Προγραμματιστική Εργασία

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προγραμματιστική Εργασία"

Transcript

1 Προγραμματιστική Εργασία Ημερομηνία Παράδοσης: 19 Μαΐου Τίπρέπεινακάνετεγιατηνεργασίααυτή Θεωρούμεότιέχουμεένασύνολοαπό nσημείαστιςδύοδιαστάσεις.γιατηνεργασίααυτήθαπρέπεινα γράψετε ένα πρόγραμμα το οποίο να υπολογίζει το Ευκλείδειο ελάχιστο επικαλύπτον δέντρο (Euclidean minimum spanning tree) του συνόλου των σημείων. Ο αλγόριθμος/κώδικάς σας θα πρέπει να τρέχει σεχρόνο O(n lg n). Τα παραπάνω θα εξηγηθούν με περισσότερες λεπτομέρειες στη συνέχεια. 2 Προδιαγραφές Τοπρόγραμμάσαςθαπρέπειναείναιγραμμένοσε CήC++. Θαπρέπεινασυμμορφώνεταιμετις απαιτήσεις που περιγράφονται παρακάτω στις Παραγράφους 3 και 6. Μπορείτε να θεωρήσετε ότι τα αρχεία δεδομένων δεν περιέχουν λάθη στην καταγραφή των δεδομένων οπότε δε χρειάζεται τα προγράμματά σας να ελέγχουν για λάθη στα δεδομένα. Οι συντεταγμένες των σημείων θα είναι αριθμοί που θα αναπαρίστανται από αριθμούς κινητής υποδιαστολής διπλής ακρίβειας(double). Τα προγράμματά σας θα πρέπει να μεταγλωττίζονται στους υπολογιστές των αιθουσών Η205 ή Λ205 με τους μεταγλωττιστές gcc/g++ της C/C++ που υπάρχουν εγκατεστημένοι στους υπολογιστές αυτούς. Αν θέλετε να χρησιμοποιήσετε τη βιβλιοθήκη Cgal, είτε κατευθείαν είτε εμμέσως μέσω των intefaces που σας δίνονται(βλέπε Παράγραφο 5) θα πρέπει να χρησιμοποιήσετε μεταγλωττιστή της C++, έστω καιανοκώδικάςσαςείναισε C. Η εργασία αυτή είναι ατομική. Στην κείμενο που θα παραδώσετε, καθώς επίσης και σε κάθε αρχείο με κώδικα που θα παραδώσετε(βλέπε Παράγραφο 7) σημειώστε το ονοματεπώνυμο και τον αριθμό μητρώου σας(αν έχετε), καθώς και τμήμα σας ή το μεταπτυχιακό πρόγραμμα στο οποίο ανήκετε. Αναφέρετε με σαφήνεια όλες τις πηγές σας(βιβλιογραφικές, διαδικτυακές, κτλ.), και ειδικότερα αν πρόκειται για κώδικα. 3 Επικοινωνία με το χρήστη(user interface) Η int main(int argc, char* argv[]) του προγράμματός σας θα πρέπει να βρίσκεται σε ένα αρχείο μεόνομα cg project.cή cg project.cpp(αναλόγωςτουανέχετεγράψειτοπρόγραμμάσαςσε Cή C++ αντίστοιχα). Το πρόγραμμά σας θα πρέπει να παίρνει δύο παραμέτρους(command line arguments). Ηπρώτηθαείναιτοόνοματουαρχείουαπότοοποίοτοπρόγραμμάσαςθαδιαβάζειτασημεία. Η δεύτερηθαείναιτοόνοματουαρχείουστοοποίοτοπρόγραμμάσαςθαγράψειτααποτελέσματατων υπολογισμών σας. 3.1 Αρχείο δεδομένων με σημεία Το αρχείο δεδομένων περιέχει στην πρώτη γραμμή τον αριθμό των σημείων, και εν συνεχεία σε κάθε γραμμή τις καρτεσιανές συντεταγμένες κάθε σημείου. Για παράδειγμα, ένα αρχείο δεδομένων θα έχει τη μορφή: 1

2 Computational Geometry Algorithms Library Η βιβλιοθήκη Computational Geometry Algorithms Library(Cgal) είναι μία βιβλιοθήκη γεωμετικών αλγορίθμων. Είναι γραμμένη σε C++, κάνει ευρεία χρήση των templates της C++, και ακολουθεί αρχές generic programming στη σχεδίαση και χρήση των δομών δεδομένων και αλγορίθμων που προσφέρει (κάτι ανάλογο με την STL). Προκειμένου να αντιμετωπιστούν προβλήματα αριθμητικών λαθών και να επιτευχθεί η απαραίτητη ευστάθεια(robustness) στους αλγορίθμους που προσφέρει, ακολουθείται το λεγόμενο exact computation paradigm: οι αλγόριθμοι θεωρούν ότι οι αριθμητικές πράξεις δεν έχουν αριθμητικά λάθη, και αυτό επιτυγχάνεται με τη χρήση αριθμητικών τύπων πολλαπλής ακρίβειας(είτε ακεραίων/ρητών, είτε κινητής υποδιαστολής). Για την εργασία αυτή μπορείτε να χρησιμοποιήσετε τις τριγωνοποιήσεις Delaunay που προσφέρονται από τη βιβλιοθήκη αυτή. Αυτό μπορεί να γίνει είτε χρησιμοποιώντας άμεσα τη βιβλιοθήκη, είτε μέσω του C-like interface που προσφέρεται(βλέπε Παράγραφο 5). Σε περίπτωση που θέλετε να χρησιμοποιήσετε τη βιβλιοθήκη κατευθείαν ή θέλετε να μάθετε περισσότερα γι αυτήν μπορείτε να ανατρέξετε στην ιστοσελίδα της βιβλιοθήκης: Επίσης τα άρθρα[1, 2] μιλάνε για την υλοποίηση και χρήση των τριγωνοποιήσεων της Cgal. 5 Τίσαςδίνεται Στο φάκελλο(directory) mkaravel/public/em369g/project/bin μπορείτε να βρείτε ένα εκτελέσιμοαρχείομεόνομα mk cg projectτοοποίοαντιστοιχείστηδικήμουυλοποίησητηςεργασίαςσας. Στονίδιοφάκελλουπάρχειέναδεύτεροεκτελέσιμοαρχείομεόνομαmk cg demoτοοποίοείναιμίααπλή γραφική εφαρμογή στην οποία μπορείτε να δώσετε σημεία με το ποντίκι ή από ένα αρχείο δεδομένων και εν συνεχεία να υπολογίζετε την τριγωνοποίηση Delaunay καθώς και το ελάχιστο επικαλύπτον δέντρο για τα σημεία που δώσατε. Στο φάκελλο mkaravel/public/em369g/project/data θα βρείτε δείγματα αρχείων δεδομένων, μεταξύ των οποίων το example.cin που αντιστοιχεί στα δεδομένα του παραδείγματοςτηςπαραγράφου3.1.τοπρόγραμμα mk cg projectμπορείτενατοτρέξετεείτεμεταδεδομέναπουυπάρχουνστονφάκελλοdata,είτεμεδικάσαςδεδομένακαισκοπόέχεινασαςβοηθήσεινα βρείτε πιθανά λάθη στον κώδικά σας. Τέλος, στο φάκελλο mkaravel/public/em369g/project/include σας δίνονται τα παρακάτω αρχεία: makefile Το αρχείο αυτό θα πρέπει να το χρησιμοποιήσετε για να μεταγλωττίσετε το πρόγραμμά σας. Περιέχει όλες τις απαραίτητες παραμέτρους για να γίνει η μεταγλώττιση σωστά. Πληκτρολογήστε make από το command prompt για να γίνει η μεταγλώττιση. ADT.h Το αρχείο αυτό περιέχει ένα C-like interface για να χρησιμοποιήσετε την τριγωνοποίηση Delaunay της βιβλιοθήκης Cgal(βλέπε Παράγραφο 4). Στο αρχείο αυτό υπάρχουν οι δηλώσεις διαφόρων συναρτήσεων, ενώ σε σχόλια μπορείτε να διαβάσετε τί κάνουν και ποιό είναι το κόστος κλήσης τους. 2

3 cg project.cστοαρχείοαυτόθαπρέπειναεπέμβετεκαιναπροσθέσετετοδικόσαςκώδικα.προς στιγμήν διαβάζει δεδομένα από ένα αρχείο και υπολογίζει την τριγωνοποίηση Delaunay των σημείων που διαβάζει. Εν συνεχεία εκτυπώνει στην οθόνη τους γείτονες κάθε σημείου στην τριγωνοποίηση Delaunay. typedefs.hpp Στο αρχείο αυτό υπάρχουν οι κατάλληλες δηλώσεις(typedefs) για να χρησιμοποιήσετε την τριγωνοποίηση Delaunay κατευθείαν. Το αρχείο αυτό θα σας είναι χρήσιμο αν γράψετε τον κώδικά σας σε C++ και δεν θέλετε να χρησιμοποιήσετε το C-like interface που δίδεται στο αρχείο ADT.h. Τα υπόλοιπα αρχεία στο φάκελλο mkaravel/public/em369g/project/include είναι βοηθητικά και δεν χρειάζεται να ασχοληθείτε με αυτά. 6 Τι πρέπει να επιστρέφουν τα προγράμματά σας(output) Το πρόγραμμά σας θα πρέπει να συμπεριφέρεται όπως ακριβώς το πρόγραμμα mk cg project. Πιο συγκεριμένα, σε κάθε γραμμή του αρχείου εξόδου θα πρέπει να εκτυπώνει δύο σημεία, εκ των οποίων το πρώτο θα είναι κάποιο σημείο του ελαχίστου επικαλύπτοντος δέντρου, ενώ το δεύτερο θα πρέπει να είναι το σημείο που αντιστοιχεί στον πατρικό κόμβο του πρώτου σημείου. Για την ρίζα του δέντρου δε χρειάζεται να υπάρχει δεύτερο σημείο. Τα σημεία θα πρέπει να εμφανίζονται στη μορφή ((x 1,y 1 )->(x 2,y 2 )) ή ((x 1,y 1 )) ανπρόκειταιγιατηρίζα.τα x i,y i, i = 1,2είναιοικαρτεσιανέςσυντεταγμένεςτωνσημείων.Ωςρίζα του ελαχίστου επικαλύπτοντος δέντρου θα πρέπει να διαλέξετε το σημείο που είναι το λεξικογραφικά μικρότερο στην αύξουσα λεξικογραφική σειρά του συνόλου των σημείων(βλέπε Παραγράφους 5 και 10) Τα σημεία σας(τα σημεία του δέντρου δηλαδή και όχι οι αντίστοιχοι πατρικοί κόμβοι) θα πρέπει να εμφανίζονται στο αρχείο εξόδου σε αύξουσα λεξικογραφική σειρά, ενώ αν το σύνολο σημείων που σας δίνεται έχει παραπάνω από ένα ελάχιστα επικαλύπτοντα δέντρα, θα πρέπει να υπολογίζετε το λεξικογραφικά μικρότερο δέντρο μεταξύ των δυνατών ελαχίστων επικαλυπτόντων δέντρων(βλέπε Παράγραφο 11). 7 Τίθαπαραδώσετε Θαπρέπειναπαραδώσετετονκώδικάσας,σεένααρχείοτηςμορφής.zipή.tarή.tar.gzή.tgz. Επίσης θα πρέπει να παραδώσετε ένα δακτυλογραφημένο κείμενο 5-10 σελίδων(κατά προτίμηση σε LATEX) που θα περιγράφει και θα εξηγεί τον αλγόριθμο που χρησιμοποιήσατε, θα περιγράφει την υλοποίηση του αλγορίθμου σας, και θα αναφέρεται στις δυσκολίες που τυχόν σας παρουσιάστηκαν στην επίλυση των προβλημάτων ή την υλοποίησή τους. 8 Βαθμολόγηση της εργασίας Οι εργασίες σας θα βαθμολογηθούν ως εξής: 3

4 κατά 20% από το κείμενο που θα παραδώσετε, κατά20%απότοσχεδιασμότουκώδικάσας, κατά 30% από το κατά πόσο η υλοποίησή σας πετυχαίνει τους απαραίτητους ασυμπτωτικούς χρόνους υπολογισμού, κατά30%απότηνορθότητατουαλγορίθμουσας(απότοαν,δηλαδή,θαδίνειτασωστάαποτελέσματα στα δεδομένα στα οποία θα ελεγχθεί). Υλοποιήσεις που δεν τηρούν τις προδιαγραφές που αναφέρονται στην Παράγραφο 2 δε θα βαθμολογηθούν και θα θεωρηθεί ότι η προγραμματιστική εργασία δεν έχει παραδοθεί. 9 Χρονοδιάγραμμα Στις αρχές Απριλίου, σε ώρες και μέρες που θα καθοριστούν θα γίνει συνάντηση με κάθε φοιτητή χωριστά,ώστενασυζητηθείηπρόοδόςτου.ηεργασίαθαπρέπειναπαραδοθείμέχριτις19μαΐου. 10 Λεξικογραφική σύγκριση και διάταξη Εστωδύοσημεία p 1 = (x 1,y 1 )και p 2 = (x 2,y 2 ). Θαλέμεότιτο p 1 είναιλεξικογραφικάμικρότερο του p 2 (συμβολισμός: p 1 lex p 2 ),ανείτε x 1 < x 2,είτε x 1 = x 2 και y 1 < y 2. Τασημεία p 1 και p 2 λέγονταιλεξικογραφικάίσα(συμβολισμός: p 1 = lex p 2 ),αν x 1 = x 2 και y 1 = y 2. Τέλος,το p 1 είναιλεξικογραφικάμεγαλύτεροτου p 2 (συμβολισμός: p 1 lex p 2 ),ανείτε x 1 > x 2,είτε x 1 = x 2 και y 1 > y 2. Προφανώς, p 1 lex p 2 σημαίνειότιείτε p 1 lex p 2 είτε p 1 = lex p 2. Αντίστοιχα, p 1 lex p 2 σημαίνειότιείτε p 1 lex p 2 είτε p 1 = lex p 2.Γιαπαράδειγμα ( 1,10) lex (0,0), ( 1,0) lex ( 1,10) και (10,0) lex (10, 1). Ανλοιπόνθέλουμεναταξινομήσουμεένασύνολοσημείωνσεαύξουσα λεξικογραφική σειρά, πρέπει να βρούμε μία διάταξη των σημείων, τέτοια ώστε για κάθε δύο διαδοχικά σημεία pκαι qτηςδιάταξηςναισχύει p lex q. Γιανασυγκρίνουμελεξικογραφικάδύοευθύγραμματμήματα s 1 = (p 1,q 1 )και s 2 = (p 2,q 2 )πρέπει κατ αρχήνναισχύει p 1 lex q 1 και p 2 lex q 2 (ανδενισχύουνοισυνθήκεςαυτέςαρκείνααλλάξουμε τη σειρά των σημείων που ορίζουν το ευθύγραμμο τμήμα). Υπό τις προϋποθέσεις αυτές λέμε ότιτο s 1 είναιλεξικογραφικάμικρότεροτου s 2 (συμβολισμός: s 1 lex s 2 ),ανείτε p 1 lex p 2,είτε p 1 = lex p 2 και q 1 lex q 2.Οιορισμοίλεξικογραφικούίσουκαιλεξικογραφικούμεγαλύτερουείναιεντελώςανάλογοιμετηνπερίπτωσητωνσημείων.Γιαπαράδειγμα (( 1,10),(1,20)) lex ((0,10),(1,20)), ((0,0),(0,2)) lex ((0,0),(0,3))και ((0,0),(5,0)) lex ((0,0),(4,0)). Ανλοιπόνθέλουμεναταξινομήσουμε ένα σύνολο ευθυγράμμων τμημάτων σε αύξουσα λεξικογραφική σειρά, πρέπει να βρούμε μία διάταξη των τμημάτων, τέτοια ώστε για κάθε δύο διαδοχικά ευθύγραμμα τμήματα s και t της διάταξης ναισχύει s lex t. 11 Σύγκριση ελαχίστων επικαλυπτόντων δέντρων Θεωρείστε το σύνολο σημείων στα αριστερά της παρακάτω εικόνας. Στο σύνολο των σημείων αυτών αντιστοιχούν πάνω από ένα ελάχιστα επικαλύπτοντα δέντρα, όπως για παράδειγμα αυτά στο κέντρο και στα δεξιά της παρακάτω εικόνας. 4

5 Σε κάθε ελάχιστο επικαλύπτον δέντρο ενός γράφου αντιστοιχεί μία διατεταγμένη(σε αύξουσα σειρά) ακολουθία αιρθμών, που είναι τα βάρη(μήκη) των ακμών που απαρτίζουν το ελάχιστο επικαλύπτον δέντρο. Το να έχει ένας γράφος πάνω από ένα ελάχιστο επικαλύπτον δέντρο σημαίνει ότι μπορούμε να βρούμε παραπάνω από μία ακολουθίες ακμών του γράφου, οι οποίες ακολουθίες ακμών δημιουργούν επικαλύπτοντα δέντρα, και των οποίων οι ακολουθίες βαρών είναι ταυτόσημες. Προκειμένου να ορίσουμε μοναδικά το ελάχιστο επικαλύπτον δέντρο ενός γράφου χρειάζεται να βρούμε κάποιο τρόπο να διατάξουμε τις ακολουθίες ακμών του γράφου που αντιστοιχούν σε ελάχιστα επικαλύπτοντα δέντρα. Ενας τρόπος να διατάξουμε ελάχιστα επικαλύπτοντα δέντρα είναι να τα διατάξουμε λεξικογραφικά. Εστω T 1 = (e 1,...,e k )και T 2 = (e 1,...,e k )είναιδύοελάχισταεπικαλύπτονταδέντρα,όπου e i = e i,γιακάθε iμε 1 i k,και e i e i+1,γιακάθε iμε 1 i k 1. Στουςορισμούςπου μόλιςαναφέραμε,τα e i και e i είναιταευθύγραμματμήματαπουαπαρτίζουνκάθεδέντρο,διατεταγμένα σε αύξουσα σειρά μήκους. Το σύμβολο αντιστοιχεί στο μήκος του ευθυγράμμου τμήματος. Θα λέμεότιτοδέντρο T 1 είναιλεξικογραφικάμικρότεροαπότοδέντρο T 2 (συμβολισμός: T 1 lex T 2 ),αν υπάρχει mμε 1 m k,τέτοιοώστε e i = lex e i,γιακάθε i, 1 i m 1,και e m lex e m. Στην εργασία λοιπόν αυτή, και προκειμένου να ορίσουμε μοναδικά το ελάχιστο επικαλύπτον δέντρο αν υπάρχουν παράπανω από ένα, ζητάμε να επιστραφεί το λεξικογραφικά ελάχιστο επικαλύπτον δέντρο. Δεδομένου όμως ότι σε ένα δέντρο μπορούμε να έχουμε οποιονδήποτε κόμβο ως ρίζα και με σκοπό να αποφευχθεί οποιαδήποτε ασάφεια ως προς τον ορισμό του ελαχίστου επικαλύπτοντος δέντρου που ψάχνουμε, ζητάμε το ελάχιστο εκείνο επικαλύπτον δέντρο που είναι λεξικογραφικά ελάχιστο μεταξύ όλων των πιθανών ελαχίστων επικαλυπτόντων δέντρων του σημειοσυνόλου μας, και το οποίο έχει ως ρίζα το λεξικογραφικά ελάχιστο σημείο του σημειοσυνόλου. Για παράδειγμα, για το σύνολο των σημείων στα αριστερά της παραπάνω εικόνας, το ζητούμενο ελάχιστο επικαλύπτον δέντρο είναι το δέντροσταδεξιάτηςεικόνας,καιηρίζατουείναιτοκατώτεροκαιαριστερότεροεκτων9σημείων του σημειοσυνόλου. 5

6 Σχετική βιβλιογραφία Εκτός του συγγράμματος του μαθήματος μπορείτε επίσης να ανατρέξετε στα παρακάτω συγγράμματα, άρθρα και ιστοσελίδες: [1] J.-D. Boissonnat, F. Cazals, F. Da, O. Devillers, S. Pion, F. Rebufat, M. Teillaud, and M. Yvinec. Programming with CGAL: the example of triangulations. In SCG 99: Proceedings of the fifteenth annual symposium on Computational geometry, pages , New York, NY, USA, ACM Press. ISBN doi: [2] J.-D. Boissonnat, O. Devillers, M. Teillaud, and M. Yvinec. Triangulations in CGAL (extended abstract). In SCG 00: Proceedings of the sixteenth annual symposium on Computational geometry, pages 11 18, New York, NY, USA, ACM Press. ISBN doi: [3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2nd edition, [4] J. O Rourke. Computational Geometry in C. Cambridge University Press, 2nd edition, [5] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer, [6] R. Sedgewick. Algorithms in C++. Addison-Wesley, 3rd edition, [7] The Computational Geometry Algorithms Library (Cgal). 6

Προγραμματιστική Εργασία

Προγραμματιστική Εργασία Προγραμματιστική Εργασία Ημερομηνία Παράδοσης: 22 Ιουνίου 2007 1 Τίπρέπεινακάνετεγιατηνεργασίααυτή Θεωρούμε ότι έχουμε ένα πολύγωνο από n ακμές στις δύο διαστάσεις. Οι ακμές είναι δυνατόν να είναι ευθύγραμμα

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Απαιτήσεις Μαθήματος Εργαστηρίου Σκιαγράφηση Μαθήματος μια Πρώτη Εισαγωγή Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros

Διαβάστε περισσότερα

Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα).

Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα). Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα).

Διαβάστε περισσότερα

Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).

Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα). Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ ΕΠΛ 035 - ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΓΙΑ ΗΛΕΚΤΡΟΛΟΓΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΚΑΙ ΜΗΧΑΝΙΚΟΥΣ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδηµαϊκό έτος 2017-2018 Υπεύθυνος εργαστηρίου: Γεώργιος

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΘΝΙΚΟ ΤΜΗΜΑ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ ΑΛΓΟΡΙΘΜΟΙ

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Jon Kleinberg και Éva Tardos, Σχεδιασμός αλγορίθμων, Εκδόσεις Κλειδάριθμος,

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 4

Αλγόριθμοι Ταξινόμησης Μέρος 4 Αλγόριθμοι Ταξινόμησης Μέρος 4 Μανόλης Κουμπαράκης Δομές Δεδομένων και Τεχνικές 1 Μέθοδοι Ταξινόμησης Βασισμένοι σε Συγκρίσεις Κλειδιών Οι αλγόριθμοι ταξινόμησης που είδαμε μέχρι τώρα αποφασίζουν πώς να

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 6: Συναρτήσεις και Αναδρομή

ΕΡΓΑΣΤΗΡΙΟ 6: Συναρτήσεις και Αναδρομή ΕΡΓΑΣΤΗΡΙΟ 6: Συναρτήσεις και Αναδρομή Στο εργαστήριο αυτό θα μάθουμε για τη χρήση συναρτήσεων με σκοπό την κατασκευή αυτόνομων τμημάτων προγραμμάτων που υλοποιούν μία συγκεκριμένη διαδικασία, τα οποία

Διαβάστε περισσότερα

an:3 are:6 a:10

an:3 are:6 a:10 Άσκηση 1 Προγραμματισμός Συστήματος Προθεσμία: 18 Μαΐου 2014 Σ αυτή την άσκηση θα υλοποιήσετε ένα σύστημα auto-complete κατά τη διάρκεια πληκτρολόγησης. Ο πυρήνας του συστήματος είναι μια δομή trie (απλό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 4 ο ΣΕΤ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα παρακάτω θέματα: Δείκτες Δομές Το τέταρτο σύνολο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΗ ΑΣΚΗΣΗ 3

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΗ ΑΣΚΗΣΗ 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΗ ΑΣΚΗΣΗ 3 Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 05/04/2013 Ημερομηνία

Διαβάστε περισσότερα

Δομές Δεδομένων. Παύλος Εφραιμίδης

Δομές Δεδομένων. Παύλος Εφραιμίδης Παύλος Εφραιμίδης 1 Το μάθημα Αντικείμενο-Περιεχόμενα μαθήματος Τρόπος Διδασκαλίας Εργαστήριο Βιβλίο, Βιβλιογραφία On-line Υλικό 2 Περιεχόμενα Μαθήματος Εισαγωγή στις και τους Αλγορίθμους Μελέτη και υλοποίηση

Διαβάστε περισσότερα

Άσκηση 3 (ανακοινώθηκε στις 14 Μαΐου 2018, προθεσμία παράδοσης: 8 Ιουνίου 2018, 12 τα μεσάνυχτα).

Άσκηση 3 (ανακοινώθηκε στις 14 Μαΐου 2018, προθεσμία παράδοσης: 8 Ιουνίου 2018, 12 τα μεσάνυχτα). Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2017-2018. Άσκηση 3 (ανακοινώθηκε στις 14 Μαΐου 2018, προθεσμία παράδοσης: 8 Ιουνίου 2018, 12 τα μεσάνυχτα).

Διαβάστε περισσότερα

Λειτουργικά Συστήματα (ΗΥ-345) Χειμερινό Εξάμηνο

Λειτουργικά Συστήματα (ΗΥ-345) Χειμερινό Εξάμηνο Λειτουργικά Συστήματα (ΗΥ-345) Χειμερινό Εξάμηνο 2018-2019 Άσκηση 1 Φροντιστήριο: 05/10/2018 Παράδοση: 18/10/2018 Υλοποίηση Linux C Shell ΤΑ : shevtsov(shevtsov@csd.uoc.gr) Ώρες Γραφείου : Δευτέρα 14:00-16:00

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός ΙΙΙ - Java

Δομημένος Προγραμματισμός ΙΙΙ - Java Δομημένος Προγραμματισμός ΙΙΙ - Παύλος Εφραιμίδης 1 Το μάθημα Αντικείμενο-Περιεχόμενα μαθήματος Τρόπος Διδασκαλίας Εργαστήριο Βιβλίο, Βιβλιογραφία On-line Υλικό 2 Περιεχόμενα Μαθήματος Εισαγωγή στους Αλγόριθμους

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 2 ο ΣΕΤ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα παρακάτω θέματα: Συναρτήσεις (κεφάλαιο Functions)

Διαβάστε περισσότερα

ΣΕΤ ΑΣΚΗΣΕΩΝ 2. Προθεσµία: 15/11/09, 23:59

ΣΕΤ ΑΣΚΗΣΕΩΝ 2. Προθεσµία: 15/11/09, 23:59 ΣΕΤ ΑΣΚΗΣΕΩΝ 2 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2009-20010 Προθεσµία: 15/11/09, 23:59 Στόχοι Χρήση συναρτήσεων Χρήση µονοδιάστατων πινάκων Διαχείριση συµβολοσειρών Φορµαρισµένη έξοδος δεδοµένων

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Σχολιασµένη Βιβλιογραϕία Χρηστος. Ζαρολιαγκης Καθηγητής Τµήµα Μηχ/κων Υπολογιστών & Πληροϕορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Φεβρουάριος 2013 1 Περίληψη

Διαβάστε περισσότερα

Μεταγλώττιση και σύνδεση πολλαπλών αρχείων κώδικα. Προγραμματισμός II 1

Μεταγλώττιση και σύνδεση πολλαπλών αρχείων κώδικα. Προγραμματισμός II 1 Μεταγλώττιση και σύνδεση πολλαπλών αρχείων κώδικα Προγραμματισμός II 1 lalis@inf.uth.gr Χρήση λογισμικού που ήδη υπάρχει Τα πολύπλοκα συστήματα αναπτύσσονται σταδιακά, «χτίζοντας» πάνω σε υπάρχουσα λειτουργικότητα

Διαβάστε περισσότερα

Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εργαστήριο 1 Εισαγωγή στη C. Σοφία Μπαλτζή s.mpaltzi@di.uoa.gr

Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εργαστήριο 1 Εισαγωγή στη C. Σοφία Μπαλτζή s.mpaltzi@di.uoa.gr Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εργαστήριο 1 Εισαγωγή στη C Σοφία Μπαλτζή s.mpaltzi@di.uoa.gr Διαδικαστικά Ιστοσελίδα μαθήματος: http://eclass.uoa.gr/courses/f30/ Υποχρεωτική παρακολούθηση: Παρασκευή 14:00 16:00 στην

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 1 Εισαγωγικά 1 / 17 Ενότητα 1 - Εισαγωγικά Τεχνολογίες

Διαβάστε περισσότερα

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ).

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ). ΕΜ0 - Διακριτά Μαθηματικά Ιανουαρίου 006 Άσκηση - Λύσεις Πρόβλημα [0 μονάδες] Εστω L και L δύο κυκλώματα σε ένα γράφημα G. Εστω a μία ακμή που ανήκει και στο L και στο L και έστω b μία ακμή που ανήκει

Διαβάστε περισσότερα

Τύποι Δεδομένων και Απλές Δομές Δεδομένων. Παύλος Εφραιμίδης V1.0 ( )

Τύποι Δεδομένων και Απλές Δομές Δεδομένων. Παύλος Εφραιμίδης V1.0 ( ) Τύποι Δεδομένων και Απλές Δομές Δεδομένων Παύλος Εφραιμίδης V1.0 (2014-01-13) Απλές Δομές Δεδομένων Στην ενότητα αυτή θα γνωρίσουμε ορισμένες απλές Δομές Δεδομένων και θα τις χρησιμοποιήσουμε για την αποδοτική

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες:. Φωτάκης (και Σ. Ζάχος στο μτπχ.) Βοηθοί διδασκαλίας

Διαβάστε περισσότερα

ΗY335: Δίκτυα Υπολογιστών Χειμερινό Εξάμηνο Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Διδάσκουσα: Μαρία Παπαδοπούλη

ΗY335: Δίκτυα Υπολογιστών Χειμερινό Εξάμηνο Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Διδάσκουσα: Μαρία Παπαδοπούλη ΗY335: Δίκτυα Υπολογιστών Χειμερινό Εξάμηνο 2012-2013 Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Διδάσκουσα: Μαρία Παπαδοπούλη Project 2012-2013 Υλοποίηση ενός chat server-client Παράδοση: 7/2/2013

Διαβάστε περισσότερα

HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems

HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη

Διαβάστε περισσότερα

Initialize each person to be free. while (some man is free and hasn't proposed to every woman) { Choose such a man m w = 1 st woman on m's list to

Initialize each person to be free. while (some man is free and hasn't proposed to every woman) { Choose such a man m w = 1 st woman on m's list to Κεφάλαιο 2 Δοµές Δεδοµένων Ι Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Δοµές Δεδοµένων Ι Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα ηµήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες:. Φωτάκης και. Σούλιου (και Σ. Ζάχος στις πρόσθετες

Διαβάστε περισσότερα

Η πρώτη παράμετρος είναι ένα αλφαριθμητικό μορφοποίησης

Η πρώτη παράμετρος είναι ένα αλφαριθμητικό μορφοποίησης Η συνάρτηση printf() Η συνάρτηση printf() χρησιμοποιείται για την εμφάνιση δεδομένων στο αρχείο εξόδου stdout (standard output stream), το οποίο εξ ορισμού συνδέεται με την οθόνη Η συνάρτηση printf() δέχεται

Διαβάστε περισσότερα

Κεφάλαιο 10 Ψηφιακά Λεξικά

Κεφάλαιο 10 Ψηφιακά Λεξικά Κεφάλαιο 10 Ψηφιακά Λεξικά Περιεχόμενα 10.1 Εισαγωγή... 213 10.2 Ψηφιακά Δένδρα... 214 10.3 Υλοποίηση σε Java... 222 10.4 Συμπιεσμένα και τριαδικά ψηφιακά δένδρα... 223 Ασκήσεις... 225 Βιβλιογραφία...

Διαβάστε περισσότερα

Εισαγωγή στην Αριθμητική Ανάλυση

Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΕΠΛ 035: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΓΙΑ ΗΛΕΚΤΡΟΛΟΓΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΚΑΙ ΜΗΧΑΝΙΚΟΥΣ ΥΠΟΛΟΓΙΣΤΩΝ Χειμερινό Εξάμηνο 2018 ΑΣΚΗΣΗ 1 Βασικές Έννοιες της C (επανάληψη)

Διαβάστε περισσότερα

#include <stdlib.h> Α. [-128,127] Β. [-127,128] Γ. [-128,128]

#include <stdlib.h> Α. [-128,127] Β. [-127,128] Γ. [-128,128] ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Α Περιόδου 2017 (27/1/2017) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................

Διαβάστε περισσότερα

Λειτουργικά Συστήματα 7ο εξάμηνο, Ακαδημαϊκή περίοδος

Λειτουργικά Συστήματα 7ο εξάμηνο, Ακαδημαϊκή περίοδος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ KΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ http://www.cslab.ece.ntua.gr Λειτουργικά

Διαβάστε περισσότερα

Π. Σταθοπούλου ή Οµάδα Α (Φοιτητές µε µονό αριθµό Μητρώου ) ιδασκαλία : Παρασκευή 11πµ-13µµ ΗΛ7

Π. Σταθοπούλου ή Οµάδα Α (Φοιτητές µε µονό αριθµό Μητρώου ) ιδασκαλία : Παρασκευή 11πµ-13µµ ΗΛ7 Π. Σταθοπούλου pstath@ece.upatras.gr ή pstath@upatras.gr Οµάδα Α (Φοιτητές µε µονό αριθµό Μητρώου ) ιδασκαλία : Παρασκευή 11πµ-13µµ ΗΛ7 Φροντιστήριο : ευτέρα 11πµ-12πµ ΗΛ4 Προηγούµενη ιάλεξη Εισαγωγικά

Διαβάστε περισσότερα

Γλώσσα Προγραμματισμού C++ Εισαγωγή - Μια πρώτη ματιά

Γλώσσα Προγραμματισμού C++ Εισαγωγή - Μια πρώτη ματιά Γλώσσα Προγραμματισμού C++ Εισαγωγή - Μια πρώτη ματιά Βασικά χαρακτηριστικά αναπτύχθηκε ως επέκταση της C το 1979 υπερσύνολο της C γλώσσα γενικού σκοπού, γρήγορη, Αντικειμενοστραφής προγραμματισμός (Object

Διαβάστε περισσότερα

Αντικειμενοστραφής Προγραμματισμός

Αντικειμενοστραφής Προγραμματισμός 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αντικειμενοστραφής Προγραμματισμός Ενότητα 5 : Δομή Προγράμματος C++ Ιωάννης Τσούλος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #4 2 Γενικά Στο Τετράδιο #4 του Εργαστηρίου θα αναφερθούμε σε θέματα διαχείρισης πινάκων

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 4: Δείκτες και Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Πίνακες Δεικτών, Παραδείγματα, Πολυδιάστατοι πίνακες Πέρασμα παραμέτρων σε προγράμματα C Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες:

Διαβάστε περισσότερα

L A P. w L A f(w) L B (10.1) u := f(w)

L A P. w L A f(w) L B (10.1) u := f(w) Κεφάλαιο 10 NP -πληρότητα Σύνοψη Οι γλώσσες στην κλάση πολυπλοκότητας P μπορούν να αποφασίζονται σε πολωνυμικό χρόνο. Οι επιστήμονες πιστεύουν, αν και δε μπορούν να το αποδείξουν ότι η P είναι ένα γνήσιο

Διαβάστε περισσότερα

Το µάθηµα Αντικείµενο-Περιεχόµενα µαθήµατος Τρόπος ιδασκαλίας Εργαστήριο Βιβλίο, Βιβλιογραφία On-line Υλικό 2

Το µάθηµα Αντικείµενο-Περιεχόµενα µαθήµατος Τρόπος ιδασκαλίας Εργαστήριο Βιβλίο, Βιβλιογραφία On-line Υλικό 2 Παύλος Εφραιµίδης 1 Το µάθηµα Αντικείµενο-Περιεχόµενα µαθήµατος Τρόπος ιδασκαλίας Εργαστήριο Βιβλίο, Βιβλιογραφία On-line Υλικό 2 Περιεχόµενα Μαθήµατος Εισαγωγή στις και τους Αλγορίθµους Μελέτη και υλοποίηση

Διαβάστε περισσότερα

ΣΕΤ ΑΣΚΗΣΕΩΝ 3. Προθεσµία: Πέµπτη 17/12/2015, 22:00

ΣΕΤ ΑΣΚΗΣΕΩΝ 3. Προθεσµία: Πέµπτη 17/12/2015, 22:00 ΣΕΤ ΑΣΚΗΣΕΩΝ 3 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016 Προθεσµία: Πέµπτη 17/12/2015, 22:00 Διαβάστε πριν ξεκινήσετε Διαβάστε την εκφώνηση προσεκτικά και σχεδιάστε το πρόγραµµά σας πριν

Διαβάστε περισσότερα

Α. unsigned int Β. double. Γ. int. unsigned char x = 1; x = x + x ; x = x * x ; x = x ^ x ; printf("%u\n", x); Β. unsigned char

Α. unsigned int Β. double. Γ. int. unsigned char x = 1; x = x + x ; x = x * x ; x = x ^ x ; printf(%u\n, x); Β. unsigned char ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Β Περιόδου 2015 (8/9/2015) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................

Διαβάστε περισσότερα

οµηµένος Προγραµµατισµός ΙΙΙ - Java

οµηµένος Προγραµµατισµός ΙΙΙ - Java οµηµένος Προγραµµατισµός ΙΙΙ - Παύλος Εφραιµίδης 1 Το µάθηµα Αντικείµενο-Περιεχόµενα µαθήµατος Τρόπος ιδασκαλίας Εργαστήριο Βιβλίο, Βιβλιογραφία On-line Υλικό 2 Περιεχόµενα Μαθήµατος Εισαγωγή στους Αλγόριθµους

Διαβάστε περισσότερα

Προγραµµατισµός Ι Εργαστήριο 6ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 6 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ

Προγραµµατισµός Ι Εργαστήριο 6ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 6 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΕΡΓΑΣΤΗΡΙΟ 6 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Στόχοι Φορµαρισµένη είσοδος και έξοδος Αριθµητική χαρακτήρων Δοµές ελέγχου Δοµές επανάληψης Πίνακες Πριν ξεκινήσετε Πηγαίνετε στο φάκελο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 1 Συμβολοσειρές, Πίνακες, Δείκτες

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 1 Συμβολοσειρές, Πίνακες, Δείκτες ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 035: Δομές Δεδομένων και Αλγόριθμοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών Χειμερινό Εξάμηνο 2012 ΑΣΚΗΣΗ 1 Συμβολοσειρές, Πίνακες, Δείκτες Διδάσκων

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες: Σ. Ζάχος,.

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 3: Δείκτες και Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αριθμητική Δεικτών Δείκτες και Πίνακες Παραδείγματα Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 3: Προγραμματιστικά Περιβάλλοντα και το Πρώτο Πρόγραμμα C

ΕΡΓΑΣΤΗΡΙΟ 3: Προγραμματιστικά Περιβάλλοντα και το Πρώτο Πρόγραμμα C ΕΡΓΑΣΤΗΡΙΟ 3: Προγραμματιστικά Περιβάλλοντα και το Πρώτο Πρόγραμμα C Στο εργαστήριο αυτό, θα ασχοληθούμε με δύο προγραμματιστικά περιβάλλοντα της γλώσσας C, το Dev-C++, το οποίο είναι εφαρμογή που τρέχει

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 3 η Είσοδος Δεδομένων Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ231: ομές εδομένων και Αλγόριθμοι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ231: ομές εδομένων και Αλγόριθμοι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: ομές εδομένων και Αλγόριθμοι ιδάσκων: Γιώργος Πάλλης Γραφείο: ΘΕΕ-01 Β119 Τηλέφωνο: 22-892743 E-mail: gpallis@cs.ucy.ac.cy Ιστοσελίδα Μαθήματος: http://www.cs.ucy.ac.cy/courses/epl231

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός. Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων

Δομημένος Προγραμματισμός. Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων Δομημένος Προγραμματισμός Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων www.bpis.teicrete.gr Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων www.bpis.teicrete.gr 2 Παρατηρήσεις

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

Ψευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013

Ψευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013 Ψευδο-τυχαιότητα Συναρτήσεις µιας Κατεύθυνσης και Γεννήτριες Ψευδοτυχαίων Αριθµών Παύλος Εφραιµίδης 2013/02 1 Αριθµοί και String Όταν θα αναφερόµαστε σε αριθµούς θα εννοούµε ουσιαστικά ακολουθίες από δυαδικά

Διαβάστε περισσότερα

Τυπικές χρήσεις της Matlab

Τυπικές χρήσεις της Matlab Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις

Διαβάστε περισσότερα

I (JAVA) Ονοματεπώνυμο: Α. Μ.: Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην.

I (JAVA) Ονοματεπώνυμο: Α. Μ.: Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην. I (JAVA) Ονοματεπώνυμο: Α. Μ.: + ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην. + 1 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 2/3) 2 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 3/3)

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 1 Εισαγωγικά 1 / 24 Αδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στην OpenGL

Εισαγωγή στην OpenGL Εισαγωγή στην OpenGL Ε.1 Τι είναι η OpenGL; Ένας νέος χρήστης θα υποθέσει ότι η OpenGL είναι µια βιβλιοθήκη σχεδίασης γραφικών. Ωστόσο, µε τον όρο OpenGL δεν αναφερόµαστε σε µια συγκεκριµένη βιβλιοθήκη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 2: Εκφράσεις, πίνακες και βρόχοι 14 Απριλίου 2016 Το σημερινό εργαστήριο

Διαβάστε περισσότερα

I (JAVA) Ονοματεπώνυμο: Α. Μ.: Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην.

I (JAVA) Ονοματεπώνυμο: Α. Μ.: Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην. I (JAVA) Ονοματεπώνυμο: Α. Μ.: + ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην. + 1 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 2/3) 2 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 3/3)

Διαβάστε περισσότερα

Προγραµµατισµός Ι Εργαστήριο 6ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 6 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ

Προγραµµατισµός Ι Εργαστήριο 6ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 6 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΕΡΓΑΣΤΗΡΙΟ 6 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Στόχοι Φορµαρισµένη είσοδος και έξοδος Αριθµητική χαρακτήρων Δοµές ελέγχου Δοµές επανάληψης Πίνακες Πριν ξεκινήσετε Πηγαίνετε στο φάκελο

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 2 η Τύποι Δεδομένων Δήλωση Μεταβλητών Έξοδος Δεδομένων Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες: Σ. Ζάχος,.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ» ΗΜΕΡ.ΑΝΑΘΕΣΗΣ: Δευτέρα 21 Δεκεμβρίου 2015 ΗΜΕΡ.ΠΑΡΑΔΟΣΗΣ: Δευτέρα 25 Ιανουαρίου 2016 Διδάσκοντες:

Διαβάστε περισσότερα

Κεφάλαιο Αλφαριθμητικές Σειρές Χαρακτήρων (Strings) (Διάλεξη 20) 1) Strings στη C

Κεφάλαιο Αλφαριθμητικές Σειρές Χαρακτήρων (Strings) (Διάλεξη 20) 1) Strings στη C Κεφάλαιο 9.1-9.2 Αλφαριθμητικές Σειρές Χαρακτήρων (Strings) (Διάλεξη 20) 1) Strings στη C Ένα string είναι μία ακολουθία αλφαριθμητικών χαρακτήρων, σημείων στίξης κτλ. Π.χ. Hello How are you? 121212 *Apple#123*%

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 1: Εισαγωγή Ποιος είμαι εγώ! 2 Ναύπλιο, 4/1976-9/1993 Πάτρα, 9/1993-6/2004 Williamsburg, VA, USA, 7/2004-7/2006 Μυτιλήνη, 10/2006-2/2007 Βόλος, 2/2007 - H Υπεύθυνη των

Διαβάστε περισσότερα

lab14grades ΑΕΜ ΒΑΘΜΟΣ ΣΧΟΛΙΑ

lab14grades ΑΕΜ ΒΑΘΜΟΣ ΣΧΟΛΙΑ ΑΕΜ ΒΑΘΜΟΣ ΣΧΟΛΙΑ 00497 lab14grades - Σωστός έλεγχος του argc για όλες τις περιπτώσεις. - Θα έπρεπε να καλέσεις τη συνάρτηση strlen_r και στην περίπτωση του κενού string, strlen_r("\0"). - Σωστή χρήση

Διαβάστε περισσότερα

οµηµένος Προγραµµατισµός ΙΙΙ - Java Παύλος Εφραιµίδης οµηµένος Προγρ. ΙΙΙ - 1 Java Το Μάθηµα

οµηµένος Προγραµµατισµός ΙΙΙ - Java Παύλος Εφραιµίδης οµηµένος Προγρ. ΙΙΙ - 1 Java Το Μάθηµα οµηµένος Προγραµµατισµός ΙΙΙ - Παύλος Εφραιµίδης 1 Το µάθηµα Αντικείµενο-Περιεχόµενα µαθήµατος Τρόπος ιδασκαλίας Εργαστήριο Βιβλίο, Βιβλιογραφία On-line Υλικό 2 Περιεχόµενα Μαθήµατος Εισαγωγή στους Αλγόριθµους

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 5 Ανάπτυξη Προγράμματος Συμπίεσης/Αποσυμπίεσης Αρχείων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 5 Ανάπτυξη Προγράμματος Συμπίεσης/Αποσυμπίεσης Αρχείων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 035: Δομές Δεδομένων και Αλγόριθμοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών Χειμερινό Εξάμηνο 2012 ΑΣΚΗΣΗ 5 Ανάπτυξη Προγράμματος Συμπίεσης/Αποσυμπίεσης

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Στόχοι και αντικείμενο ενότητας. Εκφράσεις. Η έννοια του τελεστή. #2.. Εισαγωγή στη C (Μέρος Δεύτερο) Η έννοια του Τελεστή

Στόχοι και αντικείμενο ενότητας. Εκφράσεις. Η έννοια του τελεστή. #2.. Εισαγωγή στη C (Μέρος Δεύτερο) Η έννοια του Τελεστή Στόχοι και αντικείμενο ενότητας Η έννοια του Τελεστή #2.. Εισαγωγή στη C (Μέρος Δεύτερο) Εκφράσεις Προτεραιότητα Προσεταιριστικότητα Χρήση παρενθέσεων Μετατροπές Τύπων Υπονοούμενες και ρητές μετατροπές

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες: Σ. Ζάχος,.

Διαβάστε περισσότερα

Οικονόμου Βαγγέλησ Διάλεξη Νο 2. Δομημένοσ Προγραμματιςμόσ - Διάλεξη 2

Οικονόμου Βαγγέλησ Διάλεξη Νο 2. Δομημένοσ Προγραμματιςμόσ - Διάλεξη 2 Οικονόμου Βαγγέλησ Διάλεξη Νο 2 Δομημένοσ Προγραμματιςμόσ - Διάλεξη 2 1 Η έννοια τησ μεταβλητήσ έδωςε λύςη ςτο πρόβλημα τησ αναφοράσ ςτην κύρια μνήμη του υπολογιςτή. Οι γλώςςεσ προγραμματιςμού υποςτηρίζουν

Διαβάστε περισσότερα

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016 FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016 Δρ. Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ Εργαστήριο Ναυτικής Μηχανολογίας

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός (ΤΛ1006)

Δομημένος Προγραμματισμός (ΤΛ1006) Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Σχολή Εφαρμοσμένων Επιστημών Τμήμα Ηλεκτρονικών Μηχανικών Τομέας Αυτοματισμού και Πληροφορικής Δομημένος Προγραμματισμός (ΤΛ1006) Δρ. Μηχ. Νικόλαος Πετράκης, Καθηγητής

Διαβάστε περισσότερα

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ C Προγραμματιστικές Ασκήσεις, Φυλλάδιο Εκφώνηση: 9/3/0 Παράδοση: 5/4/0,.59 Άσκηση 0 η : Το πρόβλημα της βελόνας του Buffon Θέμα της εργασίας

Διαβάστε περισσότερα

Βασικές Έννοιες Δοµών Δεδοµένων

Βασικές Έννοιες Δοµών Δεδοµένων Δοµές Δεδοµένων Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλήµατος του ευσταθούς ταιριάσµατος Βασικές Έννοιες

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Στοιχεία Θεωρίας Γράφων (Graph Theory) Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,

Διαβάστε περισσότερα

make Προγραμματισμός II 1

make Προγραμματισμός II 1 make Προγραμματισμός II 1 lalis@inf.uth.gr myprog.c preprocessor (cc1) /tmp/cczxt.i assembler (as) compiler (cc1) /tmp/cczxt.o /tmp/cczxt.s linker (ld) myprog Προγραμματισμός II 2 lalis@inf.uth.gr Δοκιμάστε

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 1

Αλγόριθμοι Ταξινόμησης Μέρος 1 Αλγόριθμοι Ταξινόμησης Μέρος 1 Μανόλης Κουμπαράκης 1 Το Πρόβλημα της Ταξινόμησης Το πρόβλημα της ταξινόμησης (sorting) μιας ακολουθίας στοιχείων με κλειδιά ενός γνωστού τύπου (π.χ., τους ακέραιους ή τις

Διαβάστε περισσότερα

FORTRAN και Αντικειμενοστραφής Προγραμματισμός

FORTRAN και Αντικειμενοστραφής Προγραμματισμός FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 1 : Σύνολα & Σχέσεις (1/2) Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 1 : Σύνολα & Σχέσεις (1/2) Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 1 : Σύνολα & Σχέσεις (1/2) Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΠΡΩΤΗ ΠΡΟΟΔΟΣ ΣΤΗΝ «ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Y»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΠΡΩΤΗ ΠΡΟΟΔΟΣ ΣΤΗΝ «ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Y» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΠΡΩΤΗ ΠΡΟΟΔΟΣ ΣΤΗΝ «ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Y» Σάββατο, 31 Οκτωβρίου 2015 ΔΙΑΡΚΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ 150 ΛΕΠΤΑ ΘΕΜΑ 1.

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Ενότητα 2β: Εισαγωγή στη C (Μέρος Δεύτερο)

Προγραμματισμός Η/Υ. Ενότητα 2β: Εισαγωγή στη C (Μέρος Δεύτερο) Προγραμματισμός Η/Υ Ενότητα 2β: Νίκος Καρακαπιλίδης, Καθηγητής Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Κατανόηση της έννοιας του Τελεστή

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7)

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

είκτες και Πίνακες (2)

είκτες και Πίνακες (2) είκτες και Πίνακες (2) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πολυδιάστατοι πίνακες Πέρασµα παραµέτρων σε προγράµµατα C ΕΠΛ 132 Αρχές Προγραµµατισµού ΙΙ 1-1 Πίνακες εικτών Πίνακας δεικτών είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 7 Ουρές Προτεραιότητας ΗΥ240 - Παναγιώτα Φατούρου 2 Ουρές

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός

Δομημένος Προγραμματισμός Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 2: Τύποι μεταβλητών Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Εισαγωγή στην OpenGL

Εισαγωγή στην OpenGL Εισαγωγή στην OpenGL Περιεχόµενα εισαγωγικής ενότητας: Γενικά χαρακτηριστικά της OpenGL Βιβλιοθήκες που της OpenGL Ένα τυπικό πρόγραµµα Τι είναι η OpenGL; Η OpenGL δεν είναι µια συγκεκριµένη βιβλιοθήκη

Διαβάστε περισσότερα

Ονοματεπώνυμο: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Δομή Ακολουθίας και Επιλογής Κεφ: 2.1, 2.3, , 6.3, , 8.1, 8.1.

Ονοματεπώνυμο: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Δομή Ακολουθίας και Επιλογής Κεφ: 2.1, 2.3, , 6.3, , 8.1, 8.1. Ονοματεπώνυμο: Μάθημα: Υλη: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Δομή Ακολουθίας και Επιλογής Κεφ: 2.1, 2.3, 2.4.1-2.4.4, 6.3, 7.1-7.10, 8.1, 8.1.1 Επιμέλεια διαγωνίσματος: Ρομπογιαννάκη Ι.Αικατερίνη

Διαβάστε περισσότερα

Προγραµµατισµός Ι Εργαστήριο 13ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 13 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ

Προγραµµατισµός Ι Εργαστήριο 13ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 13 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΕΡΓΑΣΤΗΡΙΟ 13 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Στόχοι Αναδροµή Σηµείωση: Απαγορεύονται static και global µεταβλητές. Πριν ξεκινήσετε Πηγαίνετε στο φάκελο ce120 και κατασκευάστε µέσα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ

ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ 6 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Θέμα 1 ο : Άθροισμα ζευγών ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ [30 Μονάδες] Δίνεται μία ακολουθία Ν ακέραιων αριθμών. Θέλουμε να μπορούμε να απαντάμε στο ερώτημα «υπάρχει ζεύγος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ Θέμα Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2016-2017 Πάτρα 3/5/2017 Ονοματεπώνυμο:.. Α1. Να γράψετε στην κόλλα σας τον αριθμό

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

ΗΥ252 - Οντοκεντρικός Προγραµµατισµός Προγραµµατιστική Εργασία Εαρινού Εξαµήνου 2004 Περιγραφή Παραδοτέων

ΗΥ252 - Οντοκεντρικός Προγραµµατισµός Προγραµµατιστική Εργασία Εαρινού Εξαµήνου 2004 Περιγραφή Παραδοτέων ΗΥ252 - Οντοκεντρικός Προγραµµατισµός Προγραµµατιστική Εργασία Εαρινού Εξαµήνου 2004 Περιγραφή Παραδοτέων Περιγραφή Στην εργασία αυτή καλείστε να υλοποιήσετε την προσοµοίωση µηχανών Turing. Μια µηχανή

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 9: Συμβολοσειρές και Ορίσματα Γραμμής Εντολής

ΕΡΓΑΣΤΗΡΙΟ 9: Συμβολοσειρές και Ορίσματα Γραμμής Εντολής ΕΡΓΑΣΤΗΡΙΟ 9: Συμβολοσειρές και Ορίσματα Γραμμής Εντολής Στο εργαστήριο αυτό θα δούμε πώς ορίζονται και πώς χρησιμοποιούνται οι συμβολοσειρές στην C. Επίσης, θα μελετήσουμε κάποιες από τις συναρτήσεις

Διαβάστε περισσότερα