Kul Models for beam, plate and shell structures, 09/2016
|
|
- Λαδων Πανταζής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Kul Models for beam, plate and shell structures, 9/6 Demo problems. Derive the component forms of the membrane equations in spherical φθ n coordinate system and geometry. Use the component form N + b = ( d N +Γ N +Γ N + b) e = j ji kjk ji jki jk i i and expressions Γ φφn =Γ θθn =, Γ φθφ = cot θ, dφ = φ, sinθ dθ = θ, and d n = n. Answer T [csc θnφφ, φ + Nθφ, θ + cot θ ( Nθφ + Nφθ )] + bφ e φ eθ [csc θnφθ, φ + Nθθ, θ + cot θ ( Nθθ Nφφ )] + bθ = e n ( Nφφ + Nθθ ) + bn. Consider a simply supported (long) circular cylindrical shell of radius, thickness t, and filled with liquid of density ρ in cylindrical φn coordinates. Determine the mid-surface stress resultants N φφ, N φ and N by assuming that there are no axial forces at the ends of the shell and bending deformation is negligible. (J.N.eddy: Example.3.) g L x Answer N p ρg cosφ φφ Nφ = ρg ( L )sin φ+ A N ( ρg L )cos φ (A and p are constants) 3. Consider a truncated cone, as shown in the figure. Determine the mid-surface stress resultants due to its own weight. Acceleration by gravity g, density of the material ρ, and thickness of the cell t wall are constants. Use cylindrical φn coordinates and assume that the cone stands freely on a frictionless foundation. The coordinate value of the free end is. (J.N.eddy: Problem.8 modified somewhat). y α x g
2 Answer N φφ tρgtan α Nφ = N tρg( + tan α) ( ) The demo problems are published in the course homepage on Fridays. The problems are related to the topic of the next weeks lecture (Wed.5-. hall K3 8). Solutions to the problems are explained in the weekly exercise sessions (Thu.5-4. hall K3 8) and will also be available in the home page of the course. Please, notice that the problems of the midterms and the final exam are of this type.
3 Lecture problem Be prepared to write component forms of equilibrium and constitutive equations of membrane model using directed derivatives and Christoffel symbols. Lecture problems are specified and solved during the lecture (Wed.5-. hall K3 8). The time allocated for this is 3 min.
4 Home problem Consider a cylindrical shell of semicircular cross section supporting its own weight, which is assumed to be distributed uniformly over the surface of the shell. Using the membrane theory, determine Nφφ, Nφ and N assuming that there are no axial forces at the ends of the tube. (J.N.eddy: Problem.) x g y L Solution template The membrane equations written in cylindrical φ coordinate system and the relationship between the basis vector of the Cartesian and cylindrical system are, N T φ, φ + N, + b e eφ Nφ, + Nφφ, φ + bφ = en Nφφ + bn i sinφ cosφ e j= cosφ sinφ eφ k en. External distributed force due to gravity expressed in the basis of the cylindrical coordinate system is (here t = ) T e t/ t/ b = f = [ ] dn e t/ = t/ φ e n. Membrane equations of the present case are ( Nφ = Nφ) T e eφ en = 3. Solution to the eqution associated with direction e n is given by
5 N φφ = 4. Knowing the solution above, the equation associated with direction e φ gives (notice that integration constants of partial differential equations are not constants but arbitrary functions of φ. Denote the function A( φ) here) N φ =, N φ = 5. Knowing the solution above, the equation associated with direction e gives (again: notice that integration constants of partial differential equations are not constants but arbitrary functions of φ. Denote the function B( φ ) here) N, = N = 6. By assumption, there are no axial forces at the ends {, L}. Therefore N (, φ ) = = N ( L, φ ) = = giving A( φ ) = B( φ ) = 7. Solutions to the force resultants are
6 N (, φ ) = gt cos ( L) ρ φ Nφ (, φ ) = ρgtsin φ ( L ) + A Nφφ (, φ ) = ρgtcos φ NOTICE. Solutions to quite similar demo problems will be discussed in detail during the exercise session on Thu -4! The compulsory home problems are published in the course homepage on Fridays and the deadline for answers is the next weeks Friday eturn your homework answers into the green course mailbox that can be found from the corridor of the K3 building lobby (Puumiehenkuja 5A). Please, use the solution templates given.
7 Kul Models for beam, plate and shell structures INDEX NOTATION (Orthonormal basis) ab = ab = ab + a b + + a b i i i I i i n n a / x a i j ij, δ ij ei ej {,} ( e i e j = δ ij ) ε ijk e i ( e j e k ) {,,} ( e i e j = ε ijk e k ) εijkεimn = δ jmδkn δ jnδ km ε det( a) = ε a a a ijk lmn il jm kn GENEAL a = ae i i a= a ij ee i j a = aijklee i je ke l... I a = a I = a a ( I = ii + jj + kk ) I : a = a: I = a a ( I = iiii + jjjj + kkkk + ijji + jiij + ikki + kiik + kjjk + jkkj ) a= a ee a = aee ij i a = a c j c ij j i a b = a b b IDENTITIES a ( b c) = ( a b) c a ( b c) = bac ( ) cab ( ) a:( b) = ( a b) ( a) b c CYLINDICAL rφ SYSTEM r = r cosφi + r sinφ j + k er cφ sφ i er er eφ = sφ cφ j eφ= eφ φ e k e e = er + eφ + e r r φ SPHEICAL θφr SYSTEM r( θφ,, r) = r(s θ c φ i + s θ s φ j + c θ k)
8 eθ cθφ c cθφ s sθ i eφ = sφ cφ j er sθφ c sθφ s cθ k eθ cθ eφ eφ= sθer cθeθ φ er sθeφ eθ er eφ =, θ er eθ = eθ + eφ + e r r θ rsinθ φ r THIN BODY snb SYSTEM FO PLANA BEAMS r(, s n) = r () s + ne () s es r, s / r, s r, s = = e n ess, / ess, ess, = es + en n s n n es en / = s en es / OTHONOMAL CUVILINEA COODINATES eα i α x, α y, α, α x x eβ = [ F] j β = x, β y, β, β y= [ H] y en k x, y, γ γ γ, γ eα eα eα i eβ= ( i[ F])[ F] eβ= [ D] () i eβ i e j = D ijk e k en en en T T eα α eα α = e F H = e D e e T β [ ] [ ] β β [ ] β = ed i ij j = ed i i n n n n COMPONENT EPESENTATIONS Γ = e e e = e = ( e e ) D D ( e e ) ijk i j k k i s sr rjl l k a= ( dae ) i a= ( da + a Γ ) ee i i j k ikj i j a= da +Γ a i i iji j a= ( da +Γ a +Γ a ) e i ij kik ij ikj ik j a= ( a) = dda i i +Γjijda i PLATE GEOMETY ( rφ n) r ( r, φ, n) = [ ir cosφ+ jr sin φ ] + nen Γ ijk = D ir D rjk
9 er cosφ sinφ i eφ = sinφ cosφ j en k er eφ eφ = er φ e n d = r r d r = d = φ φ n n Γ = Γ = φrφ φφr r dv = dndω BEAM GEOMETY ( snb ) r ( s, n, b) = [ r ( s)] + ne n + be b es r, s es κb es κben en= ess, / ess, en= κb κs en= κseb κbes s eb es en eb κs eb κsen d s = n b) ( s + sb n sn b ( κ κ κ ) d n = n d b = b ssn sns ( n b) b Γ = Γ = κ κ dv = ( nκ ) dads b snb Γ sbn = ( nκb ) κs Γ = CYLINDICAL SHELL GEOMETY ( φ n) r (, φ, n) = [ i cosφ+ jsin φ + k] + nen e i e eφ = sinφ cosφ j eφ = en φ en cos φ sinφ k en eφ d = φ = ( ) φ d n = n d n Γ φφn = Γ φnφ = ( n) dv = ( n ) dn( dφ ) d = ( n ) dndω LINEA ISOTOPIC ELASTICITY σ = E: ε = E: u (minor and major symmetries of the elasticity dyad assumed) ε = [ u + ( u )] c
10 T T ii ν ν ii ij + ji G ij + ji E = jj E ν ν jj + jk + kj G jk + kj kk ν ν kk ki + ik G ki + ik T T ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj jk + kj (plane stress) ν kk kk ki + ik ki + ik T T ii E ii ij + ji G ij + ji E = jj jj + jk + kj G jk + kj (beam) kk kk ki + ik G ki + ik T T ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj G jk + kj (plate) ν kk kk ki + ik G ki + ik T T ii E ii ij + ji ij + ji E = jj jj + jk + kj jk + kj (uni-axial) kk kk ki + ik ki + ik E Et G = D = ( +ν ) ( ν ) PINCIPLE OF VITUAL WOK ext int δw = δw + δw = δ u U (a function set) δw = ( σ : δε ) dv + ( f δu) dv + ( t δ u) da V c V A 3 BEAM EQUATIONS F + b F σ = = da M + i F + c M ρ σ F σ E E ρ u + i θ = da = da M ρ σ ρ E ρ E ρ θ TIMOSHENKO BEAM ( xy ) E = Eii + Gjj + Gkk N + bx Q y + by= Q + b T + cx M y Q + cy= M + Qy + c
11 N EAu ESψ + ES yθ Qy= GA( v ψ) GS yφ Q GA( w + θ) + GSφ TIMOSHENKO BEAM ( snb ) T GS y( v ψ) + GS( w + θ) + GIrrφ M y = ES yu EIyψ + EI yyθ M ESu + EIψ EI yθ N Qnκ b + bs Qn + Nκb Qbκs + bn= Qb + Qnκ s + bb T Mnκb + cs Mn + Tκb Mbκs Qb + cn= Mb + Mnκ s + Qn + cb N EA( u vκ b) + ESn( θ + φκb ψκ s) ESb( ψ + θκ s) Qn= GA( v + uκ b wκ s ψ ) GSn( φ θκb) Q b GA( w + vκ s + θ ) + GSb( φ θκb) T GSb( w + vκ s + θ ) + GIrr( φ θκb) GSn( v + uκ b wκ s ψ ) Mn = ESn( u vκ b) + EInn( θ + φκb ψκ s) EIbn( ψ + θκ s) M b ESb( u vκ b) EInb( θ + φκb ψκ s) + EIbb( ψ + θκ s) PLATE EQUATIONS F + b = ( M Q+ c) k = F = σ d = iin + ijn + jin + jjn + ( ki + ik ) Q + ( kj + jk ) Q xx xy yx yy x y M = σ d = iim + ijm + jim + jjm + ( ki + ik ) + ( kj + jk ) xx xy yx yy x y EISSNE-MINDLIN PLATE ( xy ) Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Qxx, + Qyy, + b Mxx, x + Myx, y Qx + cx = Myy, y + Mxy, x Qy + cy Qx w, x + θ = Gtk Q w φ y, y Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x M xx θ, x νφ, y Myy = D φ, y + νθ, x M ( ν)( θ φ ) / xy, y, x Qn Q or w w n Nnn Nn or un un = M ns M s or θn θn = N ns Ns or us u s M nn M n or θs θs KICHHOFF PLATE ( xy )
12 Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Mxx, xx + Mxy, xy + Myy, yy + b ( Mxx, x + Myx, y Qx + cx ) = ( Myy, y + Mxy, x Qy + cy ) Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x Mxx w, xx + ν w, yy Myy = D w, yy + ν w, xx M ( ν ) w xy, xy Nnn Nn or un un = N ns Ns or us us EISSNE-MINDLIN PLATE ( rφ ) Q + M Q M or w w M nn M n or w, n + θ s n nss, ss, = [( rn ) + N N ] / r + b [( rnrφ ), r + Nφφ, φ + Nφr] / r + bφ rr, r φr, φ φφ r = Nrr ur, r + ν ( ur + uφφ, )/ r Et Nφφ = u ν rr, + ( ur+ uφ, φ )/ r ν N ( ν )[( u u ) / r+ u ] / rφ r, φ φ φ, r [( rqr), r + Qφφ, ] / r + b [( rmrr ), r + Mφr, φ Mφφ ] / r Qr + cr = [( rmrφ ), r + Mφφ, φ + Mφr] / r Qφ + cφ Mrr θφ, r + νθ ( φ θr, φ)/ r Mφφ = D νθφ, r + ( θφ θr, φ )/ r M ( ν)[( θ + θ ) / r θ ] / rφ φφ, r rr, Qr w, r + θφ = Gt Qφ w, φ / r θr OTATION SYMMETIC KICHHOFF PLATE D w+ b = d d = ( r ) r dr dr 4 r r ( r ) b ( ) r wr = + a ln + b + cln r+ d D MEMBANE EQUATIONS IN CYLINDICAL GEOMETY ( φ n) Nφ, φ + N, b Nφ, + Nφφ, φ + bφ = b n Nφφ te [ u, + ν ( u φφ, u n)] N ν te Nφφ = [ ( u φ, φ un) + νu, ] ν Nφ tg( u, φ + uφ, ) MEMBANE EQUATIONS IN SPHEICAL GEOMETY ( φθ n )
13 cscθnφφ, φ + Nθφ, θ + cot θ( Nθφ + Nφθ ) bφ csc θnφθ, φ + Nθθ, θ + cot θ ( Nθθ Nφφ ) + bθ = Nφφ + Nθθ b n te [ csc θ(cosθu θ + ν sin θuθθ, + uφφ, ) ( + ν) un] N φφ ν te Nθθ = [ csc θ ( ν cosθu sin u θ + θ θθ, + νuφφ, ) ( + ν) un] ν Nφθ tg( cscθuθφ, co tθuφ + uφθ, ) SHELL EQUATIONS IN CYLINDICAL GEOMETY ( φ n) κ Nφ, φ + N, + b Nφ, + κnφφ, φ κqφ + bφ = κqφ, φ + Q, + κnφφ + bn Mφ, + κmφφ, φ κmφn Qφ + cφ M + κm Q + c =, φ, φ N u, + νκ( uφφ, un) Et Nφφ = u ν, + κ( uφφ, un) ν Nφ ( ν)( uφ, + κu, φ) / M ω, + κνωφφ, κu, Mφφ νω, + κωφφ, + κ ( uφφ, un) M φ D ( ν )( ωφ, κω, φ κuφ, ) / = + Mφ ( ν)( ωφ, + κω, φ + κ u, φ) / M ( νκκ ) ( u + κu + ω) / φn n, φ φ φ Q un, + ω = tg Q ω + κ( u + u ) φ φ n, φ φ ω θ φ = ωφ θ
Kul Models for beam, plate and shell structures, 09/2016
Kul-49.45 Models for beam, plate and shell structures, 9/6 Demo problems. Derive the component forms of the membrane equations in spherical φθ n coordinate system and geometry. Use the component form N
Kul Models for beam, plate and shell structures, 08/2016
Kul-49.45 Models for beam, plate and shell structures, 8/6 Demo problems. Spring geometry is defined by the mapping s s s r ( s) = ( ir cos + jrsin + kε ), R + ε R + ε + ε where R and ε are constants and
Kul Models for beam, plate and shell structures, 07/2016
Kul-9.5 Models fo beam, plate and shell stuctues, 7/6 Demo poblems. Deive the component foms of the elastic isotopic Kichhoff plate constitutive equations (just bending) in the pola coodinate system. Use
Kul Models for beam, plate and shell structures, 02/2016
Kul-49.45 Models fo beam, plate and shell stuctues, /16 Demo poblems 1. Given the Catesian stain components ε ij ij, {, xy}, deive the coesponding stain components ε αβ αβ, {, φ } of the pola coodinate
Kul Models for beam, plate and shell structures, 10/2016
Kul-49.45 Models fo beam, plate and shell stuctues, /6 Demo poblems. Conside mapping (, φ, n) = [ cos( φ) i + sin( φ) j] + nen. Compute the expession of the basis vecto deivatives, gadient opeato, and
Kul Models for beam, plate and shell structures, MT
Kul-49.45 Models fo eam, plate and shell stuctues, MT- 4. Mapping (, φ, z) = cosφi + sinφ j + zk (in detail) the geneic fomula defines the cylindical φ z coodinate system. Use e e eφ= ( [ F])[ F] eφ α
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Kul Finite element method I, Exercise 08/2016
Kul-49.3300 Finite element metod I, Eercise 08/016 Demo problems 1. A square tin slab (1) is loaded by a po force () as sown in te figure. Derive te relationsip between te force magnitude F and displacement
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B
Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Orbital angular momentum and the spherical harmonics
Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
CYLINDRICAL & SPHERICAL COORDINATES
CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate
Geometry of the 2-sphere
Geometry of the 2-sphere October 28, 2 The metric The easiest way to find the metric of the 2-sphere (or the sphere in any dimension is to picture it as embedded in one higher dimension of Euclidean space,
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain
Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)
Kul Finite element method I, Exercise 07/2016
Kul-49.3300 Finite element metod I, Eercise 07/016 Demo problems y 1. Determine stress components at te midpo of element sown if u y = a and te oter nodal displacements are zeros. e approimations to te
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
ME340B Elasticity of Microscopic Structures Wei Cai Stanford University Winter Midterm Exam. Chris Weinberger and Wei Cai
ME34B Elasticity of Microscopic Structures Wei Cai Stanford University Winter 24 Midterm Exam Chris Weinberger and Wei Cai c All rights reserved Issued: Feb. 9, 25 Due: Feb. 6, 25 (in class Problem M.
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Chapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2
Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Laplace s Equation in Spherical Polar Coördinates
Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1
3.5 - Boundary Conditions for Potential Flow
13.021 Marine Hydrodynamics, Fall 2004 Lecture 10 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 10 3.5 - Boundary Conditions for Potential
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics
I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Parallel transport and geodesics
Parallel transport and geodesics February 4, 3 Parallel transport Before defining a general notion of curvature for an arbitrary space, we need to know how to compare vectors at different positions on
Empirical best prediction under area-level Poisson mixed models
Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Tutorial problem set 6,
GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant
CORDIC Background (2A)
CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Curvilinear Systems of Coordinates
A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
A Introduction to Cartesian Tensors
A Introduction to Cartesian Tensors In this text book a certain knowledge of tensors has been assumed. We restrict ourselves to Cartesian tensors, since all equations in fluid mechanics can in principle