Kul Models for beam, plate and shell structures, 07/2016

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Kul Models for beam, plate and shell structures, 07/2016"

Transcript

1 Kul-9.5 Models fo beam, plate and shell stuctues, 7/6 Demo poblems. Deive the component foms of the elastic isotopic Kichhoff plate constitutive equations (just bending) in the pola coodinate system. Use the invaiant foms 3 t M = E: w, ee ee ee + ee ee + ee ν φ φ φ φ E E ee = φ φ ν ee + ek+ ke G ek+ ke φ φ φ φ φ φ ν kk kk ke + ek ke + ek and conside the case ν = to shoten the expessions. Answe M w, 3 Et Mφφ = w, / + w, φφ / M ( w / ) φ, φ,. A simply suppoted cicula plate of adius is loaded by a point foce acting at the midpoint as shown in the figue. Detemine the displacement of the plate at the midpoint by using the Kichhoff plate model in the pola coodinate system. Poblem paametes E, ν and t ae constants. Assume that the solution depends on the adial coodinate only. F Answe 3 F ( ν)(3 + ν) w() = 3 Eπt 3. A simply suppoted cicula plate of adius is loaded by its own weight as shown in the figue. Detemine the displacement of the plate at the midpoint by using the Kichhoff plate model in the pola coodinate system. Poblem paametes E, ν, ρ and t ae constants. Assume that the solution depends on the adial coodinate only. g Answe 3 g ( ν)(5 + ν) ρ w() = 6Et he demo poblems ae published in the couse homepage on Fidays. he poblems ae elated to the topic of the next weeks lectue (Wed.5-. hall K3 8). Solutions to the poblems ae explained in the weekly execise sessions (hu.5-. hall K3 8) and will also be available

2 in the home page of the couse. Please, notice that the poblems of the midtems and the final exam ae of this type.

3 Deive the component foms of the elastic isotopic Kichhoff plate constitutive equations (just bending) in the pola coodinate system. Use the invaiant foms 3 t M = E: w, ee ee ee + ee ee + ee ν φ φ φ φ E E ee = φ φ ν ee + ek+ ke G ek+ ke φ φ φ φ φ φ ν kk kk ke + ek ke + ek and conside the case ν = to shoten the expessions. Solution he (mid-plane) gadient opeato of the pola coodinate system is given by = e + eφ φ and deivatives of the basis vectos e / φ = eφ and eφ / φ = e. Deivatives with espect to the adial coodinate vanish. heefoe w w w= e + eφ φ and w w w= ( e + eφ )( e + eφ ) φ φ w ( w ) w w ee ee w w = + w φ + ee φ φ + ee φ ee φ + ee φ φ φ φ φ φ w w w w w= ee + ee ( ) ( ) ( ) φ + ee φ w + ee φ φ +. φ φ φ By using the invaiant fom of the constitutive equation with the elasticity dyad of isotopic mateial (fomulae collection) 3 t M = E: w and ee ee ee + ee ee + ee ν φ φ φ φ E E ee = φ φ ν ee + ek+ ke G ek+ ke φ φ φ φ φ φ ν kk kk ke + ek ke + ek ee ( / ) 3 ν w, ee φ + ee φ w, φ t E M ( ee = φ φ ν ( w, / + w, )/ + ek+ ke G φφ φ φ ν kk ke + ek

4 3 t ee E ν w, = ( ( ) ( / ), ee + + ( w, / + w, )/ φ φ φ φ φ ν φφ M ee ee G w ν ee 3 ν w, Et M= ee φ φ ν ( w, / + w, )/ ( ) φφ. ν ee + ee ν φ φ ( w/ ), φ If Poisson s atio ν =, expession simplifies to ee w 3, Et M= ee φ φ ( w, φφ / + w, )/. ee φ + ee φ ( w/ ), φ

5 A simply suppoted cicula plate of adius is loaded by a point foce acting at the midpoint as shown in the figue. Detemine the displacement of the plate at the midpoint by using the Kichhoff plate model in the pola coodinate system. Poblem paametes E, ν and t ae constants. Assume that the solution depends on the adial coodinate only. F Solution Kichhoff plate equations follow fom the eissne-mindlin bending equations [( Q), + Qφφ, ] / + bz [( M ), + Mφ, φ Mφφ ] / Q + c =, [( Mφ ), + Mφφ, φ + Mφ] / Qφ + cφ M θφ, + νθ ( φ θ, φ)/ Mφφ = D νθφ, + ( θφ θ, φ )/, M ( ν)[( θ + θ ) / θ ] / φ φφ,, Q w, + θφ = Gt Qφ w, φ / θ when otations ae eliminated thee with the Kichhoff constaints (obtained fom the constitutive equations fo the tansvese shea foces). hen shea foces become constaint foces to be solved fom the moment equilibium equations. Afte elimination of the shea foces, foce equilibium equations in the tansvese diection becomes the equilibium equation of the Kichhoff plate model. In a otation symmetic case, all deivatives with espect to φ vanish and θ. Assuming that cφ = c =, moment esultants and equilibium equation take the foms ( θ φ = w, and θ = w, φ / ) = M = D( θφ, + ν θ φ) d d M = D( ) w d +ν d, M = D( νθ + θ ) φφ φ, φ d d Mφφ = D( ν + ) w, d d Q = ( M ), Mφφ d d d Q = D ( ) w d d d, d ( Q ) + b z = d d d d d b ( )( ) w= z. d d d d D Assuming that the distibuted foce is constant, solution to the equilibium equation is obtained by epeated integations

6 d d d d b ( )( ) w= z d d d d D d d d d b ( w) = z d d d d D d d d b ( ) z a w = + d d d D 3 d d bz w = + a ln + b d d D d d d bz w= + a d d d D d d bz w= + aln + b d d D d bz w= + a( + ln ) + b + c d D 6 3 d bz w= + a( + ln ) + b + c d D 6 bz w= + a ( ln ) + b + cln + d. D 6 he geneic solution contains paametes abcd,,, to be detemined fom the bounday conditions. It is notewothy that ln is not bounded when wheeas ln and ln ae (limit values ae zeos). heefoe if oigin belongs to the solution domain, a bounded solution equies that c =. o find the solution to plate unde concentated foce without distibuted foce i.e. b z =, one may conside an annulus with the inne adius = ε and oute adius =. he plate is simply suppoted at the oute edge i.e. W( ) = M( ) =. At the inne edge, the plate is loaded by shea foce Q( ε ) = F / ( πε ) of esultant F. Solution needs to be bounded when ε and theefoe c =. nq Q = d ( d )( d ) w+ F = d d d D πε a F ε + D πε = a = D F π, M ( ) = d w dw + = d d a [3 + ln + b +ν a [ + ] + ν b = ν ( )] ( ln ) a 3+ ν F 3+ ν b= ( + ln ) = ( + ln ), + ν D π + ν w ( ) = a ( ln ) + b + d = d = a ( ln ) b d = F 3 3 ( ln ) F ) ( + ln F + D ν + D + = ν π π ν D π + ν. Displacement at the centepoint F 3 + ν 3 F w() = d = = ( 3+ ν )( ν ). D π + ν 3 Et π

7 A simply suppoted cicula plate of adius is loaded by its own weight as shown in the figue. Detemine the displacement of the plate at the midpoint by using the Kichhoff plate model in the pola coodinate system. Poblem paametes E, ν, ρ and t ae constants. Assume that the solution depends on the adial coodinate only. g Solution he geneic solution to Kichhoff plate model equilibium equation in pola coodinates assuming otation symmety bz w= + a ( ln ) + b + cln + d D 6 contains paametes abcd,,, to be detemined fom the bounday conditions. As oigin belongs to the solution domain and only the distibuted load is acting on the plate, all deivatives should be continuous at the oigin which implies that a = c =. he plate is simply suppoted at the oute edge giving w ( ) = M ( ) =. z b ( ) z b M = 3 b b D ν D 6 + ν = 3 bz + ν b = D 8 + ν, b ( ) z w = + b + d= D 6 d = 5 bz + ν D 6 + ν. Displacement at the centepoint with bz = ρ gt b 5 3 () z + ν ρg w = = (5 + ν)( ν). D 6 + ν 6 Et

8 Kul-9.5 Models fo beam, plate and shell stuctues INDEX NOAION (Othonomal basis) ab = ab = ab + a b + + a b i i i I i i n n a / x a i j ij, δ ij ei ej {,} ( e i e j = δ ij ) ε ijk e i ( e j e k ) {,,} ( e i e j = ε ijk e k ) εijkεimn = δ jmδkn δ jnδ km ε det( a) = ε a a a ijk lmn il jm kn GENEAL a = ae i i a= a ij ee i j a = aijklee i je ke l... I a = a I = a a ( I = ii + jj + kk ) I : a = a: I = a a ( I = iiii + jjjj + kkkk + ijji + jiij + ikki + kiik + kjjk + jkkj ) a= a ee a = aee ij i a = a c j c ij j i a b = a b b IDENIIES a ( b c) = ( a b) c a ( b c) = bac ( ) cab ( ) a:( b) = ( a b) ( a) b c CYLINDICAL φ z SYSEM = cosφi + sinφ j + zk e cφ sφ i e e eφ = sφ cφ j eφ= eφ φ ez k ez ez = e + eφ + ez φ z SPHEICAL θφ SYSEM ( θφ,, ) = (s θ c φ i + s θ s φ j + c θ k)

9 eθ cθφ c cθφ s sθ i eφ = sφ cφ j e sθφ c sθφ s cθ k eθ cθ eφ eφ= sθe cθeθ φ e sθeφ eθ e eφ =, θ e eθ = eθ + eφ + e θ sinθ φ HIN BODY snb SYSEM FO PLANA BEAMS (, s n) = () s + ne () s es, s /, s, s = = e n ess, / ess, ess, = es + en n s n n es en / = s en es / OHONOMAL CUVILINEA COODINAES eα eα eα i e = ( i[ F])[ F] e = [ D] () i e e = D e en en en β β β i j ijk k eα α eα α = e F H = e D e e β [ ] [ ] β β [ ] β = ed i ij j = ed i i n n n n Γ = e e e = e = ( e e ) D D ( e e ) ijk i j k k i s s jl l k a= ( dae ) i a= ( da + a Γ ) ee i i j k ikj i j a= da +Γ a i i iji j a= ( da +Γ a +Γ a ) e i ij kik ij ikj ik j a= ( a) = dda i i +Γjijda i Γ ijk = D i D jk PLAE GEOMEY ( φ n) (, φ, n) = [ i cosφ+ j sin φ ] + nen e cosφ sinφ i eφ = sinφ cosφ j en k e eφ eφ = e φ e n d = d = d = φ φ n n

10 Γ = Γ = φφ φφ dv = dndω BEAM GEOMEY ( snb ) ( s, n, b) = [ ( s)] + nen + beb es, s es κb es κben en= ess, / ess, en= κb κs en= κseb κbes s eb es en eb κs eb κsen d s = n b) ( s + sb n sn b ( κ κ κ ) d n = n d b = b ssn sns ( n b) b Γ = Γ = κ κ dv = ( nκ ) dads b snb Γ sbn = ( nκb ) κs Γ = CYLINDICAL SHELL GEOMEY ( zφ n) ( z, φ, n) = [ i cosφ+ jsin φ + kz] + nen ez i ez eφ = sinφ cosφ j eφ = en φ en cos φ sinφ k en eφ d = z z φ = ( ) φ d n = n d n Γ φφn = Γ φnφ = ( n) dv = ( n ) dn( dφ ) dz = ( n ) dndω LINEA ISOOPIC ELASICIY σ = E: ε = E: u (mino and majo symmeties of the elasticity dyad assumed) ε = [ u + ( u )] c ii ν ν ii ij + ji G ij + ji E = jj E ν ν jj + jk + kj G jk + kj kk ν ν kk ki + ik G ki + ik ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj jk + kj (plane stess) ν kk kk ki + ik ki + ik

11 ii E ii ij + ji G ij + ji E = jj jj + jk + kj G jk + kj (beam) kk kk ki + ik G ki + ik ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj G jk + kj (plate) ν kk kk ki + ik G ki + ik ii E ii ij + ji ij + ji E = jj jj + jk + kj jk + kj (uni-axial) kk kk ki + ik ki + ik G = E ( +ν ) 3 Et D = ( ν ) PINCIPLE OF VIUAL WOK ext int δw = δw + δw = δ u U (a function set) δw = ( σ : δε ) dv + ( f δu) dv + ( t δ u) da V c V A BEAM EQUAIONS F + b F σ = = da M + i F + c M ρ σ F σ E E ρ u + i θ = da = da M ρ σ ρ E ρ E ρ θ IMOSHENKO BEAM ( xyz ) E = Eii + Gjj + Gkk N + bx Q y + by= Qz + bz + cx M y Qz + cy= Mz + Qy + cz N EAu ESzψ + ES yθ Qy= GA( v ψ) GS yφ Q z GA( w + θ) + GSzφ IMOSHENKO BEAM ( snb ) GS y( v ψ) + GSz( w + θ) + GIφ M y = ES yu EIzyψ + EI yyθ M z ESzu + EIzzψ EI yzθ

12 N Qnκ b + bs Qn + Nκb Qbκs + bn= Qb + Qnκ s + bb Mnκb + cs Mn + κb Mbκs Qb + cn= Mb + Mnκ s + Qn + cb N EA( u vκ b) + ESn( θ + φκb ψκ s) ESb( ψ + θκ s) Qn= GA( v + uκ b wκ s ψ ) GSn( φ θκb) Q b GA( w + vκ s + θ ) + GSb( φ θκb) GSb( w + vκ s + θ ) + GI( φ θκb) GSn( v + uκ b wκ s ψ ) Mn = ESn( u vκ b) + EInn( θ + φκb ψκ s) EIbn( ψ + θκ s) M b ESb( u vκ b) EInb( θ + φκb ψκ s) + EIbb( ψ + θκ s) PLAE EQUAIONS F + b = ( M Q+ c) k = F = σ dz = iin + ijn + jin + jjn + ( ki + ik ) Q + ( kj + jk ) Q xx xy yx yy x y M = σ zdz = iim + ijm + jim + jjm + ( ki + ik ) + ( kj + jk ) xx xy yx yy x y EISSNE-MINDLIN PLAE ( xyz ) Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Qxx, + Qyy, + bz Mxx, x + Myx, y Qx + cx = Myy, y + Mxy, x Qy + cy Qx w, x + θ = Gtk Q w φ y, y Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x M xx θ, x νφ, y Myy = D φ, y + νθ, x M ( ν)( θ φ ) / xy, y, x Qn Q o w w n Nnn Nn o un un = M ns M s o θn θn = N ns Ns o us u s M nn M n o θs θs KICHHOFF PLAE ( xyz ) Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Mxx, xx + Mxy, xy + Myy, yy + bz ( Mxx, x + Myx, y Qx + cx ) = ( Myy, y + Mxy, x Qy + cy )

13 Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x Mxx w, xx + ν w, yy Myy = D w, yy + ν w, xx M ( ν ) w xy, xy Nnn Nn o un un = N ns Ns o us us EISSNE-MINDLIN PLAE ( φ z) Q + M Q M o w w M nn M n o w, n + θ s n nss, ss, = [( N ) + N N ] / + b [( Nφ ), + Nφφ, φ + Nφ] / + bφ, φ, φ φφ = N u, + ν ( u + uφφ, )/ Et Nφφ = u ν, + ( u+ uφ, φ )/ ν N ( ν )[( u u ) / + u ] / φ, φ φ φ, [( Q), + Qφφ, ] / + bz [( M ), + Mφ, φ Mφφ ] / Q + c = [( Mφ ), + Mφφ, φ + Mφ] / Qφ + cφ M θφ, + νθ ( φ θ, φ)/ Mφφ = D νθφ, + ( θφ θ, φ )/ M ( ν)[( θ + θ ) / θ ] / φ φφ,, Q w, + θ φ = Gt Q w θ φ, φ / OAION SYMMEIC KICHHOFF PLAE D w+ b z = d d = ( ) d d ( ) b ( ) z w = + a ln + b + cln + d D 6 MEMBANE EQUAIONS IN CYLINDICAL GEOMEY ( zφ n) Nφz, φ + Nzz, z bz Nzφ, z + Nφφ, φ + bφ = b n Nφφ te [ u zz, + ν ( u φφ, u n)] Nzz ν te Nφφ = [ ( u φ, φ un) + νuzz, ] ν Nzφ tg( uz, φ + uφ, z) MEMBANE EQUAIONS IN SPHEICAL GEOMEY ( φθ n ) cscθnφφ, φ + Nθφ, θ + cot θ( Nθφ + Nφθ ) bφ csc θnφθ, φ + Nθθ, θ + cot θ ( Nθθ Nφφ ) + bθ = Nφφ + Nθθ b n

14 te [ csc θ(cosθu θ + ν sin θuθθ, + uφφ, ) ( + ν) un] N φφ ν te Nθθ = [ csc θ ( ν cosθu sin u θ + θ θθ, + νuφφ, ) ( + ν) un] ν Nφθ tg( cscθuθφ, co tθuφ + uφθ, ) SHELL EQUAIONS IN CYLINDICAL GEOMEY ( zφ n) κ Nφz, φ + Nzz, z + bz Nzφ, z + κnφφ, φ κqφ + bφ = κqφ, φ + Qzz, + κnφφ + bn Mzφ, z + κmφφ, φ κmφn Qφ + cφ M + κm Q + c = zz, z φz, φ z z Nzz uz, z + νκ( uφφ, un) Et Nφφ = u ν z, z + κ( uφφ, un) ν Nzφ ( ν)( uφ, z + κuz, φ) / Mzz ωzz, + κνωφφ, κuzz, Mφφ νω zz, + κωφφ, + κ ( uφφ, un) M zφ D ( ν )( ωφ, z κωz, φ κuφ, z) / = + Mφz ( ν)( ωφ, z + κωz, φ + κ uz, φ) / M ( νκκ ) ( u + κu + ω) / φn n, φ φ φ Qz unz, + ωz = tg Q ω + κ( u + u ) φ φ n, φ φ ωz θ φ = ωφ θz

Kul Models for beam, plate and shell structures, 10/2016

Kul Models for beam, plate and shell structures, 10/2016 Kul-49.45 Models fo beam, plate and shell stuctues, /6 Demo poblems. Conside mapping (, φ, n) = [ cos( φ) i + sin( φ) j] + nen. Compute the expession of the basis vecto deivatives, gadient opeato, and

Διαβάστε περισσότερα

Kul Models for beam, plate and shell structures, 02/2016

Kul Models for beam, plate and shell structures, 02/2016 Kul-49.45 Models fo beam, plate and shell stuctues, /16 Demo poblems 1. Given the Catesian stain components ε ij ij, {, xy}, deive the coesponding stain components ε αβ αβ, {, φ } of the pola coodinate

Διαβάστε περισσότερα

Kul Models for beam, plate and shell structures, 09/2016

Kul Models for beam, plate and shell structures, 09/2016 Kul-49.45 Models for beam, plate and shell structures, 9/6 Demo problems. Derive the component forms of the membrane equations in spherical φθ n coordinate system and geometry. Use the component form N

Διαβάστε περισσότερα

Kul Models for beam, plate and shell structures, 08/2016

Kul Models for beam, plate and shell structures, 08/2016 Kul-49.45 Models for beam, plate and shell structures, 8/6 Demo problems. Spring geometry is defined by the mapping s s s r ( s) = ( ir cos + jrsin + kε ), R + ε R + ε + ε where R and ε are constants and

Διαβάστε περισσότερα

Kul Models for beam, plate and shell structures, MT

Kul Models for beam, plate and shell structures, MT Kul-49.45 Models fo eam, plate and shell stuctues, MT- 4. Mapping (, φ, z) = cosφi + sinφ j + zk (in detail) the geneic fomula defines the cylindical φ z coodinate system. Use e e eφ= ( [ F])[ F] eφ α

Διαβάστε περισσότερα

Kul Models for beam, plate and shell structures, 09/2016

Kul Models for beam, plate and shell structures, 09/2016 Kul-49.45 Models for beam, plate and shell structures, 9/6 Demo problems. Derive the component forms of the membrane equations in spherical φθ n coordinate system and geometry. Use the component form N

Διαβάστε περισσότερα

Chapter 7a. Elements of Elasticity, Thermal Stresses

Chapter 7a. Elements of Elasticity, Thermal Stresses Chapte 7a lements of lasticit, Themal Stesses Mechanics of mateials method: 1. Defomation; guesswok, intuition, smmet, pio knowledge, epeiment, etc.. Stain; eact o appoimate solution fom defomation. Stess;

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

Problems in curvilinear coordinates

Problems in curvilinear coordinates Poblems in cuvilinea coodinates Lectue Notes by D K M Udayanandan Cylindical coodinates. Show that ˆ φ ˆφ, ˆφ φ ˆ and that all othe fist deivatives of the cicula cylindical unit vectos with espect to the

Διαβάστε περισσότερα

Curvilinear Systems of Coordinates

Curvilinear Systems of Coordinates A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

r = x 2 + y 2 and h = z y = r sin sin ϕ

r = x 2 + y 2 and h = z y = r sin sin ϕ Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor VEKTORANALYS Kusvecka 4 CURVILINEAR COORDINATES (koklinjiga koodinatstem) Kapitel 10 Sido 99-11 TARGET PROBLEM An athlete is otating a hamme Calculate the foce on the ams. F ams F F ma dv a v dt d v dt

Διαβάστε περισσότερα

3.7 Governing Equations and Boundary Conditions for P-Flow

3.7 Governing Equations and Boundary Conditions for P-Flow .0 - Maine Hydodynaics, Sping 005 Lectue 10.0 - Maine Hydodynaics Lectue 10 3.7 Govening Equations and Bounday Conditions fo P-Flow 3.7.1 Govening Equations fo P-Flow (a Continuity φ = 0 ( 1 (b Benoulli

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Strain and stress tensors in spherical coordinates

Strain and stress tensors in spherical coordinates Saeanifolds.0 Stain and stess tensos in spheical coodinates This woksheet demonstates a few capabilities of Saeanifolds (vesion.0, as included in Saeath 7.5) in computations eadin elasticity theoy in Catesian

Διαβάστε περισσότερα

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 11 Topics Coveed: Obital angula momentum, cente-of-mass coodinates Some Key Concepts: angula degees of feedom, spheical hamonics 1. [20 pts] In

Διαβάστε περισσότερα

The Laplacian in Spherical Polar Coordinates

The Laplacian in Spherical Polar Coordinates Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

The Friction Stir Welding Process

The Friction Stir Welding Process 1 / 27 The Fiction Sti Welding Pocess Goup membes: Kik Fase, Sean Bohun, Xiulei Cao, Huaxiong Huang, Kate Powes, Aina Rakotondandisa, Mohammad Samani, Zilong Song 8th Monteal Industial Poblem Solving Wokshop

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M Maxwell' s Equations in vauum E ρ ε Physis 4 Final Exam Cheat Sheet, 7 Apil E B t B Loent Foe Law: F q E + v B B µ J + µ ε E t Consevation of hage: J + ρ t µ ε ε 8.85 µ 4π 7 3. 8 SI ms) units q eleton.6

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant CHAPTER 7 DOUBLE AND TRIPLE INTEGRALS EXERCISE 78 Page 755. Evaluate: dxd y. is integrated with respect to x between x = and x =, with y regarded as a constant dx= [ x] = [ 8 ] = [ ] ( ) ( ) d x d y =

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Kul Finite element method I, Exercise 08/2016

Kul Finite element method I, Exercise 08/2016 Kul-49.3300 Finite element metod I, Eercise 08/016 Demo problems 1. A square tin slab (1) is loaded by a po force () as sown in te figure. Derive te relationsip between te force magnitude F and displacement

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Course Reader for CHEN 7100/7106. Transport Phenomena I

Course Reader for CHEN 7100/7106. Transport Phenomena I Couse Reade fo CHEN 7100/7106 Tanspot Phenomena I Pof. W. R. Ashust Aubun Univesity Depatment of Chemical Engineeing c 2012 Name: Contents Peface i 0.1 Nomenclatue........................................

Διαβάστε περισσότερα

J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

General Relativity (225A) Fall 2013 Assignment 5 Solutions

General Relativity (225A) Fall 2013 Assignment 5 Solutions Univesity of Califonia at San Diego Depatment of Physics Pof. John McGeevy Geneal Relativity 225A Fall 2013 Assignment 5 Solutions Posted Octobe 23, 2013 Due Monday, Novembe 4, 2013 1. A constant vecto

Διαβάστε περισσότερα

Model NAST (Separable Type)

Model NAST (Separable Type) Model NAST (Sepaable Type) Mateial abon steel Rolle With cage ylindical oute ing Oute ing shape Spheical oute ing R D di 1 1 d Model NAST ating Model NAST-R Tack load capacity ylindical Spheical limit

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

ME340B Elasticity of Microscopic Structures Wei Cai Stanford University Winter Midterm Exam. Chris Weinberger and Wei Cai

ME340B Elasticity of Microscopic Structures Wei Cai Stanford University Winter Midterm Exam. Chris Weinberger and Wei Cai ME34B Elasticity of Microscopic Structures Wei Cai Stanford University Winter 24 Midterm Exam Chris Weinberger and Wei Cai c All rights reserved Issued: Feb. 9, 25 Due: Feb. 6, 25 (in class Problem M.

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x STEADY, INVISCID ( potential flow, iotational) INCOMPRESSIBLE constant Benolli's eqation along a steamline, EQATION MOMENTM constant is a steamline the Steam Fnction is sbsititing into the continit eqation,

Διαβάστε περισσότερα

Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil.

Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil. Mecánica e Meios Continos. Gao en Ingenieía Ciil. Fomlaio Básico Tema. Descipción el moimiento χ (,) t χ (,) t (,) t χ (,) t t t Tema. Defomación s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Kul Finite element method I, Exercise 07/2016

Kul Finite element method I, Exercise 07/2016 Kul-49.3300 Finite element metod I, Eercise 07/016 Demo problems y 1. Determine stress components at te midpo of element sown if u y = a and te oter nodal displacements are zeros. e approimations to te

Διαβάστε περισσότερα

Module 5. February 14, h 0min

Module 5. February 14, h 0min Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Obital angula momentum and the spheical hamonics Apil 2, 207 Obital angula momentum We compae ou esult on epesentations of otations with ou pevious expeience of angula momentum, defined fo a point paticle

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα