Ειδικές μέθοδοι ανάλυσης κυτταρικών διεργασιών Ομάδες αίματος στον άνθρωπο
|
|
- Ποδαργη Λαγός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ειδικές μέθοδοι ανάλυσης κυτταρικών διεργασιών Ομάδες αίματος στον άνθρωπο Ειρήνη Αθανασάκη Τμήμα Βιολογίας
2 Ιστοειδικά άλλο-αντιγόνα στην επιφάνεια κυρίως των ερυθροκυττάρων επιτυχή μετάγγιση αίματος
3 Ανοσογενετική Πολυγονιδιακή φύση ομάδων αίματος Πολλαπλά συστήματα ομάδων αίματος ΑΒΟ(Η) Lewis MNS P Kell Duffy KIDD I
4 ΣΥΣΤΗΜΑ ΟΜΑΔΩΝ ΑΙΜΑΤΟΣ ΑΒΟ(Η) Ανακαλύφθηκε το 1900 από τον Landsteiner (Nobel Prize 1930) Το 1925 ο Bernstein πρότεινε την ύπαρξη ενός μοναδικού γονιδιακού τόπου με τρία αλλήλια: A, B και Ο. Τα αλλήλια Α και Β είναι συνεπικρατή, ενώ το Ο είναι σιωπηλό.
5 Αλλήλιο Α UDP-GAL-N + FUC-GAL-GLU-N-GAL-GAL-N-R Oυσία H Ν-ακετυλο-γαλακτοζαμινο-μεταφοράση FUC-GAL-GLU-N-GAL-GAL-N-R + UDP Αντιγόνο A GAL-N Υποομάδες: Α1 και Α2 οι οποίες ανήκουν στα αλλήλια Α1 και Α2 αντίστοιχα. Α3 (φαινοτυπικά ομάδα Α1, εμφάνιση του αντιγόνου στο σάλιο) Αx και Αm (φαινοτυπικά ομάδα Ο) Aend, Afinn, Ael και Abantu
6 Αλλήλιο Β UDP-GAL+ FUC-GAL-GLU-N-GAL-GAL-N-R Oυσία H Ν-ακετυλο-γαλακτοζο-μεταφοράση FUC-GAL-GLU-N-GAL-GAL-N-R + UDP Αντιγόνο B GAL Το σιωπηλό αλλήλιο Ο δεν κωδικοποιεί για κανένα ένζυμο και οι ομοζυγώτες Ο/Ο δεν εκφράζουν κανένα ειδικό αντιγόνο
7 Η ουσία Η προκύπτει τη πρόδρομο ουσία τύπου Ι ή ΙΙ Τύπος Ι: GAL GLU-N-GAL-GAL-N-R 1 3 Τύπος ΙI: GAL GLU-N-GAL-GAL-N-R 1 4 Η α-l-φουκόζη προσδένεται στην γαλακτόζη της τύπου Ι ή ΙΙ πρόδρομης ουσίας με δεσμό 1 2 : GAL-GLU-N-GAL-GAL-N-R + GDP-FUC Τύπος Ι ή ΙΙ πρόδρομης ουσίας Φουκόζο-μεταφοράση (H) FUC-GAL-GLU-N-GAL-GAL-N-R + GDP 1 2 Ουσία Η
8 Τα αντιγόνα ομάδων αίματος τα βρίσκουμε να εκφράζονται και σε άλλους ιστούς όπως συκώτι, νεφρά, ενώ ανιχνεύονται σε εκκρινόμενη μορφή στο σάλιο, γαστρικό υγρό, γάλα, ούρα, δάκρυα, κλπ. Το γονίδιο που ρυθμίζει την έκκριση των ΑΒH αντιγόνων στο σάλιο ονομάζεται εκκριτικό γονίδιο (secretor gene, Se). Η πλειοψηφία των ατόμων είναι ομοζυγώτες για το αλλήλιο Η (Η/Η) το αλλήλιο Η είναι επικρατές Ένα άτομο ομόζυγο στο υπολειπόμενο h (h/h) δεν παράγει την φουκοζο-μεταφοράση δεν έχει ουσία Η αποκλείει την έκφραση των αντιγόνων Α και Β. Τα άτομα αυτά φαινοτυπικά ανήκουν στην ομάδα Ο, αλλά σε αντίθεση με τα άτομα Ο/Ο που δεν μπορούν να έχουν απογόνους ομάδος αίματος ΑΒ, τα h/h άτομα μπορούν να δώσουν απογόνους ΑΒ εάν το επικρατές Η αλλήλιο προέλθει από τον άλλο γονέα. Ο φαινότυπος h/h είναι γνωστός σαν φαινότυπος Bombay.
9 ΤΟ ΣΥΣΤΗΜΑ ΟΜΑΔΩΝ ΑΙΜΑΤΟΣ Lewis αντιγόνα Le a και Le b Αλλήλιο Le φουκόζυλο μεταφοράση GAL-GLU-N-GAL-GAL-N-R + GDP-FUC Τύπος Ι ή ΙΙ πρόδρομης ουσίας φουκόζυλο μεταφοράση (Le) FUC-GAL-GLU-N-GAL-GAL-N-R + GDP Αντιγόνο Le a 1 4 FUC-GAL-GLU-N-GAL-GAL-N-R + GDP-FUC Ουσία Η φουκόζυλο μεταφοράση (Se) FUC-GAL-GLU-N-GAL-GAL-N-R + GDP Αντιγόνο Le b FUC
10 Tο αντιγόνο Le a αρχικά εμφανίζεται στο πλάσμα και τις εκκρίσεις και στην συνέχεια απορροφάται παθητικά από τη επιφάνεια των ερυθροκυττάρων, όπου και ανιχνεύεται σαν αντιγόνο ομάδας αίματος. Επειδή το Le a αντιγόνο σχηματίζεται κατευθείαν από την πρόδρομο ουσία, αρχικά τα ερυθροκύτταρα είναι Le a+b-. Στο επόμενο στάδιο το αντιγόνο Η μετασχηματίζεται σε Le b και σε ένα ενδιάμεσο φαινότυπο τα ερυθροκύτταρα είναι Le a+b+. Αυτός ο φαινότυπος σε 78% του πληθυσμού αντικαθίσταται στην ηλικία των 3-6 χρόνων από τον τελικό φαινότυπο Le a-b+
11 Παρουσία του επικρατούς αλληλίου Se, τα Le a και Le b αντιγόνα βρίσκονται στις εκκρίσεις, ενώ απουσία του Se αλληλίου η μετατροπή σταματά στο πρώτο στάδιο και 22% των ατόμων εμφανίζουν σε όλη τους την ζωή τον φαινότυπο Le a+b-. Οι ομοζυγώτες για το υπολειπόμενο le αλλήλιο (le/le) αδυνατούν να φτιάξουν Le a ή Le b αντιγόνα και παρουσιάζουν φαινότυπο Le a-b-.
12 Αντιγόνα στις εκρίσεις Γονότυπος A B H Le b Le a Ομάδες Αίματος Η/Η ή Se/Se Le/Le A/A ή A/O Α Le a-b+ Η/h ή Se/se ή Le/le A/B ΑΒ B/B ή Β/Ο Β Ο/Ο Ο le/le A/A ή A/O + + Α Le a-b- A/B ΑΒ B/B ή Β/Ο + + Β Ο/Ο + Ο se/se Le/Le ή Le/le A/A ή A/O + Α Le a+b- A/B + ΑΒ B/B ή Β/Ο + Β Ο/Ο + Ο le/le A/A ή A/O Α Le a-b- A/B B/B ή Β/Ο Ο/Ο ΑΒ Β Ο
13 Αντιγόνα στις εκρίσεις Γονότυπος A B H Le b Le a Ομάδες Αίματος h/h Se/Se Le/Le A/A ή A/O + Α Le a-b+ ή Se/se ή Le/le A/B + ΑΒ B/B ή Β/Ο + Β Ο/Ο + Ο le/le A/A ή A/O Α Le a-b- A/B B/B ή Β/Ο Ο/Ο ΑΒ Β Ο se/se Le/Le ή Le/le A/A ή A/O + Α Le a+b- A/B + ΑΒ B/B ή Β/Ο + Β Ο/Ο + Ο le/le A/A ή A/O Α Le a-b- A/B B/B ή Β/Ο Ο/Ο ΑΒ Β Ο
14 ΤΟ ΣΥΣΤΗΜΑ ΟΜΑΔΩΝ ΑΙΜΑΤΟΣ Rhesus Πολύπλοκο σύμπλοκο που ανακαλύφθηκε από τους Levine και Stetson το 1939 Τα Rh αντιγόνα καθορίζονται από τρεις γενετικούς τόπους C, D και E με αλλήλια τα: C και c, D και d, E και e αντίστοιχα. Εκτός από τα D και d αλλήλια, τα υπόλοιπα είναι συνεπικρατή. Οι γονιδιακοί τόποι C, D και Ε είναι πολύ κοντά, κληρονομούνται σαν ένα τμήμα ενώ δεν έχει παρατηρηθεί χίασμα μέσα σε αυτήν την περιοχή. Υπάρχουν 8 διαφορετικοί απλότυποι: CDe, cde, cde, cde, Cde, CDE, CdE και cde Εκτός από τα κλασσικά αντιγόνα που αντιστοιχούν στα C, D, E, c, d, και e αλλήλια, έχουν βρεθεί ποικίλες μορφές των αντιγόνων αυτών: D u, D w, D Cor, C w, C x, C u, C a, E w, E T, e s, e-like κλπ. Το αντιγόνο f, προκύπτει από τα αλλήλια c και e (cisσυμπληρωματικότητα) Η αλληλεπίδραση των c και e s αλληλίων οδηγεί στην έκφραση του V αντιγόνου που είναι αρκετά συχνό στους Νέγρους. Πολλές φορές άτομα που εμφανίζονται Rh- με γονότυπο cde/cde, παραδόξως αντιδρούν με αντι-d και αντι-c αντιορούς και εκφράζουν ένα άλλο αντιγόνο το G.
15 ΤΟ ΣΥΣΤΗΜΑ ΟΜΑΔΩΝ ΑΙΜΑΤΟΣ MNS Αντιγόνα Μ,Ν, S, s. Τα Μ και Ν καθορίζονται από δύο συνεπικρατή αλλήλια τα Μ και Ν στον γονιδιακό τόπο ΜΝ (δημιουργώντας τρεις γονότυπους: Μ/Μ, Μ/Ν και Ν/Ν), και δύο ακόμα αντιγόνα τα S και s που ήταν προϊόντα δύο άλλων συνεπικρατών αλληλίων των S και s. Επιπλέον έχει ταυτοποιηθεί το αντιγόνο U σαν προϊόν άλλου αλλήλιου.
16 Τα αντιγόνα Μ και Ν είναι γλυκοπρωτεΐνες κεντρική πρωτεΐνη αλυσίδες σακχάρων σιαλικό οξύ Τα αντιγόνα αυτά σχηματίζονται με προσθήκη νευραμινομάδας στις πλευρικές αλυσίδες με την βοήθεια της νευραμινομεταφοράσης. Η παρουσία αντι-μ και αντι-ν αντισωμάτων στον ορό είναι σπάνια και αυτή αντιπροσωπεύεται από IgM ανοσοσφαιρίνες που δεν διαπερνούν τον πλακούντα και συνεπώς δεν είναι σε θέση να προκαλέσουν αιμολυτική αναιμία στο έμβρυο. Σε περίπτωση που αναπτυχθούν αντισώματα IgG, υπάρχει ο ίδιος κίνδυνος στην μετάγγιση αίματος όπως και αυτός του συστήματος ομάδων αίματος ΑΒΟ(Η).
17 ΤΟ ΣΥΣΤΗΜΑ ΟΜΑΔΩΝ ΑΙΜΑΤΟΣ P Περιλαμβάνει πέντε φαινότυπους: P1, P2, P1k, P2k, p Τα επικρατή Pk και P1k αλλήλια κωδικοποιούν για μία γαλακτοζομετατοπάση που καταλύει την μετατροπή του διεξοζιδίου κεραμίδης σε τριεξοζίδιο κεραμίδης (Pk αντιγόνο). Το προϊόν του P1k αλληλίου μετατρέπει επιπλέον το παρασφαιρινοζίδιο σε αντιγόνο P1. Το υπολειπόμενο p αλλήλιο είναι σιωπηλό και ομοζυγώτες p/p δεν παράγουν Pk ή P1 αντιγόνα. Ο γονιδιακός τόπος του P2 κωδικοποιεί για μία Ν-ακετο-γαλακτοαμινομετατοπάση η οποία καταλύει την γλυκοσυλίωση του Pk αντιγόνου και την μετατροπή του σε αντιγόνο P. Το P20 αλλήλιο είναι σιωπηλό και ομοζυγώτες p/p, P20/P20 δεν μπορούν να εκφράσουν κανένα από τα παραπάνω χαρακτηριστικά.
18 ΤΟ ΣΥΣΤΗΜΑ ΟΜΑΔΩΝ ΑΙΜΑΤΟΣ KELL Αρχικά δύο συνεπικρατή αλλήλια τα K και k που αντιστοιχούν στα αντιγόνα K και k. Αργότερα περιγράφηκαν 18 σπάνια αλλήλια Αποτελείται από τρία ζεύγη αντιγόνων K και k, Kpa και Kpb, Jsa και Jsb Μετά από τα αντιγόνα των συστημάτων ΑΒΟ και Rh, τα αντιγόνα Κ είναι τα πλέον ανοσογόνα σε σύγκριση με τα αντιγόνα των υπολοίπων ομάδων αίματος και πρέπει να λαμβάνονται υπ όψη στις μεταγγίσεις αίματος.
19 ΤΟ ΣΥΣΤΗΜΑ ΟΜΑΔΩΝ ΑΙΜΑΤΟΣ DUFFY Χαρακτηρίζεται από τα αντιγόνα Fya και Fyb και πολλά σπάνια αντιγόνα που αναφέρονται σαν Fyx. Οι φαινότυποι αυτοί καθορίζονται από τα αλλήλια Fya, Fyb και Fyx. Αντι-Fy αντισώματα δημιουργούνται σχεδόν πάντα μετά από μετάγγιση αίματος ή εγκυμοσύνη και μπορούν να δημιουργήσουν αντίδραση αιμοσυγκόλλησης
20 ΤΟ ΣΥΣΤΗΜΑ ΟΜΑΔΩΝ ΑΙΜΑΤΟΣ KIDD Δύο αντιγόνα τα Jka και Jkb που είναι προϊόντα των συνεπικρατών αλληλίων Jka και Jkb και υπεύθυνα για τρεις γονότυπους: Jk(a+b-), Jk(a+b+) και Jk(a-b+). Σε όχι-καυκάσιους πληθυσμούς ανακαλύφθηκε ο τέταρτος φαινότυπος Jk(a-b-), γεγονός που υποδεικνύει την ύπαρξη ενός τρίτου σιωπηλού αλληλίου, του Jk0.
21 ΤΟ ΣΥΣΤΗΜΑ ΟΜΑΔΩΝ ΑΙΜΑΤΟΣ Ι Αποτελείται από τα Ι και ι αντιγόνα Τα δύο αντιγόνα αντιστοιχούν στα αλλήλια Ι και ι Κατά την γέννηση όλα τα νεογνά είναι φαινοτυπικά ι Στην ηλικία των μηνών αρχίζουν να εμφανίζουν αντι-ι δραστικότητα, ενώ συγχρόνως χάνουν την αντι-ι δραστικότητα.
22 ΑΝΤΙΣΩΜΑΤΑ ΕΝΑΝΤΙΑ ΣΤΑ ΑΝΤΙΓΟΝΑ ΟΜΑΔΩΝ ΑΙΜΑΤΟΣ Φυσικά αντισώματα που αναγνωρίζουν άλλο-συγκολλητίνες σε όλα τα συστήματα ομάδων αίματος ανιχνεύονται στον ορό όλων των ατόμων. Ομάδα Αίματος Αντιγόνα στα ερυθροκύτταρα Π.χ. Αντισώματα στον ορό Γονότυπος Α Α Αντί-Β ΑΑ ή ΑΟ Β Β Αντί-Α ΒΒ ή ΒΟ ΑΒ Α και Β τίποτα ΑΒ Ο Τίποτα Αντί-Α+ Αντί-Β ΟΟ
23 Η παραγωγή αντισώματος προϋποθέτει την ύπαρξη αντιγονικής διέγερσης Η πλέον πιθανή πηγή είναι τα βακτήρια του εντέρου και τα προϊόντα αυτών, τα οποία φέρουν αντιγονικά χαρακτηριστικά ίδια ή παρόμοια με αυτά των ομάδων αίματος..
24 Ανθρώπινα ερυθροκύτταρα προτού (αριστερά) και μετά (δεξιά) την προσθήκη ορού που περιέχει αντι-α αντισώματα. Η παρατηρούμενη αιμοσυγκόλληση δείχνει την παρουσία του αντιγόνου Α στην επιφάνεια των κυττάρων.
25 Τέλος Ενότητας
26 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
27 Σημειώματα
28 Σημείωμα αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση, Όχι Παράγωγο Έργο 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί..
29 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Κρήτης, Ειρήνη Αθανασάκη «Ειδικές μέθοδοι ανάλυσης κυτταρικών διεργασιών. Ομάδες αίματος στον άνθρωπο». Έκδοση: 1.0. Ηράκλειο Διαθέσιμο από τη δικτυακή διεύθυνση:
30 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.
ΟΜΑΔΕΣ ΑΙΜΑΤΟΣ ΣΤΟΝ ΑΝΘΡΩΠΟ
ΟΜΑΔΕΣ ΑΙΜΑΤΟΣ ΣΤΟΝ ΑΝΘΡΩΠΟ Το αίμα αποτελεί έναν από τους πλέον σημαντικούς συνδετικούς ιστούς του οργανισμού. Οι ουσίες που χαρακτηρίζουν τις ομάδες αίματος θεωρούνται ιστοειδικά αλλο-αντιγόνα και βρίσκονται
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης
Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα
Βάσεις Περιβαλλοντικών Δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra
Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
Τεχνικό Σχέδιο - CAD
Τεχνικό Σχέδιο - CAD Προσθήκη Διαστάσεων & Κειμένου ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Εντολές προσθήκης διαστάσεων & κειμένου Στο βασική (Home)
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
Διδακτική Πληροφορικής
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 4: Διδακτικός μετασχηματισμός βασικών εννοιών πληροφορικής Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6: 1η εργαστηριακή άσκηση και προσομοίωση με το SPICE Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και
Τεχνικό Σχέδιο - CAD
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Τεχνικό Σχέδιο - CAD Ενότητα 7: SketchUp Αντικείμενα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Κοινωνία & Υγεία Υγεία Πρόληψη Προαγωγή υγείας: Βαθμίδες πρόληψης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Κοινωνία & Υγεία Υγεία Πρόληψη Προαγωγή υγείας: Βαθμίδες πρόληψης Αντώνης Κούτης Τμήμα Ιατρικής Βαθμίδες πρόληψης Πρωταρχική πρόληψη (primordial prevention) Πρωτογενής
Ειδικές μέθοδοι ανάλυσης κυτταρικών διεργασιών Ανοσοποίηση πειραματικών ποντικιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ειδικές μέθοδοι ανάλυσης κυτταρικών διεργασιών Ανοσοποίηση πειραματικών ποντικιών Έλενα Κουιμτζόγλου Τμήμα Βιολογίας *ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΩΝ ΑΝΤΙΓΟΝΟΕΙΔΙΚΩΝ Β ΛΕΜΦΟΚΥΤΤΑΡΩΝ
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ Ενότητα 8: ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΙ ΚΑΤΑΤΜΗΣΗΣ ΚΑΤΑΝΑΛΩΤΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Ειδικές μέθοδοι ανάλυσης κυτταρικών διεργασιών Κυτταρομετρία Ροής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ειδικές μέθοδοι ανάλυσης κυτταρικών διεργασιών Κυτταρομετρία Ροής Έλενα Κουιμτζόγλου Τμήμα Βιολογίας http://www.exetasis.gr/kittarometritis Κυτταρομετρία ροής είναι
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskl Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Διαχείριση Πολιτισμικών Δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διαχείριση Πολιτισμικών Δεδομένων Ενότητα 9: Μετατροπή μοντέλου οντοτήτων σχέσεων σε βάση δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative
Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Ενότητα. Εισαγωγή στις βάσεις δεδομένων
Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εισαγωγή στις Επιστήμες της Αγωγής
Εισαγωγή στις Επιστήμες της Αγωγής Αλεξάνδρα Ανδρούσου - Βασίλης Τσάφος Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Επίπεδα Κοινωνιολογίας της Εκπαίδευσης Αναλύει τη θέση και τη λειτουργία
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση
Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 4: Στρατηγικοί προσανατολισμοί Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διδακτική των εικαστικών τεχνών Ενότητα 1
Διδακτική των εικαστικών τεχνών Ενότητα 1 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 1. Ιστορική αναδρομή της διδακτικής της
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Έλεγχος Ποιότητας Φαρμάκων
Έλεγχος Ποιότητας Φαρμάκων Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Συσκευές Αποσάθρωση Δισκίων (ενός καλαθιού (δεξιά) και δύο καλαθιών (αριστερά) 2 Συσκευή Αποσάθρωσης 4
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Θέματα Εφαρμοσμένης. Ενότητα 14.2: Η ψήφος στα πρόσωπα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 14.2: Η ψήφος στα πρόσωπα. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Μάρκετινγκ Αγροτικών Προϊόντων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μάρκετινγκ Αγροτικών Προϊόντων Ενότητα 4 η : Οι Παραγωγοί Αγροτικών Προϊόντων Χρίστος Καμενίδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Θεατρικές Εφαρμογές και Διδακτική της Φυσικής Ι
Θεατρικές Εφαρμογές και Διδακτική της Φυσικής Ι Ενότητα 2: Παράλληλες θεωρητικές και εργαστηριακές προσεγγίσεις των τεχνικών και της δομής του κουκλοθέατρου, της κινούμενης εικόνας και ενός θέματος από
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 9: Άσκηση εμπορικής πολιτικής Παράδειγμα άσκησης εμπορικής πολιτικής Γρηγόριος Ζαρωτιάδης
Δομές Δεδομένων Ενότητα 1
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Εισαγωγή Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 11 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5
Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας
Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...
Παθολογία Σκληρών Οδοντικών Ιστών
Παθολογία Σκληρών Οδοντικών Ιστών Ενότητα 1: Χημικές αλληλεπιδράσεις μεταξύ δοντιών και στοματικού περιβάλλοντος. Απομεταλλικοποίηση-επαναμεταλλικοποίηση Χρήστος Ραχιώτης Σχολή Επιστημών Υγείας Τμήμα Οδοντιατρικής
Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων.
Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 8: Ορθομοναδιαίοι μετασχηματισμοί Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Ορθομοναδιαίοι μετασχηματισμοί ισοδύναμη
Διδακτική των εικαστικών τεχνών Ενότητα 3
Διδακτική των εικαστικών τεχνών Ενότητα 3 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 3. Ο ρόλος του εκπαιδευτικού: σχεδιασμός
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Ενότητα: Εργασίες Διδάσκων: Βασίλης Κόμης, Καθηγητής komis@upatras.gr www.ecedu.upatras.gr/komis/ Τμήμα Επιστημών
Εισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 7: Τεχνολογία Λογισμικού Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 6: Διαπεριφερειακές διαφορές Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Πολιτική (και) επικοινωνία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Πολιτική (και) επικοινωνία Ενότητα 4: Η εξέλιξη των ΜΜΕ: Ραδιοτηλεοπτικά συστήματα και πολιτική Ιωάννης Καραγιάννης Τμήμα Πολιτικής Επιστήμης Φυσιογνωμία και λειτουργίες
Εισαγωγή στην Πληροφορική
Εισαγωγή στην Πληροφορική Αριθμητικά Συστήματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς Βασικές Έννοιες Ένα Αριθμητικό Σύστημα αποτελείται από ένα
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11η: Οργανισμοί της Εκκλησίας της Ελλάδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εισαγωγή στις Επιστήμες της Αγωγής
Εισαγωγή στις Επιστήμες της Αγωγής Αλεξάνδρα Ανδρούσου - Βασίλης Τσάφος Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Βασική θεματική Η διαμόρφωση των γνώσεων στο παιδί στο πλαίσιο του σχολείου
Βάσεις Περιβαλλοντικών Δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 7: Μετατροπή μοντέλου οντοτήτων σχέσεων σε φυσικό μοντέλο Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative
Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών
Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.
Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού Ενότητα 4: Εφαρμογές λογιστικών φύλλων στη Στατική: Γεωμετρικά μεγέθη πολυγωνικά
ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 10: Πρότυπα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6: Ανάδραση Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Σχέση αερισμού αιμάτωσης
Σχέση αερισμού αιμάτωσης Ενότητα 1: Αερισμός και αιμάτωση Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής ΣΧΕΣΗ ΑΕΡΙΣΜΟΥ-ΑΙΜΑΤΩΣΗΣ 2 ΣΧΕΣΗ ΑΕΡΙΣΜΟΥ-ΑΙΜΑΤΩΣΗΣ H Hb είναι κορεσμένη
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 10η: Απεσταλμένοι του Ρωμαίου Ποντίφικα και Ρωμαϊκή Κουρία Κυριάκος Κυριαζόπουλος
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί
Εξελικτική Ψυχολογία. Ενότητα 3: Κληρονομικότητα και Περιβάλλον. Ασημίνα Ράλλη Φιλοσοφική Σχολή Τμήμα Φιλοσοφίας, Παιδαγωγικής και Ψυχολογίας
Εξελικτική Ψυχολογία Ενότητα 3: Κληρονομικότητα και Περιβάλλον Ασημίνα Ράλλη Φιλοσοφική Σχολή Τμήμα Φιλοσοφίας, Παιδαγωγικής και Ψυχολογίας Κληρονομικότητα και περιβάλλον Ο ρόλος της Κληρονομικότητας και
Γενετική. Ενότητα 4η: Προεκτάσεις των νόμων του Mendel. Πηνελόπη Μαυραγάνη-Τσιπίδου Τμήμα Βιολογίας ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4η: Προεκτάσεις των νόμων του Mendel Πηνελόπη Μαυραγάνη-Τσιπίδου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 3: Στρατηγικός Προγραμματισμός Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης
Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης Ενότητα 5: Δρ. Θεοκλής-Πέτρος Ζούνης Σχολή : ΟΠΕ Τμήμα : Ε.Μ.Μ.Ε. Περιεχόμενα ενότητας Τι ορίζουμε ως Μάρκετινγκ ενός Πολιτιστικού Οργανισμού; Τα 4
Τεχνολογία Πολιτισμικού Λογισμικού
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Τεχνολογία Πολιτισμικού Λογισμικού Ενότητα 8: Μετατροπή μοντέλου οντοτήτων σχέσεων σε βάση δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 6: ΕΦΑΡΜΟΓΕΣ ΑΠΛΟΣ ΤΟΚΟΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν
ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ Ενότητα 13: ΕΞΕΛΙΚΤΙΚΗ ΨΥΧΟΛΟΓΙΑ ΚΑΙ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 9: Μέτρηση Αγωγιμότητας Διαλυμάτων Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό