακάτω αναδρομικής διαδικασίας λύνοντας οποιαδήποτε αναδρομική εξίσωση συναντήσετε. ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι -30 public static it recursive1(it ){ it sum=0; for ( it i=1; i <= ; i++) sum++; if (>1) retur recursive1(/); else retur 1;
31 Εργασία 4 Nα υπολογίσετε τον χρόνο εκτέλεσης της παρακάτω αναδρομικής διαδικασίας λύνοντας οποιαδήποτε αναδρομική εξίσωση συναντήσετε. ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι -31 public static it recursive(it ){ it sum=0; for ( it i=1; i <= ; i++) sum++; if (>1) retur (recursive(/) + recursive(/)); else retur 1;
32 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι -3 Περίληψη των όσων έχουμε πει Μας ενδιαφέρει να αναλύουμε την πολυπλοκότητα των αλγορίθμων που φτιάχνουμε. Έχουμε δύο επιλογές: 1. Αν υλοποιήσουμε τον αλγόριθμο και να τρέξουμε πολλά παραδείγματα έτσι ώστε να αξιολογήσουμε την απόδοση του αλγόριθμού μας.. Να εφαρμόσουμε τη θεωρητική προσέγγιση ανάλυσης αλγορίθμων. Τι κερδίζουμε επιλέγοντας το () πιο πάνω; A. Αποφεύγουμε την υλοποίηση B. Προφέρουμε απάντηση η οποία δεν βασίζεται στην υλοποίηση που έχουμε κάνει και κατά συνέπεια δεν βασίζεται στον υπολογιστή στον οποίο τρέξαμε τα πειράματα, στη γλώσσα που χρησιμοποιήσαμε για την υλοποίηση ή στις προγραμματιστικές ικανότητες του προγραμματιστή. C. Επιπλέον: Το αποτέλεσμα μας καλύπτει πληροφορίες για όλα τα πιθανά στιγμιότυπα εισόδου.
33 ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι -33 Περίληψη των όσων έχουμε πει Πως μπορούμε να υποσχόμαστε τόσα πολλά; Επειδή βασιζόμενοι στην Αρχή της Σταθερότητας αγνοούμε διάφορες σταθερές που συναντούμε: Υποθέτουμε ότι όλες οι πράξεις ενός αλγόριθμου χρειάζονται τον ίδιο χρόνο για να εκτελεστούν παρόλο που διαφέρουν στον χρόνο εκτέλεσης τους
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
Διαβάστε περισσότεραΔιάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.
Διάλεξη : Παραδείγματα Ανάλυσης Πολυπλοκότητας / Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, 6 παραδείγματα
Διαβάστε περισσότεραΕργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας
Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Αναζήτηση με linearsearch, binarysearch, ternarysearch - Ανάλυση Πολυπλοκότητας ternarysearch
Διαβάστε περισσότεραΔιάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
Διαβάστε περισσότεραΚατ οίκον Εργασία 1 Σκελετοί Λύσεων
ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 008 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Παρατηρούμε ότι ο χρόνος εκτέλεσης μέσης περίπτωσης της κάθε εντολής if ξεχωριστά: if (c mod 0) for (k ; k
Διαβάστε περισσότεραΔιάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης: Α. SelectoSort Ταξινόμηση με Επιλογή Β. IsertoSort Ταξινόμηση με Εισαγωγή Γ. MergeSort
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το
Διαβάστε περισσότεραΚατ οίκον Εργασία 1 Σκελετοί Λύσεων
ΕΠΛ 1 Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 009 Κατ οίκον Εργασία 1 Σκελετοί Λύσεων Άσκηση 1 Αρχικά θα πρέπει να υπολογίσουμε τον αριθμό των πράξεων που μπορεί να εκτελέσει ο υπολογιστής σε μια ώρα,
Διαβάστε περισσότεραΕργαστήριο 2: Πίνακες
Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής:
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι
Φροντιστήριο: Επανάληψη για την ενδιάμεση εξέταση Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Μαθηματική Επαγωγή Να αποδείξετε ότι 1 3 5... (2 1) 2 για >0. Απόδειξη: Επαληθεύουμε
Διαβάστε περισσότεραΑναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Διαβάστε περισσότεραΔιάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Γ. MergeSort Ταξινόμηση με Συγχώνευση Δ. BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6α: Αναζήτηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
Διαβάστε περισσότεραΑλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων
Διαβάστε περισσότεραΑλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(), Ω(), Θ( ) Ανάλυση Πολυπλοκότητας Αλγορίθµων
Διαβάστε περισσότεραΣτη C++ υπάρχουν τρεις τύποι βρόχων: (a) while, (b) do while, και (c) for. Ακολουθεί η σύνταξη για κάθε μια:
Εργαστήριο 6: 6.1 Δομές Επανάληψης Βρόγχοι (Loops) Όταν θέλουμε να επαναληφθεί μια ομάδα εντολών τη βάζουμε μέσα σε ένα βρόχο επανάληψης. Το αν θα (ξανα)επαναληφθεί η εκτέλεση της ομάδας εντολών καθορίζεται
Διαβάστε περισσότεραΕισαγωγή στην Ανάλυση Αλγορίθμων
Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)
Διαβάστε περισσότεραΔιαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2
Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.
Διαβάστε περισσότεραΔιαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1
Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος
Διαβάστε περισσότεραΕπιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Διαίρει-και-Βασίλευε Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ
1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός
Διαβάστε περισσότεραΔιάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Διαβάστε περισσότεραΑλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται
Διαβάστε περισσότεραιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα
Διαβάστε περισσότερα(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις
Διαβάστε περισσότερα(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕνότητα 1: Εισαγωγή Ασκήσεις και Λύσεις
Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη - Πολυπλοκότητα Αλγορίθμων / Επανάληψη Χρήσιμων Μαθηματικών Ορισμών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αλγόριθμοι, Κριτήρια Αξιολόγησης Αλγόριθμων, Γιατί αναλύουμε τους Αλγορίθμων
Διαβάστε περισσότεραΘέματα Προγραμματισμού Η/Υ
Πρόγραμμα Μεταπτυχιακών Σπουδών Πληροφορική και Υπολογιστική Βιοϊατρική Θέματα Προγραμματισμού Η/Υ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ Θεματική
Διαβάστε περισσότεραΚατ οίκον Εργασία 1 Σκελετοί Λύσεων
ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 00 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Αφού ξέρουμε με ακρίβεια τον αριθμό των βασικών πράξεων που εκτελεί ο κάθε αλγόριθμος σε δεδομένα μεγέθους, θα
Διαβάστε περισσότεραΑλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012
Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση
Διαβάστε περισσότεραΠληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Διαβάστε περισσότεραΠρογραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωμύλος Κορακίτης
Διαβάστε περισσότεραΓ7.5 Αλγόριθμοι Αναζήτησης. Γ Λυκείου Κατεύθυνσης
Γ7.5 Αλγόριθμοι Αναζήτησης Γ Λυκείου Κατεύθυνσης Εισαγωγή Αλγόριθμος αναζήτησης θεωρείται ένας αλγόριθμος, ο οποίος προσπαθεί να εντοπίσει ένα στοιχείο με συγκεκριμένες ιδιότητες, μέσα σε μία συλλογή από
Διαβάστε περισσότεραΔιάλεξη 5η: Εντολές Επανάληψης
Διάλεξη 5η: Εντολές Επανάληψης Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Εντολές Επανάληψης CS100, 2015-2016
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΕργαστηριακή Άσκηση 1
Εργαστηριακή Άσκηση 1 Επανάληψη προγραμματισμού Βασικοί Αλγόριθμοι Είσοδος τιμών από το πληκτρολόγιο Σε όλα τα προγράμματα που θα γράψουμε στην συνέχεια του εξαμήνου θα χρειαστεί να εισάγουμε τιμές σε
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 4: Αναδρομικές σχέσεις και ανάλυση αλγορίθμων Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΒρόχοι. Εντολή επανάληψης. Το άθροισμα των αριθμών 1 5 υπολογίζεται με την εντολή. Πρόβλημα. Πώς θα υπολογίσουμε το άθροισμα των ακέραιων ;
Εντολή επανάληψης Το άθροισμα των αριθμών 1 5 υπολογίζεται με την εντολή Πρόβλημα Πώς θα υπολογίσουμε το άθροισμα των ακέραιων 1 5000; Ισοδύναμοι υπολογισμοί του Ισοδύναμοι υπολογισμοί του Ισοδύναμοι υπολογισμοί
Διαβάστε περισσότεραΔομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
Διαβάστε περισσότεραΔομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
Διαβάστε περισσότεραΔιάλεξη 17: Επανάληψη για την ενδιάμεση εξέταση. Διδάσκων: Παναγιώτης Ανδρέου. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ.
Διάλεξη 7: Επανάληψη για την ενδιάμεση εξέταση Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ35 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. ΑΠΟΡΙΕΣ ΕΠΛ35 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και
Διαβάστε περισσότεραΔομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)
Διαβάστε περισσότεραΠρογραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 10: Ταξινόμηση Πίνακα Αναζήτηση σε Ταξινομημένο Πίνακα Πρόβλημα Δίνεται πίνακας t από Ν ακεραίους. Ζητούμενο: να ταξινομηθούν τα περιεχόμενα του πίνακα σε αύξουσα αριθμητική
Διαβάστε περισσότερα5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 5. Απλή Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 11/11/2016 Εισαγωγή Η
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 1. α. Να βάλετε σε αύξουσα σειρά μεγέθους τις παρακάτω συναρτήσεις χρονικής πολυπλοκότητας αλγορίθμων: nlogn, n logn,
Διαβάστε περισσότεραΣχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros
Διαβάστε περισσότερα(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΑνάλυση Αλγορίθµων. Σύντοµη επανάληψη (ΕΠΛ 035).
Ανάλυση Αλγορίθµων Σύντοµη επανάληψη (ΕΠΛ 035). Περίληψη Ανάλυση αλγορίθµων Ο, Θ, Ω Ανάλυση µη αναδροµικών αλγόριθµων Ανάλυση αναδροµικών αλγόριθµων Εµπειρική Ανάλυση Visualization Απόδοση Αλγορίθµων Απόδοση
Διαβάστε περισσότεραΤαξινόμηση. 1. Στατιστικά Διάταξης 2. Στατιστικά σε Μέσο Γραμμικό Χρόνο. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Ταξινόμηση. Στατιστικά Διάταξης. Στατιστικά σε Μέσο Γραμμικό Χρόνο Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Στατιστικά Διάταξης Με τον όρο στατιστικά διάταξης (order statistics) εννοούμε την περίπτωση
Διαβάστε περισσότεραΣχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429
Διαβάστε περισσότερα5.1. Προσδοκώμενα αποτελέσματα
5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση
Διαβάστε περισσότεραΔομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Παναγιώτης Ανδρέου
Διάλεξη Ε3: Επανάληψη Επανάληψη για την ενδιάμεση εξέταση Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Παναγιώτης Ανδρέου Ε3- Είναι ισοδύναμα; typedef struct ode { t data; struct ode *ext; NODE; A. NODE ;
Διαβάστε περισσότεραΠολυπλοκότητα Αλγορίθµων
Πολυπλοκότητα Αλγορίθµων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εµπειρική Θεωρητική Ανάλυση Αλγορίθµων Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις
Διαβάστε περισσότεραΚεφάλαιο 8: Προγραμματίζοντας αλγορίθμους έξυπνα και δημιουργικά
Κεφάλαιο 8: Προγραμματίζοντας αλγορίθμους έξυπνα και δημιουργικά Η συνεχής βελτίωση του υλικού (hardware) τις τελευταίες δεκαετίες έχει σαν αποτέλεσμα την ύπαρξη πολύ ισχυρών επεξεργαστών. Αν και σε λίγα
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αναζήτηση και ταξινόµηση 7 Αναζήτηση (search) Πρόβληµα: αναζήτηση της καταχώρησης key στη
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 1 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική
Διαβάστε περισσότεραΑλγόριθμοι Ταξινόμησης Μέρος 2
Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2
Διαβάστε περισσότεραΠροβλήματα, αλγόριθμοι, ψευδοκώδικας
Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 9: Στατιστικά Διάταξης- Στατιστικά σε Μέσο Γραμμικό Χρόνο Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΣτόχοι και αντικείμενο ενότητας. Πέρασμα Πίνακα σε Συνάρτηση (συν.) Πέρασμα Πίνακα σε Συνάρτηση. #8.. Ειδικά Θέματα Αλγορίθμων
Στόχοι και αντικείμενο ενότητας Πέρασμα Πίνακα σε Συνάρτηση #8.. Ειδικά Θέματα Αλγορίθμων Προβλήματα Αναζήτησης Γραμμική Αναζήτηση (Linear Search) Ενημέρωση Μέτρηση Δυαδική Αναζήτηση (Binary Search) Προβλήματα
Διαβάστε περισσότερα1o Φροντιστήριο ΗΥ240
1o Φροντιστήριο ΗΥ240 Άσκηση 1 Αποδείξτε τη μεταβατική και τη συμμετρική ιδιότητα του Θ Μεταβατική Ιδιότητα (ορισμός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)) Για να ισχύει f(n)= Θ(h(n))
Διαβάστε περισσότεραΑναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε
Διαβάστε περισσότεραFORTRAN και Αντικειμενοστραφής Προγραμματισμός
FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών
Διαβάστε περισσότεραΑνάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου
Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική
Διαβάστε περισσότεραΔομές Ακολουθίας- Επιλογής - Επανάληψης. Δομημένος Προγραμματισμός
Δομές Ακολουθίας- Επιλογής - Επανάληψης Δομημένος Προγραμματισμός 1 Βασικές Έννοιες αλγορίθμων Σταθερές Μεταβλητές Εκφράσεις Πράξεις Εντολές 2 Βασικές Έννοιες Αλγορίθμων Σταθερά: Μια ποσότητα που έχει
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου
Διαβάστε περισσότεραΣτοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ. Εισαγωγή στη Python
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Εισαγωγή στη Python Νικόλαος Ζ. Ζάχαρης Αναπληρωτής
Διαβάστε περισσότεραΑλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Διαβάστε περισσότεραΚατ οίκον Εργασία 1 Σκελετοί Λύσεων
EΠΛ Αλγόριθµοι και Πολυπλοκότητα Φεβρουάριος 00 Κατ οίκον Εργασία Σκελετοί Λύσεων. Ο αλγόριθµος διαίρει και βασίλευε για το πρόβληµα έχει ως εξής: Μοίρασε τον πίνακα σε δύο µισά. Υπολόγισε αναδροµικά τα
Διαβάστε περισσότεραΑλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Διαβάστε περισσότεραn ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4
Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα
Διαβάστε περισσότεραΜΥΥ105: Εισαγωγή στον Προγραμματισμό. Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016
ΜΥΥ105: Εισαγωγή στον Προγραμματισμό Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016 Αναζήτηση και Ταξινόμηση Βασικές λειτουργίες σε προγράμματα Αναζήτηση (searching): Βρες ένα ζητούμενο στοιχείο σε μια
Διαβάστε περισσότεραΕιδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
Διαβάστε περισσότεραΑλγόριθμοι ταξινόμησης
Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης BuubleSort, SelectionSort, InsertionSort, Merger Sort, Quick Soft ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι
Διαβάστε περισσότερα11/23/2014. Στόχοι. Λογισμικό Υπολογιστή
ονάδα Δικτύων και Επικοινωνιών ΗΥ Τομέας Πληροφορικής, αθηματικών και Στατιστικής ΓΕΩΠΟΙΚΟ ΠΑΕΠΙΣΤΗΙΟ ΑΘΗΩ Εισαγωγή στην Επιστήμη των ΗΥ άθημα-4 url: http://openeclass.aua.gr (AOA0) Λογισμικό Υπολογιστή
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 20: Αλγόριθμοι ΤαξινόμησηςIII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Ε. QuickSort Γρήγορη Ταξινόμηση - Έμμεση Ταξινόμηση - Εξωτερική Ταξινόμηση Διδάσκων:
Διαβάστε περισσότεραΤι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Διαβάστε περισσότεραΠρογραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ Επικ. Καθηγητής ΕΜΠ v.vescoukis@cs.ntua.gr
Διαβάστε περισσότεραΑν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε;
Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε; Πως θα υπολογίσουμε το χρόνο εκτέλεσης ενός αλγόριθμου; Για να απαντήσουμε
Διαβάστε περισσότεραΔομές Δεδομένων Ενότητα 2
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Θέματα Απόδοσης Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΑλγόριθμοι και πολυπλοκότητα Διαίρει και Κυρίευε
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Διαίρει και Κυρίευε Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Διαίρει και Κυρίευε 7 9 4 4 7 9 7 7 9 4 4 9 7 7 9 9 4 4 Διαίρει και Κυρίευε
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Μέρος 5ο ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 1 Η ΕΝΤΟΛΗ for Με την εντολή for δημιουργούμε βρόχους επανάληψης σε
Διαβάστε περισσότεραΠανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013
Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013 Λυμένες Ασκήσεις Σετ Α: Ανάλυση Αλγορίθμων Άσκηση 1 Πραγματοποιήσαμε μια σειρά μετρήσεων του
Διαβάστε περισσότεραΔιάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου
Διαβάστε περισσότεραΕισαγωγή στην Ανάλυση Αλγορίθμων (2-3)
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) 3.1 Ασυμπτωτικός συμβολισμός (Ι) Οι ορισμοί που ακολουθούν μας επιτρέπουν να επιχειρηματολογούμε με ακρίβεια για την ασυμπτωτική συμπεριφορά. Οι f(n) και g(n) συμβολίζουν
Διαβάστε περισσότεραΠρογραμματισμός Η/Υ (ΤΛ2007 )
Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.Ι. Κρήτης Προγραμματισμός Η/Υ (ΤΛ00 ) Δρ. Μηχ. Νικόλαος Πετράκης (npet@chania.teicrete.gr) Ιστοσελίδα Μαθήματος: https://eclass.chania.teicrete.gr/ Εξάμηνο: Εαρινό 01-15
Διαβάστε περισσότεραΑνάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 4: Συστηματικές μέθοδοι επίλυσης κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ.
Διαβάστε περισσότεραΑναδρομή Ανάλυση Αλγορίθμων
Αναδρομή Ανάλυση Αλγορίθμων Παράδειγμα: Υπολογισμός του παραγοντικού Ορισμός του n! n! = n x (n - 1) x x 2 x 1 Ο παραπάνω ορισμός μπορεί να γραφεί ως n! = 1 αν n = 0 n x (n -1)! αλλιώς Παράδειγμα (συνέχ).
Διαβάστε περισσότερα