NATIONAL TECHNICAL UNIVERSITY OF ATHENS NONUNIFORM TORSION, UNIFORM SHEAR AND TIMOSHENKO THEORY OF ELASTIC HOMOGENEOUS ISOTROPIC PRISMATIC BARS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "NATIONAL TECHNICAL UNIVERSITY OF ATHENS NONUNIFORM TORSION, UNIFORM SHEAR AND TIMOSHENKO THEORY OF ELASTIC HOMOGENEOUS ISOTROPIC PRISMATIC BARS"

Transcript

1 NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF CIVIL ENGINEERING INTER-DEARTMENTAL OSTGRADUATE COURSES ROGRAMMES «ΔΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ» ANALYSIS AND DESIGN OF EARTHQUAKE RESISTANT STRUCTURES NONUNIFORM TORSION, UNIFORM SHEAR AND TIMOSHENKO THEORY OF ELASTIC HOMOGENEOUS ISOTROIC RISMATIC BARS Lecturer : Ε. J. Sapountzakis rofessor NTUA COURSE : ALIED STRUCTURAL ANALYSIS OF FRAMED AND SHELL STRUCTURES (A1) (1)

2 Eccentric Transverse Shear Loading Q Shear Loading Q Direct Torsional Loading Μ t =Q e) (Direct: Equilibrium Torsion, Indirect: Compatibility Torsion) Nonuniform shear stress flow due to Q Nonuniform shear stress flow due to M t Warping due to transverse shear Warping due to torsion ()

3 Due to Torsion WARING OF A HOLLOW SQUARE CROSS SECTION Due to Shear (3)

4 CROSS SECTIONS EXHIBITING SMALL AND SIGNIFICANT WARING SMALL WARING (Closed shaped cross sections) INTENSE WARING INTENSE WARING (Open shaped cross sections) (4)

5 COMARISON OF TORSIONAL DEFORMATIONS OF THIN WALLED TUBES HAVING CLOSED AND OEN SHAED CROSS SECTIONS θ 0 θ 0 θ 1 r m r I m = 100mm t = 1mm Close t = 30000I Open t θ 1 w r m t ο t t Distribution of primary shear stresses Distribution of primary shear stresses (5)

6 CLASSIFICATION OF TORSION AS A STRESS STATE Direct Torsion (Equilibrium Torsion) Indirect Torsion (Compatibility Torsion) Bridge deck of box shaped cross section curved in plan (ermanent) torsional loading due to self-weight Cracking due to creep and shrinkage effects Significant reduction of torsional rigidity (6)

7 Classification of shear & torsion according to longitudinal variation ation of warping (UNIFORM - NONUNIFORM SHEAR AND TORSION) Transverse Load, Twisting Moment: Constant Warping (Q, M t ): Free (Not Restrained) Uniform Shear Torsion Shear Stresses Exclusively (Saint Venant, 1855) Transverse Load, Twisting Moment: Variable Warping (Q, Mt): Restrained Nonuniform Shear Torsion (Wagner, 199) Shear Stresses (rimary (St. Venant)) Stresses due to Warping (Normal stresses & Secondary shear stresses) (7)

8 SHEAR STRESS DISTRIBUTION (NONUNIFORM TORSION) rimary Shear Stresses (torsional loading) Secondary (Warping) Shear stresses (torsional loading) E, G l h b M t Closed Bredt stress flow, 1896 Complex distribution in thick walled cross sections (thin-walled: Vlasov, 1963) (8)

9 RANDTL S S MEMBRANE ANALOGY Saint Venant (uniform) torsion has been depicted by randtl (1903) through the membrane analogy: Uniform torsion and membrane problems are described from analogous boundary value problems. φ 3 =0 Membrane Membrane φ 1 max Rectangular Cross section φ 3 φ 3 φ (φ 1 >φ ) φ 1 max T-shaped cross section The deformed membrane offers the following information: Contours correspond to the directions of the trajectories of shear stresses The slopes of the deformed membrane correspond to the values of shear stresses The volume of the deformed membrane corresponds to St. Venant s torsion constant (9)

10 SHEAR FORCE TWISTING MOMENT Warping due to shear Warping due to torsion Warping due to shear << Warping due to torsion (Significant in Open Shaped Cross Sections) Stress State (Stress field): Uniform Shear Strain/Deformation State: Shear Deformation Coefficients Indirect account of warping deformation (Timoshenko, 19) Stress State & Strain State: Nonuniform Torsion Seven degrees of freedom (14x14 [K]) Additional dof.: Twisting curvature Additional stress resultant: Warping moment (10)

11 roblem description of Nonuniform Torsion & Uniform Shear Technical Beam Theory Limited set of cross sections (of simple geometry) Warping restraints are ignored Compatibility equations are not employed Stress computations are performed studying equilibrium of a finite segment of a bar and not equilibrium of an infinitesimal material point (3d elasticity) Thin Walled Beam theory (Vlasov theory, 1964) Generalized Beam Theory (Schardt, 1966) Valid for thin walled cross sections (Midline employed) Warping restraints are taken into account Reliability: Depends on thickness of shell elements comprising the beam Valid for arbitrarily shaped cross sections (Thick or Thin walled) Warping restraints are taken into account BVs formulated employing theory of 3D D elasticity Numerical solution of BVs (11)

12 Analysis of Bars and Bar Assemblages Direct Stiffness Method lane Steel Frame lane Steel Grid Spatial Steel Frame Everyday Engineering ractice: Application of 1x1 Stiffness Matrix (6 dofs per node) Approximate Computation of Torsion Constant Approximate Computation of Shear Deformation Coefficients Approximate Computation of stresses due to shear and torsion Inaccuracies Non conservative Design (sometimes) (1)

13 ASSUMTIONS OF ELASTIC THEORY OF TORSION The bar is straight. The bar is prismatic. The bar s s longitudinal axis is subjected to twisting exclusively. Distortional deformations of the cross section are not allowed (cross( sectional shape is not altered during deformation (γ 3 =0, distortion neglected). Twisting rotation is considered small: Circular arc displacements s are approximated with the corresponding displacements along the chords. The material of the bar is homogeneous, isotropic, continuous (no o cracking) and linearly elastic: Constitutive relations of linear elasticity are valid. The distribution of stresses at the bar ends is such so that all the aforementioned assumptions are valid. Especially for (unrestrained) uniform (Saint Venant) torsion the following assumption is also valid: Longitudinal displacements (warping) are not restrained and do not n depend on the longitudinal coordinate (every cross section exhibits the same warping w deformations). (13)

14 a=0 x 3 L x b=l Displacement Field ELASTIC THEORY OF TORSION Ε, G t Γ t ( ) m= m x x 1 = 1 K + 1 Γ j = 1 j t s x 3 M x3 Ο x 3 M n M x u x,x,x x x,x ω 1 Ρ θ(x ) ( ) =+ θ ( ) ϕ ( ) M 3 u ω x x u 3 Ρ (Ω) M: C.of T.=S.C. (ν=0) t 3 = 0 Γ Κ+1 Γ Κ t = 0 Γ 1 Γ u ( x,x,x ) = ( )sin ω = (M ) θ (x )sinω = x θ (x ) u ( x,x,x ) = ( )cos ω = (M ) θ (x )cosω = x θ (x ) (14)

15 ELASTIC THEORY OF TORSION Components of the Infinitesimal Strain Tensor u ε θ ϕ ( x ) ( x,x ) 1 11 = = 1 1 M 3 x 1 ε 11 = 0 St.V. ε u = = x 0 ε 33 u3 = = x 3 0 γ 3 u u3 = + = x x 3 0 γ u1 u ϕ 1 = + = θ1 ( x 1 ) Μ x 3 x x 1 x γ u u1 3 ϕ 13 = + = θ1 ( x 1 ) Μ + x x 3 x 1 x 3 (15)

16 ELASTIC THEORY OF TORSION Components of the Cauchy Stress Tensor (ν=0) E τ = ν ε + ν ε + ϕ ( )( ) ( 1 ) ( ε 3 ) E 1 ( x ) M ( x,x3 1 ν 1 ν = θ + ) τ 11 = 0 St.V. E τ = 1 ν ε ν ε11 ε33 0 ν ν + + = ( )( ) ( ) ( ) 1+ 1 E τ33 = 1 v ε33 + v ε11 + ε = 0 ( )( ) ( ) ( ) 1+ v 1 v τ = G γ = ϕ τ M 1 = G γ1 = G θ ( x ) x x ϕ τ M 31 = G γ31 = G θ ( x ) + x 1 1 x 3 (16)

17 ELASTIC THEORY OF TORSION Differential Equilibrium Equations of 3D Elasticity (Body forces neglected) ϕm G θ1 ( x 1) x 3 = 0 x ϕ G θ M 1 ( x 1) + x = 0 x 3 Not Satisfied! Inconsistency of Theory of Nonuniform Torsion: Overall equilibrium of the bar is satisfied (energy principle). However, only the longitudinal equilibrium equation (along x 1 ) is satisfied locally (St.V. Identical satisfaction of all diff. equil. eqns) ϕm ϕm G θ1 ( x 1) x 3 + G θ1 ( x 1) + x + Ε θ1 ( x1) ϕm = 0 x x x3 x3 x 1 ε = θ ϕ ϕm ϕm x x 3 ( ) ϕ : ϕ x,x,x M M 1 3 ( x ) ( x,x ) M 3 ( x ) ( x ) Ε θ1 1 + = ϕ G θ Inconsistency 1 1 M DECOMOSITION OF SHEAR STRESSES (17)

18 hysical Meaning of Decomposing Shear Stresses τ σ x (A) τ S 1 = τ S = τ S Cauchy rinciple M t τ S 1 τ S σ x +dσ x M t hase Ι rimary Twisting : Moment Angle of Twist er Unit Length (Torsional Curvature): Constant St.V. M w : hase ΙΙ Warping Moment S M t : Secondary Twisting Moment hase ΙΙΙ (18)

19 rimary (St. Venant) Shear Stresses τ τ ϕm 1 = G θ1 ( x 1) x 3 x ϕm 13 = G θ1 ( x 1) + x x 3 Secondary (Warping) Shear Stresses τ τ S 1 S 13 Normal Stresses ϕ = G x = G ϕ x S M S M 3 ELASTIC THEORY OF TORSION ( ) ( ) w 11 = E 1 x1 M x,x3 τ θ ϕ S S w τ11 τ 13 τ1 τ13 τ = 0 x x x x x τ x 1 S 1 τ + x 13 3 S 13 τ τ τ + + x x ϕ M = 0 = 0 w 11 3 x 1 E θ ( x ) 0 S 1 1 ϕm ϕm = G = Reliability of the shear stress decomposition ( ) ϕ ( ) S 1 1 = θ 1 1 M 3 u u x x,x (19)

20 ( ) ( ) n = cos x,n = cosα n = sin x,n = sinα 3 3 Γ Ω τ τ dx 3 τ 1t t ds dx ELASTIC THEORY OF TORSION Boundary Conditions τ 13 α τ 1n ϕm 1n G θ1 ( x1 ) x3 n 3 S 1n S M S M = 0 n τ 1 M Shear stresses along the normal direction n on the boundary VANISH: 1n S 1n S 1 S 13 3 τ = τ n + τ n = 0 τ = τ n + τ n = 0 ϕ = + x n = 0 = x 3 n x n n n ϕ = G = 0 n ϕ n ϕ M S 1t 1 ( 1 ) 3 3 1t ϕ τ = G θ x + x n + x n τ = G t t S M 3 (0)

21 ELASTIC THEORY OF TORSION Boundary Value roblems rimary Warping Function Laplace differential eqn with Neumann type boundary conditions ϕm ϕ ϕ M M x x 3 M = x 3 n x n 3, = + = 0, Ω ϕ n Secondary Warping Function oisson differential eqn with Neumann type boundary conditions Γ ( x ) S S S ϕm ϕm Ε θ1 1 M M x G x 3 S ϕm ϕ = + = ϕ, Ω n = 0, Γ (DEs) (1)

22 Twisting Moment: rimary Twisting Moment: ELASTIC THEORY OF TORSION Stress Resultants S 1 = M M M M x x d M G I x ϕ M ϕ M 1 = τ1 3 + τ13 + Ω 1 = t θ1 1 x x Ω 3 I M M t x x 3 x ϕ x ϕ = x d Ω Torsion constant 3 x Ω (Saint-Venant) Secondary Twisting Moment: M S S ϕm S ϕ M S 1 = τ1 τ13 d Ω M 1 = E C M θ1 x 1 x x Ω 3 ( ) ( ) C M = Ω ( ϕ ) M dω Warping Constant (Wagner) ()

23 Warping Moment: ELASTIC THEORY OF TORSION Stress Resultants w W = ϕmτ11 Ω W = Mθ 1 Ω Schardt, 1966: Higher order Stress M d M EC Warping Moment as External Loading Normal Stresses with Nonuniform Distribution Bending Moments applied in planes parallel to the longitudinal bar axis located at distance from the center of twist Concentrated Axial Forces: K Mw = ϕ j M j= 1 ( ) ( ) e.g. Z-shaped cross section with equal length flanges ϕm 0 at centroid j Resultant Difficult visualization/depiction Self-equilibrated stress distribution h M f M f σ xx M w = M f h (3)

24 Warping Moment due to Axial loading z (Roik, 1978) z y z y y /4 /4 Axial loading (Ν) z /4 /4 Bending Loading (Μ z ) z /4 /4 /4 y /4 y /4 /4 /4 /4 Bending loading (Μ y ) /4 /4 /4 /4 Warping Moment Loading (Μ w ) (4)

25 M M 3 ELASTIC THEORY OF TORSION Center of Twist (Μ) x,x : oint with respect to which the cross sections rotate (no transverse 1 13 t displacements) (or point where rotation causes no axial and bending stress resultants τ, τ,i : Independent of the center of twist (St. Venant could not calculate the S S w M position of the center of twist!) u, τ, τ, τ,c : Dependent of the center of twist ( ) M M ϕm x,x 3 = φo(x,x 3 ) xx3 + x3x + c ϕo ϕo = 0, Ω = x3 n x n 3, Γ n Method of equilibrium: Under any coordinate system due to warping normal stresses Energy Method: Minimization of Strain Energy due to warping normal stresses N = M = M3 = 0 CM CM CM = = = 0 x x c 3 (5)

26 where: ELASTIC THEORY OF TORSION Center of Twist (Μ) Μ Μ = S Μ Μ = Μ Μ = 3 S x S x Ac R I x I x S c R I x I x S c R A= dω S = x dω S = x dω 3 3 Ω Ω Ω = 3 33 = 3 = 3 Ω Ω Ω S = O = 3 O 3 = O Ω Ω Ω I x dω I x dω I x x dω R ϕ dω R x ϕ dω R x ϕ dω (6)

27 ELASTIC THEORY OF TORSION Global Equilibrium Equation & Boundary conditions Method of Equilibrium or Energy Method x 1 mt dx 1 M M dx 1 x 1 dx 1 x 3 x M 1 TOTAL OTENTIAL ENERGY 1 1 Π θ θ θ L oλ = 0 GI t 1 + EC Μ 1 mt 1 dx 1 F d F d F 0 θ θ + θ = 1 dx 1 1 dx 1 1 F (Euler Lagrange eqns) Torsional Damping Coefficient mt = G It θ1 + E CM θ1 aθ + a M = a βθ + β M = β W 3 GIt 15 ε = L : ECM < 15 Inside the bar interval Uniform Torsion Nonuniform Torsion At the bar ends (Ramm & Hofmann 1995) (7)

28 ELASTIC THEORY OF TORSION Alternative Solution of the Uniform Torsion roblem Conjugate function ψ of function ϕ M ψ ψ ψ = + = x x3 1 ( ψ = x ) + x3 + C ψ randtl Stress function F(x,y) 0 ψ ψ τ1 = Gθ x3 τ13 = Gθ + x x3 x ψ ψ It = x + x3 x x3 d Ω Ω x x3 F F = + = x x3 F = C F F 1 F F τ = Gθ τ = Gθ 1 13 x3 x F F It = x + x3 dω Ω x x3 Constants C ψ,c F are unknown and must be determined at each boundary of a multiply connected region (occupied by the cross section) Complex roblem. (8)

29 Example r=1cm Steel rofile UE 100 t f =0.75cm Bar ends simply supported Loading: mt = 1kNm m Length: l=1.0m ε = 366. < 15 h=10cm M C e MC t w =0.45cm Ε=.1Ε8, ν=0.3 b=5.5cm FΕΜ (Kraus, 005) ΒΕΜ maxux ( cm ) = ( x = 0010.,. m) ( σ w ) S 4 maxux ( cm ) = ( x = 0010.,. m) φm φ m S x maxu = maxu x ΒΕΜ Warping along the thickness direction IS NOT CONSTANT Thin walled beam theory not valid (9)

30 Example My (knm): Καμπτική Ροπή (min/max: 500) Mw (knm): Διρροπή (min: , max: ) z 0.45 Β m =100kN l/=0m ε = 3.3> m Α y 3.45 (E=3.0Ε7, G=1.5E7) Bar of Box Shaped Cross Section Clamped at Both Ends Bar Length (m) φ M rimary Warping σb: Κάμψη (θλ: , εφ: ) σw: Διρροπή (θλ: , εφ: ) σtot: Κάμψη & Διρροπή (θλ: , εφ: ) NORMAL STRESSES σb: Κάμψη (θλ: , εφ: ) σw: Διρροπή (θλ: , εφ:+.61) σtot: Κάμψη & Διρροπή (θλ: , εφ: ) -40 oint Α Discrepancy 30% oint Β Bar Length (m) Bar Length (m) (30)

31 Example 3.65m =100kN l/=0m Mtp: Πρωτογενής Στρεπτική Ροπή (min/max: 180.7) Mts: Δευτερογενής Στρεπτική Ροπή (min/max: 18.50) Mt: Συνολική Στρεπτική Ροπή (min/max: 18.50) ε = 3.3>15-50 Bar of Box Shaped Cross Section Clamped at Both Ends Bar length (m) SHEAR STRESSES Discrepancy 30% (31)

32 Computation of Shear Stresses Computation of Shear Center osition α Β Γ Δ Q z z Β 1 Β 3 (C: Centroid) C Δ 1 Δ 3 b(y) α UNIFORM SHEAR BEAM THEORY Computation of Shear Deformation Coefficients (required for Timoshenko beam theory) Displacement Field GBT BV Shear Stresses TWBT ΤBT y Q z : τ xz τ = xy QS z I = yy 0 Stress Field cut y b oisson ratio ν taken into account Cross sections possessing at least one axis of symmetry Simply connected cross section oisson ratio ν neglected τ xz : constant along the width b Β 1 Β 3 & Δ 1 Δ 3 τ xz : vanishing Β Δ point Γ τ xz : Discontinuity (3)

33 ASSUMTIONS OF ELASTIC THEORY OF UNIFORM SHEAR The bar is straight. The bar is prismatic. Distortional deformations of the cross section are not allowed (γ3=0,( distortion neglected). The material of the bar is homogeneous, isotropic, continuous (no o cracking) and linearly elastic: Constitutive relations of linear elasticity are e valid. The distribution of stresses at the bar ends is such so that all the aforementioned assumptions are valid. Deflections and bending rotations are considered to be small (geometrically linear theory). Longitudinal displacements (warping) are not restrained and do not depend on the longitudinal coordinate (every cross section exhibits the same warping deformations). (33)

34 THEORY OF UNIFORM SHEAR DISLACEMENT FIELD x 3 x 1 x l-x 1 Q C Displacement field ( ) = θ ( ) θ ( ) + ϕ ( x,x ) u x,x,x x x x x ( ) = ( ) u x,x,x u x 1 3 S M ( ) = ( ) u x,x,x u x l Q M 3 C S θ Q 3 Q 3 S x 1 c 3 By ignoring Shear Strains: u ( x ) θ ( x ) u 3 1 = 3 1 = x1 x1 (34)

35 THEORY OF UNIFORM SHEAR DISLACEMENT FIELD Components of the Infinitesimal Strain Tensor u θ θ u u ε = = x x ε = = 0 ε = = x1 x1 x1 x x3 ε 1 u u 1 u ϕ 1 ϕ 1 c c 1 = + = θ3 + + = x x1 x1 x x ε 3 1 u u3 = + = x3 x 0 ε 1 u u 1 ϕ u 1 ϕ 1 3 c 3 c 13 = + = θ + + = x3 x1 x3 x1 x3 (35)

36 THEORY OF UNIFORM SHEAR DISLACEMENT FIELD 1 3 Components of the Cauchy Stress Tensor (ν=0) 3 11 E 11 E θ x θ 3 x τ = ε = τ = 0 τ33 = 0 τ3 = 0 x1 x1 ϕc ϕc τ1 = G ε1 = G τ13 = G ε13 = G x x 3 Differential Equilibrium Equations of 3D Elasticity (Body forces neglected) τ11 τ1 τ31 ϕc ϕc + + = 0 E( θ x3 θ3 x) + G + G = 0 x x x x x τ τ τ τ = 0 1 = 0 x1 x x3 x 1 τ13 τ3 τ33 τ13 : + + = 0 = 0 x1 x x3 x1 Identical Satisfaction 3 (36)

37 THEORY OF UNIFORM SHEAR DISLACEMENT FIELD Determination of: E ( θ x θ x ) 3 3 M = τ11x3 dω = E θ x3 dω θ3 xx3dω = E( θ I θ3 I 3) Ω Ω Ω M3 = τ11x dω = E θ xx3dω θ3 x dω = E( θ3 I33 θ I 3) Ω Ω Ω Ι, Ι 33, Ι 3 : Moments of inertia M Q3 = = E( θ I θ3 I3) x Equilibrium of 1 bending moments M 3 Q = = E( θ I3 θ3 I33) x1 ( θ θ ) ( ) + ( ) QI QI x QI QI x = II33 I3 E x x (37)

38 THEORY OF UNIFORM SHEAR DISLACEMENT FIELD oisson artial Differential Equation ϕc ϕc 3 3 x x3 ( ) ( ) ϕc x, x = + = f x, x, Ω 1 g( x, x ) = ( Q I Q I ) x ( Q I Q I ) x D Γ Ω dx 3 τ 1t t ds dx τ 13 α f 1 G ( x, x ) = g ( x, x ) 3 3 Boundary Condition τ 1n n τ 1 D = II33 I3 τ1n = τ1n + τ13n3 = 0 ϕc ϕc ϕc G = G n + G n3 = 0 n x x3 ϕc = 0, Γ (Neumann) n (38)

39 Beam theory: 3 THEORY OF UNIFORM SHEAR STRESS FIELD ΜΙ +Μ Ι ΜΙ +Μ Ι τ & τ11 = x + x = τ33 = τ3 = 0 M M 3 Q 3 =,Q = (statically determinate beam x1 x1 M,M are computed through the global equilibrium equation s) Analysis: Q ΙΙ33 -I3 ΙΙ33 -I3 Differential Equilibrium Equations of 3D Elasticity (Body forces neglected) τ11 τ1 τ 31 τ 1 τ 31 Q3 + + = 0 + = xi x x x x x I I I 1 3 (Q correspondingly and subsequent superposition of results) τ1 τ τ 3 τ1 + + = 0 = 0 x1 x x3 x 1 : τ13 τ3 τ33 τ = 0 = 0 x1 x x3 x ( xi ) Shear stresses depend on x & x 3, exclusively, that is they are the same at each cross section of the bar (39)

40 THEORY OF UNIFORM SHEAR STRESS FIELD τ ε 11 = E ε Components of the infinitesimal strain tensor 11 τ G 1 1 = = ε1 3 ν ε = ε = τ = νε E ( x,x ) ε τ = = ε13 3 G Compatibility Equations ( x,x ) Strain field Satisfies 4 compatibility equations identically τ13 τ1 νqi 3 33 = x x x 1+ I I I ( )( ν ) τ13 τ1 νqi 3 3 = x x x 1+ I I I ( )( ν ) (ANALYSIS: Q 3 ) ( v 0) ε 3 = 0 (40)

41 THEORY OF UNIFORM SHEAR STRESS FIELD Stress Function (Analysis: Q 3 ) Shear stresses: They satisfy Compatibility Equations Identically ( ) 3 τ Φ x,x : Q d= d i + d i = Φ Q Φ = d τ13 = d3 B x B x3 Stress function with continuous partial derivatives up to nd order 3 3 ν I x x I I I x x x x3 x x i + ν i3 ( )( ν ) 33 3 B= 1+ I I I (41)

42 THEORY OF UNIFORM SHEAR STRESS FIELD oisson artial Differential Equation Φ Φ Φ, = + =, Ω Γ Ω dx 3 ( x x ) ( x I x I ) τ 1t x x3 t ds dx τ 13 Boundary Condition α τ 1n n τ 1 (Analysis: Q 3 ) τ1n = τ1n + τ13n3 = 0 Φ = dn + dn 3 3 = n d, Γ n (Neumann) (4)

43 THEORY OF UNIFORM SHEAR STRESS FIELD (Analysis: Q ) oisson artial Differential Equation ( I x I x ) Θ=, Ω 3 3 Boundary Condition Θ = en + en 3 3 = n e, Γ n (Neumann) e= e i + e i = 3 3 ν I I x x I I x x x x3 x x3 3 3 i + ν i3 (43)

44 THEORY OF UNIFORM SHEAR Shear Center (S) oint where Internal Shear Stress Resultant is subjected oisson ratio ν = 0 S.C. (S) coincides with C. of T. (Μ) (Weber, 194), (Trefftz, 1935) Determination: With respect to an arbitrary point Μ t ext = Μ t int Μ t ext : Twisting Moment at S.C. arising from externally applied forces Μ t int : Twisting Moment arising from shear stresses due to transverse shear K1 + j 1 Γ = = Γ j s Γ x 3 t n Γ 1 s Γ K+1 Γ K S C (G,v) (Ω) x Ext Q x Q x = S S 3 3 Int τ x τ x dω Ω ( ) (44)

45 Q THEORY OF UNIFORM SHEAR SHEAR CENTER DISLACEMENT FIELD Q = 0& Q3 = 1: = 1&Q = 0 : ϕ ϕ S cx cx = Ω 3 x3 x x G x x d ϕ ϕ S cx cx 3 3 = Ω 3 x3 x 3 3 x G x x d SHEAR CENTER STRESS FIELD S 1 Φ Φ Q = 0&Q3 = 1: x = x x3 xd3+ x3d dω B Ω x3 x 1 Θ Θ Q x = x x x e + xe3 dω S = 1&Q3 = 0: B Ω x x3 Ω Ω (45)

46 s3 3 a3 THEORY OF UNIFORM SHEAR τ γ = ( x,x) ( x,x) : Actual shear strains ( ) G γ Q3= Gκ 3Aγ 13 = GA s 3γ13 1 A = A= κ A: Effective Shear Area Ω ( x,x) γ 13 x,x 1 3 = : Average shear strains A γ13 : Shear strains of Timoshenko beam theory They need correction since they have unsatisfactory (constant) distribution Shear Deformation Coefficient α 3 (>1) Q 3 γ13 = a3γ13 Shear Correction Factor κ 3 (<1) 1 γ13 = γ13 = κ3γ13 a 3 (46)

47 THEORIES OF SHEAR DEFORMATION COEFFICIENTS 1) Timoshenko Theory (191, 19): ) Cowper Theory (1966): κ 3 = Average value of shear stresses Actual shear stress at centroid (if centroid does not lie in the cross section?) Global equilibrium equations formulated by integrating the 3d elasticity differential equilibrium equations 3) Energy Approach (Bach & Baumann, 194): The formulas of the approximate shear strain energy per unit length and the exact one are equated α 3 must depend on the ratio of the sides (b/h( b/h) that is then κ = 1 0 so that 1 γ13 = γ13 = κ3γ13 0 a h bh 3 a3 If α3 is independent of b/h then GA s EI 3 Unacceptably large values!!! 3 Unrealistic results FEM: Shear Locking (47)

48 Shear Deformation Coefficients Exact formula of shear strain energy per unit length = Approximate formula of shear strain energy per unit length U exact U appr τ1 + τ13 αq α3q3 α3qq3 dω = + + G ΑG ΑG ΑG Ω rincipal Shear System 3 tan S a ϕ = a a 3 rincipal Bending System 3 tan B I ϕ = I I 33 Bending Deflections: COULED ϕ = ϕ Axis of symmetry S B (48)

49 THEORY OF UNIFORM SHEAR SHEAR DEFORMATION COEFFICIENTS DISLACEMENT FIELD Q 0, Q = 0 : { } 3 AG ϕc ϕc a = + Q Ω x x3 Q 0, Q 0 : { = } 3 AG ϕc3 ϕc3 a3 = + Q3 Ω x x3 Q 0, Q 0 : { } 3 a AG ϕc ϕc + Q Ω x x3 dω dω AG ϕc3 ϕc3 AG ϕc3 ϕ c3 3 = dω + x Q Ω x3 Q Ω x x3 dω + dω (49)

50 THEORY OF UNIFORM SHEAR SHEAR DEFORMATION COEFFICIENTS STRESS FIELD { = } Q 0, Q 0 : α 3 Α = Θ e Θ e B { = } Q 0, Q 0 : α 3 { } ( ) ( ) Α = Φ d Φ d B 3 Ω Ω Q 0, Q 0 : α 3 ( ) ( ) Α = ( Φ d) ( Θ e) dω B 3 Ω dω dω (50)

51 Example Rectangular section: Q z =1kN bxh=60x30 (cm) 1.14ka 8.33ka h y b y ka Shear stresses τ Ω (ka) Λόγος oisson v=0.0 Λόγος oisson v= oisson ratio: ν= oisson ratio: ν=0.3 ΤBT: max Qz τ xz = 15. = 833. ka A Centroidal Axis yy Discrepancy 31% (51)

52 Example h b=30cm Shear Locking (Artificial, Spurious (Shear) Rigidity induced) GA sz EI yy b=30cm h Ενεργειακή Μέθοδος (Προτεινόμενη) Timoshenko Cowper Τεχνική θεωρία bh (5)

53 b=0.10m b b A b Example z Δ C Γ B m y Qz = 1kN v = Qy = 1kN v = b b T-shaped cross section b b τ Ω (ka) 0.4 Segment ΓΔ Qz = 1kN Qz = 1kN oisson ratio ν Does not affect shear center Λόγος oisson v=0.0 Λόγος oisson v=0.3 Τεχνική θεωρία δοκού Segment ΑΒ Λόγος oisson v=0.0 Λόγος oisson v=0.3 Τεχνική θεωρία δοκού τ Ω (ka) (53)

54 Example Thin walled L-shaped cross section h=15.5cm 1.495cm t=1cm z C rincipal Bending rincipal Shear φ B = (rad) y 8.6cm kn v=0.0:max τ Γ = cm kn v=0.3:max τ Γ = cm kn v=0.0:maxτ Γ = cm kn v=0.3:maxτ Γ = cm Qy = 1kN 3.995cm Qz = 1kN S φ S t=1cm b=10.5cm 4.1cm Small influence of oisson ratio ν in stresses and Shear Center at thin walled cross section bars (54)

55 ASSUMTIONS OF TIMOSHENKO BEAM THEORY The bar is straight. The bar is prismatic. Distortional deformations of the cross section are not allowed (γyz( yz=0, distortion neglected). The material of the bar is homogeneous, isotropic, continuous (no o cracking) and linearly elastic: Constitutive relations of linear elasticity are e valid. External transverse forces pass through the cross section s s shear center. Torsional and axial forces are not considered (torsionless( bending loading conditions). Deflections and bending rotations are considered to be small (geometrically linear theory). Cross sections remain plane after deformation. The distribution of stresses at the bar ends is such so that all the aforementioned assumptions are valid. Y y C S z Z L m Y m Z C p Y p Z S m Y p Y dx p Z m Z X C: centroid S: shear center x (55)

56 Y y C S z Z L m Y m Z m Z C p Z S p Y TIMOSHENKO BEAM THEORY m Y p Y dx p Z X C: centroid S: shear center x Γ = K j = 0 Γ j s yv, YV, t n Γ 1 α q r = q ω C Z, W z C y C S zw, Γ Κ Γ 0 Use of the principal shear system CXYZ passing through the centroid C Displacement Field: (Arising from the plane sections hypothesis) ( ) = θ ( )( ) θ ( )( y y ) = θ ( ) Z θ ( x) u x,y,z x z z x x v x,z ( ) ( ) w x,y = = v x ( ) ( ) Y C Z C Y Z w x ( ) ( ) θ Y x w x ( ) ( ) θ Z x v x Y (56)

57 ε ε xx yy TIMOSHENKO BEAM THEORY Components of the Infinitesimal Strain Tensor (Geometrically linear theory) u dθy dθ = = Z Z Y x dx dx v w = = 0 ε zz = = 0 y z γ yz v w = + = 0 z y γ γ xy xz u v dv = + = θ y x dx Z u w dw = + = + θy z x dx (57)

58 TIMOSHENKO BEAM THEORY Components of the Cauchy Stress Tensor (ν=0) E d Y d σ Z xx ν εxx ν εyy ε θ θ = + + zz = E Z Y 1 1 dx dx ( )( ) ( 1 ) ( ) + ν ν E σyy = 1 ν εyy ν εxx εzz 0 ν ν + + = ( )( ) ( ) ( ) 1+ 1 E σzz = 1 v εzz + v εxx + ε yy = 0 ( )( ) ( ) ( ) 1+ v 1 v τ yz = G γ = 0 yz xy xy Z ( θ v ) τ = G γ = G + τ xz xz Y ( θ + w ) = G γ = G (58)

59 TIMOSHENKO BEAM THEORY Differential Equilibrium Equations of 3D Elasticity (Body forces neglected) Not Satisfied! Inconsistency of Timoshenko Beam Theory: Overall equilibrium of the bar is satisfied (energy principle). The violation of the longitudinal equilibrium equation (along x) and of the associated boundary condition is due to the unsatisfactory distribution of the shear stresses arising from the plane sections hypothesis. Thus, in order to correct at the global level this unsatisfactory distribution of shear stresses, we introduce shear correction factors in the cross sectional shear rigidities at the global equilibrium equations = G = G ( θ + v ) τ = G γ = G ( θ + w ) τ γ xy xy Z xz xz Y constant distribution: unsatisfactory (59)

60 Shear stress resultants: TIMOSHENKO BEAM THEORY Stress Resultants dv Q = τ dω = GA θ y xy y Z Ω dx dw Qz τxzdω GA z θ A,A = = Y + y z: Shear areas with respect Ω dx to the y,z axes 1 1 Ay = κ y A = A Az = κ z A = A ay az κy, κz: shear correction factors ( < 1) a,a : shear deformation coefficients( >1) y z From the assumed displacement field we would have obtained shear rigidities GA which are larger than the actual ones Since we are working with the principal shear system of axes a = 0 Thus the relations of shear stress resultants with respect to the kinematical components are decoupled yz (60)

61 In general we would have a 0: dv Q = τ dω = GA θ y xy y Z Ω dx Q = τ dω = GA θ + z xz z Y Ω A y A 1 TIMOSHENKO BEAM THEORY Stress Resultants yz dw dx = κ y = A Az κ z ay U exact Ω 1 = A = A 1 Ayz = κ yz A = A az a yz From uniform shear beam Uappr theory From this theory α y y αzq α z yz y z τxy + τxz Q Q Q dω = + + G AG AG AG (61)

62 Bending moments: MY = σ xx Ω TIMOSHENKO BEAM THEORY Stress Resultants ZdΩ Bending moments are defined with respect to the principal shear system of axes passing through the centroid of the cross section dθy dθz dθy dθz MY = σxxzdω = EZ dω EYZ dω = EIY EIYZ dx dx dx dx Ω Ω Ω Z xx Ω Ω dx Ω M Z = σ Ω xx YdΩ dθ dθy dθz dθy MZ = σ YdΩ = EY dω EYZ dω = EIZ EIYZ dx dx dx Y Z YZ Ω Ω Ω I = Z d Ω, I = Y d Ω, I = YZdΩ: Moments of inertia with respect to the centroid of the cross section (6)

63 TIMOSHENKO BEAM THEORY Global Equilibrium Equations & Boundary conditions Method of Equilibrium or Energy Method y,v x z,w M Y Q z S w C dx p z m Y w dw M Y +dm Y Q z +dq z x,u dw TOTAL OTENTIAL ENERGY F d F d F 0 θ θ + θ = 1 dx 1 1 dx 1 1 (Euler Lagrange eqns) x dx z,w v p y v dv M Z +dm Z x,u M Z Q y S C m Z Q y +dq y dv y,v (63)

64 y,v x z,w TIMOSHENKO BEAM THEORY Global Equilibrium Equations & Boundary conditions Method of Equilibrium M Y Q z S w C dx p z m Y w dw M Y +dm Y Q z +dq z x,u dw Equilibrium of bending moments dmy Q z m Y 0 dx + = dmz Q y m Z 0 dx + + = Equilibrium of transverse shear forces x z,w M Z Q y v S C dx p y m Z v dv M Z +dm Z Q y +dq y x,u dv dqy p Y 0 dx + = dqz p Z 0 dx + = y,v (64)

65 TIMOSHENKO BEAM THEORY Global Equilibrium Equations & Boundary conditions Equilibrium of bending moments z Y 0 Y θy d θz GA dw YZ θy dx dx az dx Y y Z 0 Z θz d θy GA dv YZ θz dx dx ay dx Z dmy d Q + m = EI EI + + m = 0 1 dx dmz d + Q + m = EI EI + + m = 0 dx Equilibrium of transverse shear forces GA d v dθ Z + = p + y = 0 3 dx a Y dx dx dqy p y 0 dqz p z 0 dx ( ) GA dθ Y d w + = + p + z = 0 4 a Z dx dx β v+ β Q = β γ1w+ γqz = γ3 1 y 3 ( ) ( ) ( ) Inside the bar interval At the bar ends β1θz+ βμz= β3 γ1θy+ γμy= γ3 Coupled system of equations due to principal shear system of axes and due to shear deformation effects (65)

66 TIMOSHENKO BEAM THEORY Global Equilibrium Equations & Boundary conditions Combination of equations may be performed in order to uncouple the problem unknowns - Solution with respect to bending rotations (or deflections) Resolution of rotations: 3 3 d θy d θz dmy Y 3 YZ 3 y ( ), ( ) into ( ) EI EI + + p = 0 1' 1 3 dx dx dx 3 3 d θz d θy dmz Z YZ z ( ), ( ) into ( ) EI EI + p = 0 ' 4 dx dx dx Resolution of deflections: β1θz+ βμz= β3 γ1θy+ γμy= γ3 d θy d θz GA dw Y YZ θy Y dx dx az dx EI EI + + m = 0 1 d θz d θy GA dv Z YZ θz Z dx dx ay dx ( ) ( ) EI EI + + m = 0 γ w+ γ Q = γ 1 z 3 β v+ β Q = β 1 y 3 (66)

67 TIMOSHENKO BEAM THEORY - EXAMLE O a L 3 A b L x 1 Torsionless bending on the Ox1x3 plane Find the elastic curve and the reactions of the beam using Timoshenko beam theory x 3 ( 1' ) STE 1 : Equation of equilibrium (forces): d dx d θ d θ3 dm d θ dx 3 dx1 dx1 1 dx1 EI EI p = 0 EI = 0 d 1 dx 1 ( 1) dθ EI = 0, 0 < x1 < a dx1 (a) ( ) dθ EI = 0, a < x1 < L dx1 (b) (67)

68 TIMOSHENKO BEAM THEORY - EXAMLE O a L 3 A b L x 1 Torsionless bending to the Ox1x3 plane Find the elastic curve and the reactions of the beam using Timoshenko beam theory x 3 Integrate three times eqns (a,b): 0 < x < a a < x < L 1 1 ( 1) ( ) ( 1) d dθ ( ) d dθ Q 3 = EI = C1 Q 3 = EI = C dx1 dx1 dx1 dx1 ( 1) ( ) ( 1) dθ ( ) dθ M =EI =C x +C M =EI =C x +C dx dx ( ) x EI θ = C +C4x 1+C6 ( 1) x EI θ 1 = C +C x +C (c) (d) (e) (68)

69 TIMOSHENKO BEAM THEORY - EXAMLE STE : Resolve constants C -C by exploiting the boundary conditions (rotations, moments): 1 6 ( 1 ) ( 1 ( ) ) relations (e) 1= θ ( ) = 5 = ( ) ( ( ) ) relations (d) at 1 = : ( ) 4 5 ( 1 ) ( ( ) ) 1 = θ θ ( ) relations (e) a Ca C 1 +C3a= +C4a+C6 1. θ x1 at x 0 : 0 0 C 0 (f). M x1 x L M L =0 CL+CC = 0 3. Rotational continuity condition at x a : a = a (h) 4. Equilibrium conditions (forces, moments) at x = a : ( 1 ) ( -) ( ) ( + ) 3 3 Q a =Q a + ( ) ( ) 1 ( ) ( ) M a =M a relations (c,d) 3 C1= C+ 3 (l) Ca 1 + C3 = Ca + C4 (m) From relations (g), (i), (l), (m) 1= = 3 4 = 6 = 3 C C C C L a C C L C a / 1 (g) (i) (j) (k) (n) (69)

70 TIMOSHENKO BEAM THEORY - EXAMLE STE 3: Resolve deflections from equation of equilibrium (1) (moments): d θ d θ3 GA du3 d θ du3 EI EI 3 θ+ + m = 0 EI k 3GA θ+ = 0 dx1 dx1 a3 dx1 dx1 dx1 ( 1) ( ) ( ) ( 1) 1 du 3 1 d dθ kga 3 θ + = Q3 ( x1) = EI,0 < x1 < a (o) dx1 dx1 dx 1 ( ) ( ) ( ) ( ) du 3 d dθ kga 3 θ + = Q3 ( x1) = EI,a< x1 < L (o) dx1 dx1 dx1 Substitute the values of constants (f), (n) into relations (e) and (c) and the resulting expressions in (o), we get: ( 1) ( ) + + ( + ) du3 C C x 3 CL a x = + dx k GA EI EI (p) ( ) du3 C Cx1 CLx1 a = (p) dx k GA EI EI EI 1 3 (70)

71 Integrate once relations (p): TIMOSHENKO BEAM THEORY - EXAMLE ( + ) ( + ) ( + ) ( ) 3 1 C 3 x1 C 3 x1 CL a3 x1 3 ( 1) = kga 3 6EI EI ( ) 3 Cx 1 Cx 1 CLx 1 ax ( 1) = k3ga 6EI EI EI u x C u x C STE 4: Resolve constants C,C,C by exploiting the boundary conditions (translations): 7 8 ( 1 ) ( 1 ( ) ) relations (q) 3 at 1 : 3 ( ) 7 1. u x1 x = 0 u 0 = 0 C = 0 ( ) ( ). u x1 at x 3 1 = ( ) relations (q) CL CL al3 L: u3 ( L ) = C8 = 0 (s) kga 3EI EI 3. Translational continuity condition at x = a : u a = u a relations (q) a 3 a 3 C8 = kga 6EI (q) (q) 3 ( 1 ) ( ( ) ) ( ) a 3 3aL a + kl 3EI From relations (t), (s) C =, k u3( x1)... (u) 3 = 1 k L + λ3gal (r) (t) (71)

72 TIMOSHENKO BEAM THEORY - EXAMLE bh 3h 1 For a rectangular cross section b h and ν=1/3 we have I =, k= 1 4L ( 1) a 3 3a a Q3 = C = C + = + k + L( 1+ k) L L ( ) a 3 3a a Q3 = C = + k L( 1+ k) L L ( 1) M = C1x1+ C3= C( L x1) 3( a x1) ( ) M = C x + C = C L x 3 ( +ν ) Frοm relations (n),(u),(c),(d) we get the expressions of shear forces and bending moments: ( ) (7)

73 TIMOSHENKO BEAM THEORY - EXAMLE The reactions of the beam are: ( ) 0 1 a 3 3a a R3 = Q3 ( 0) = + k + 3 L( 1+ k) L L O ( ) L a 3 3a a 0 R3 = Q3 ( L) = + k M a L( 1+ k) L L x ( ) a 3 3a a M = M ( 0) = CL a 3 = + k a 3 1 ( + k) L L L ( ) ( ) M = M L = 0 0 R3 L 3 A b L L R 3 x 1 For small h/l ratios (h/l<10) which usually occur in practice, shear deformations influence negligibly internal actions and reactions of beams (73)

74 Thank You (74)

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Mechanics of Materials Lab

Mechanics of Materials Lab Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"

Διαβάστε περισσότερα

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Introduction to Theory of. Elasticity. Kengo Nakajima Summer Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor

Διαβάστε περισσότερα

Aerodynamics & Aeroelasticity: Beam Theory

Aerodynamics & Aeroelasticity: Beam Theory Εθνικό Μετσόβιο Πολυτεχνείο National Technical Universit of thens erodnamics & eroelasticit: Beam Theor Σπύρος Βουτσινάς / Spros Voutsinas Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5) IDE 0 S08 Test 5 Name:. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? ( points) Areas () and (5) Areas () through (5) Areas (), ()

Διαβάστε περισσότερα

θ p = deg ε n = με ε t = με γ nt = μrad

θ p = deg ε n = με ε t = με γ nt = μrad IDE 110 S08 Test 7 Name: 1. The strain components ε x = 946 με, ε y = -294 με and γ xy = -362 με are given for a point in a body subjected to plane strain. Determine the strain components ε n, ε t, and

Διαβάστε περισσότερα

The logic of the Mechanics of Materials

The logic of the Mechanics of Materials Torsion The logic of the Mechanics of Materials Torsion Chapter 5 Torsion Torsional failures (ductile, buckling, buckling): Bars subjected to Torsion Let us now consider a straight bar supported at one

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results

Διαβάστε περισσότερα

AN ADVANCED BEAM ELEMENT FOR THE ANALYSIS OF STEEL STRUCTURES

AN ADVANCED BEAM ELEMENT FOR THE ANALYSIS OF STEEL STRUCTURES AN ADVANCED BEAM ELEMENT FOR THE ANALI OF TEEL TRUCTURE Εvangelos J. apountzakis rofessor chool of Civil Engineering, National Technical University of Athens ografou Campus, GR-157 80, Athens, Greece e-mail:

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Seria : 0. T_ME_(+B)_Strength of Materia_9078 Dehi Noida Bhopa Hyderabad Jaipur Luckno Indore une Bhubanesar Kokata atna Web: E-mai: info@madeeasy.in h: 0-56 CLSS TEST 08-9 MECHNICL ENGINEERING Subject

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Dr.-Ing. 郭瑞昭 Yield criteria Question: For what combinations of loads will the cylinder begin to yield plastically? The criteria for deciding

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =

1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 = IDE S8 Test 6 Name:. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = = ΣF y = = ΣM A = = (counter-clockwise as positie). Sketch

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Chapter 2. Stress, Principal Stresses, Strain Energy

Chapter 2. Stress, Principal Stresses, Strain Energy Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ Νικόλαος Αντωνίου Πολιτικός Μηχανικός Τµήµα Πολιτικών Μηχανικών, Α.Π.Θ.,

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1 University of Waterloo Department of Mechanical Engineering ME 3 - Mechanical Design 1 Partial notes Part 1 G. Glinka Fall 005 1 Forces and stresses Stresses and Stress Tensor Two basic types of forces

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών ΠΜΣ οµοστατικός Σχεδιασµός και Ανάλυση Κατασκευών Εργαστήριο Μεταλλικών Κατασκευών Μεταπτυχιακή ιπλωµατική Εργασία ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information MI Girder 90/120 Materia Specifications 1 15 / 16 " (50) Materia Gavanizing Ordering Information Description S235 JRG2 DIN 10025, (ASTM A283 (D) 34 ksi) Hot-dip gavanized 3 mis (75 μm) DIN EN ISO 1461,

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10) Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Αλληλεπίδραση Ανωδοµής-Βάθρων-Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα

Αλληλεπίδραση Ανωδοµής-Βάθρων-Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Αλληλεπίδραση Ανωδοµής-Βάθρων- Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα ΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Lecture 6 Mohr s Circle for Plane Stress

Lecture 6 Mohr s Circle for Plane Stress P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Kul Finite element method I, Exercise 07/2016

Kul Finite element method I, Exercise 07/2016 Kul-49.3300 Finite element metod I, Eercise 07/016 Demo problems y 1. Determine stress components at te midpo of element sown if u y = a and te oter nodal displacements are zeros. e approimations to te

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα