ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις
|
|
- Ἐπαφρᾶς Θεοδωρίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών
2
3 Συναρτήσεις 60 Ροή ελέγχου Είναι η σειρά µε την οποία εκτελούνται οι εντολές. Μέχρι τώρα, «σειριακή», «επαναληπτική» και εκτέλεση «υπό συνθήκη». ΣΕΙΡΙΑΚΗ ΕΚΤΕΛΕΣΗ ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΚΤΕΛΕΣΗ ΕΚΤΕΛΕΣΗ ΥΠΟ ΣΥΝΘΗΚΗ for, while if Πληροφορική Ι Μ. ρακόπουλος 60 46
4 Μια άλλη µορφή ϱοής ελέγχου: συναρτήσεις x = y = 2 * sqrt( x ) S Q R T 10 Πληροφορική Ι Μ. ρακόπουλος 61 Μια άλλη µορφή ϱοής ελέγχου: συναρτήσεις Ενα script καλεί µια συνάρτηση (ή υποπρόγραµµα). Ο έλεγχος µεταφέρεται προσωρινά στις εντολές της συνάρτησης. Εκτελούνται οι εντολές της συνάρτησης. Ο έλεγχος επιστρέφει στον αρχικό κώδικα. Μιά συνάρτηση µπορεί µε τη σειρά της να καλεί άλλες συναρτήσεις. Πληροφορική Ι Μ. ρακόπουλος 61 α 47
5 Η µέθοδος Newton για τετραγωνική ϱίζα x = a ισοδ. µε εύρεση της ϑετικής ϱίζας της f(x) = x 2 a. y f(x) x 3 x 2 x 1 x 0 x και για την x 2 a: Χρειάζονται 2 µεταβλητές για τα x i+1 και x i? f(x 0 ) = f (x 0 ) x 1 = x 0 f(x 0) x 0 x 1 f (x 0 ) x i+1 = x i x2 i a 2x i Πληροφορική Ι Μ. ρακόπουλος 62 Τετραγωνική ϱίζα µε αλγόριθµο Newton function x = NewtonSqrt(a) % Τετραγωνική ϱίζα µε τη µέθοδο Newton if a == 0 x = 0; else epsilon = 1e-15 % επιθυµητή ακρίβεια x = a; % αρχική εκτίµηση while abs(xˆ2 - a) > epsilon * xˆ2 % x = x - (x*x - a)/(2*x); x = (x + a/x)/2; Στην προσεγγιστική αριθµητική του υπολογιστή ϑεωρούµε ότι ϐρήκαµε τη ϱίζα όταν ϕράξουµε το σχετικό σφάλµα από κάποιο πολύ µικρό αριθµό ε (επιθυµητή ακρίβεια). ηλ. όταν x 2 a x 2 = x a/x x Πληροφορική Ι Μ. ρακόπουλος 63 < ε 48
6 Μια γεωµετρική προσέγγιση A είναι το µήκος πλευράς τετραγώνου µε εµβαδόν A. HB = A H A B Αλγόριθµος Εστω ορθογώνιο µε H = 1 και B = A. Κατασκεύασε διαδοχικά ορθογώνια εµβαδού A που να προσεγγίζουν το τετράγωνο, ϑέτοντας: B = (B + H)/2, H = A/B Σταµάτησε όταν κάποιο ορθογώνιο µοιάζει αρκετά µε τετράγωνο. Πληροφορική Ι Μ. ρακόπουλος 64 Μια γεωµετρική προσέγγιση (συνεχ.) function B = GeomSqrt(A) if A == 0 B = 0; else epsilon = 1e-15 % επιθυµητή ακρίβεια H = 1; B = A; while abs(b - H) > epsilon * B B = (B + H)/2; H = A/B; Ο αλγόριθµος αυτος ταυτίζεται µε την µ. Newton για x 0 = a. Πληροφορική Ι Μ. ρακόπουλος 65 Η (µεγάλη) ιδέα πίσω από τις συναρτήσεις Εντόπισε ένα «υπο-πρόβληµα» που χρειάζεται να επιλυθεί σαν µέρος του προγράµµατος (της συνολικής αλγοριθµικής επίλυσης για το πρόβληµα που αντιµετωπίζει το πρόγραµµα). Επίλυσε αλγοριθµικά το υπο-πρόβληµα και γράψε τον κώδικα µόνο µια ϕορά. ώσε στο κωδικα του υπο-προβλήµατος ένα όνοµα: αυτό τον µετατρέπει σε συνάρτηση. Οταν συναντήσεις ξανά το ίδιο υπο-πρόβληµα, χρησιµοποίησε απλώς το όνοµα της συνάρτησης για να Ϲητήσεις να εκτελεστεί εµβόλιµα ο κώδικας της προτού ο έλεγχος επιστρέψει πίσω. Πληροφορική Ι Μ. ρακόπουλος 65 α 49
7 Συναρτήσεις Αυτοτελής κώδικας που επιλύει συγκεκριµένο υπολογιστικό πρόβληµα. Γιατί συναρτήσεις? Λογική σχεδίαση προγραµµάτος. «Μαύρα κουτιά». Επαναχρησιµοποίηση κώδικα σε άλλα προγράµµατα. Αποφυγή επανάληψης κώδικα στο ίδιο πρόγραµµα. Ευκολότερη τροποποίηση κώδικα. Είδη συναρτήσεων: 1. Βιβλιοθήκης (µέρος του MATLAB) π.χ. sqrt, sin, fprintf. 2. Ορισµένες από προγραµµατιστή π.χ. NewtonSqrt. Πληροφορική Ι Μ. ρακόπουλος 66 Σχεδιασµός συναρτήσεων, απόκρυψη υλοποίησης Μια συνάρτηση: Προσδιορίζεται από κάποιο όνοµα (π.χ. sqrt). Υλοποιεί κάποιον αλγόριθµο και όπως κάθε αλγόριθµος χρειάζεται δεδοµένα εισόδου που παίρνει από τη συνάρτηση που την κάλεσε, και εξόδου που επιστρέφει στη συνάρτηση που την κάλεσε καλά σχεδιασµένο interface (= πως επικοινωνει µε το περιβάλλον της = τι είδους παραµέτρους χρειάζεται για να λειτουργήσει σαν «µαύρο κουτί») Μια καλά σχεδιασµένη συνάρτηση λειτουργεί σαν «µαύρο κουτί» Πληροφορική Ι Μ. ρακόπουλος 67 Προγραµµατισµός συναρτήσεων Ορισµός συνάρτησης function [<παράµετροι εξόδου>] = <όνοµα>(<παράµετροι εισόδου>) <εντολές> Κλήση συνάρτησης (στο περιβάλλον του MATLAB, ή από άλλη συνάρτηση) [<ορίσµατα εξόδου>] = <όνοµα>(<ορίσµατα εισόδου>); Το MATLAB εντοπίζει τον κώδικα µιάς συνάρτησης ΜΟΝΟ σε αρχεία µε το όνοµα της συνάρτησης και κατάληξη.m (π.χ. NewtonSqrt.m) Πληροφορική Ι Μ. ρακόπουλος 68 50
8 Τοπικές µεταβλητές Μια συνάρτηση µπορεί να ορίσει δικές της τοπικές µεταβλητές. Οι τοπικές µεταβλητές έχουν νόηµα ΜΟΝΟ µέσα στη συνάρτηση ηµιουργούνται όταν καλείται η συνάρτηση. Παύουν να υπάρχουν όταν η συνάρτηση επιστρέψει. Οι παράµετροι µιας συνάρτησης είναι επίσης τοπικές. Οι παράµετροι αρχικοποιούνται αντιγράφοντας την τιµή του ορίσµατος. Πληροφορική Ι Μ. ρακόπουλος 69 οµή προγραµµάτων: ιεραρχία συναρτήσεων FUNCTION 1 FUNCTION FUNCTION 2 3 FUNCTION FUNCTION FUNCTION FUNCTION FUNCTION Πληροφορική Ι Μ. ρακόπουλος 70 Ροή ελέγχου συνάρτησης Οταν καλείται µια συνάρτηση: 1. εσµεύεται χώρος στη µνήµη για τις παραµέτρους και τις τοπικές µεταβλητές της συνάρτησης. 2. Οι τιµές των ορισµάτων αντιγράφονται στις αντίστοιχες µεταβλητές των παραµέτρων. 3. Ο έλεγχος µεταφέρεται στο σώµα της συνάρτησης. 4. Εκτελούνται οι εντολές της συνάρτησης. 5. Ο έλεγχος και τα δεδοµένα εξόδου επιστρέφονται στην καλούσα συνάρτηση. 6. Αποδεσµεύεται ο χώρος στη µνήµη για τις παραµέτρους και τις τοπικές µεταβλητές της συνάρτησης. Πληροφορική Ι Μ. ρακόπουλος 71 51
9 Συνάρτηση για έλεγχο πρώτων αριθµών I function is_prime = isprime(n) %ISPRIME(N) Επιστρέφει 1 αν ο Ν είναι πρώτος, 0 αν είναι σύνθετος if (rem(n,2)==0 && n>2) n==1, is_prime = false; return limit = sqrt(n)+1; for divisor = 3:2:limit if rem(n,divisor) == 0 is_prime = false; return; is_prime = true; Πληροφορική Ι Μ. ρακόπουλος 72 Η εντολή return Τερµατίζει άµεσα την εκτέλεση ενός MATLAB script και ο έλεγχος επιστρέφει στο περιβάλλον του MATLAB. Τερµατίζει άµεσα την εκτέλεση µιας συνάρτησης MATLAB και ο έλεγχος επιστρέφει στην καλούσα συνάρτηση ή στο περιβάλλον του MATLAB. Πληροφορική Ι Μ. ρακόπουλος 72 α Συνάρτηση για έλεγχο πρώτων αριθµών II function is_prime = isprime(n) %ISPRIME(N) Επιστρέφει 1 αν ο Ν είναι πρώτος, 0 αν είναι σύνθετος is_prime = true; if (rem(n,2)==0 && n>2) n==1, is_prime = false; else limit = sqrt(n)+1; divisor = 3; while divisor <= limit && is_prime if rem(n,divisor) == 0 is_prime = false; else divisor = divisor + 2; Πληροφορική Ι Μ. ρακόπουλος 73 52
10 Ζεύγη πρώτων αριθµών Πρόβληµα: Να ϐρεθούν όλα τα Ϲεύγη πρώτων αριθµών p και q στο διάστηµα [3, 200] για τα οποία q = 2p + 1. Ανάλυση: Αρκεί ο έλεγχος περιττών αριθµών στο διάστηµα [3, 99]. Για κάθε περιττό p ελέγχεται άν ο 2p + 1 είναι πρώτος. Χρησιµοποιείται η µέθοδος isprime. for p = 3:2:99, if isprime(p) if isprime(2*p+1) fprintf( %g %g\n, p, 2*p+1); Πληροφορική Ι Μ. ρακόπουλος 74 Υπενθύµιση: διάταξη 3 αριθµών Πρόβληµα Να γραφεί συνάρτηση που δέχεται 3 αριθµούς a, b και c και τους επιστρέφει διατεταγµένους έτσι ώστε a b c. Ανάλυση Ενας µη προφανής (αλλά κοµψός) αλγόριθµος: 1. Εναλλαγή των a και b, αν χρειάζεται, έτσι ώστε a b. 2. Εναλλαγή των b και c, αν χρειάζεται, έτσι ώστε b c. (Τώρα η µεταβλητή c έχει την µεγαλύτερη τιµή, αλλά τα a, b δεν είναι κατ ανάγκη διατεταγµένα). 3. Εναλλαγή των a και b, αν χρειάζεται, έτσι ώστε a b. Παράδειγµα: Τι συµβαίνει για a = 3, b = 2, c = 1? Πληροφορική Ι Μ. ρακόπουλος 75 ιάταξη 3 αριθµών function [x, y] = sort2(x, y) % ιάταξη 2 αριθµών if y < x temp = y; y = x; x = temp; function [a, b, c] = sort3(a, b, c) % ιάταξη 3 αριθµών [a, b] = sort2(a, b); [b, c] = sort2(b, c); [a, b] = sort2(a, b); Πληροφορική Ι Μ. ρακόπουλος 76 53
11 Σημειώματα Σημείωμα Αναφοράς Copyright Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών, Μιχάλης Δρακόπουλος, Μιχάλης Δρακόπουλος. «Πληροφορική Ι. Ενότητα 3: Συναρτήσεις». Έκδοση: 1.0. Αθήνα Διαθέσιμο από τη δικτυακή διεύθυνση: Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.
12 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι Σημειώσεις MATLAB Ενότητα 4 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 9: Αναδρομή
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 9: Αναδρομή Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αναδροµή 24 Αναδροµή Πληροφορική Ι Μ. ρακόπουλος 24 Αναδροµικές µέθοδοι Μια µέθοδος καλεί τον εαυτό της
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 7: Αλγόριθμοι γραμμικής άλγεβρας
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 7: Αλγόριθμοι γραμμικής άλγεβρας Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αλγόριθµοι γραµµικής άλγεβρας 1 Ο συµβολισµός µεγάλο O Εστω συναρτήσεις f(n), g(n)
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Διαβάστε περισσότεραΔιοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Μαθηματικές εφαρμογές
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Μαθηματικές εφαρμογές Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μαθηµατικές εφαρµογές 34 Μέγιστος Κοινός ιαιρέτης (gcd) - I Εξαντλητικός αλγόριθµος 1 1. Εστω
Διαβάστε περισσότεραΠρογραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν
Διαβάστε περισσότεραΘερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΑνοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Διαβάστε περισσότεραΑνοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
Διαβάστε περισσότεραΈλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο
Διαβάστε περισσότεραΠρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 1: Κρίσιμα συμβάντα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Απομαγνητοφώνηση αποσπάσματος από Β Λυκείου
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Αποτελεσματικότητα αλγορίθμων
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Αποτελεσματικότητα αλγορίθμων Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αποτελεσµατικότητα αλγορίθµων 127 Αποτελεσµατικότητα αλγορίθµων Ενας σωστός αλγόριθµος
Διαβάστε περισσότεραΑνοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΔιδακτική Πληροφορικής
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 12: Επίλυση προβλημάτων σε προγραμματιστικό περιβάλλον Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Διαβάστε περισσότεραΠληροφορική ΙΙ Θεματική Ενότητα 5
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Θεματική Ενότητα 5 Λογικοί Τελεστές Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διαβάστε περισσότερα1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10
Διαβάστε περισσότεραΛογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΒάσεις Περιβαλλοντικών Δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται
Διαβάστε περισσότεραΔιδακτική της Πληροφορικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Διδακτικές Προσεγγίσεις για τον Προγραμματισμό Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Έλεγχος συνθηκών
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Έλεγχος συνθηκών Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη
Διαβάστε περισσότεραΚβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι)
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι) Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 6 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική
Διαβάστε περισσότεραΕισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου
Διαβάστε περισσότεραΜαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
Διαβάστε περισσότεραΛογικός Προγραμματισμός Ασκήσεις
Λογικός Προγραμματισμός Ασκήσεις Παναγιώτης Σταματόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Α Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2010-11... 3 1.1 Άσκηση 1...
Διαβάστε περισσότεραΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 10: Πρότυπα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διαβάστε περισσότεραΠρογραμματισμός Η/Υ. Συναρτήσεις & Υποπρογράμματα. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Συναρτήσεις & Υποπρογράμματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Τμηματικός Προγραμματισμός Η επίλυση ενός προβλήματος διευκολύνεται
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αναζήτηση και ταξινόµηση 7 Αναζήτηση (search) Πρόβληµα: αναζήτηση της καταχώρησης key στη
Διαβάστε περισσότεραΤίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΚβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Δομές επανάληψης
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Δομές επανάληψης Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 3 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη
Διαβάστε περισσότεραΔιδακτική των εικαστικών τεχνών Ενότητα 1
Διδακτική των εικαστικών τεχνών Ενότητα 1 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 1. Ιστορική αναδρομή της διδακτικής της
Διαβάστε περισσότεραΔιδακτική των εικαστικών τεχνών Ενότητα 3
Διδακτική των εικαστικών τεχνών Ενότητα 3 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 3. Ο ρόλος του εκπαιδευτικού: σχεδιασμός
Διαβάστε περισσότεραΛογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΔιοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
Διαβάστε περισσότεραΔιδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διαβάστε περισσότεραΔιδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διαβάστε περισσότεραΔιδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διαβάστε περισσότεραΔιδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Διαβάστε περισσότεραΕνδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...
Διαβάστε περισσότεραΜηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΕισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών
Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.
Διαβάστε περισσότεραΓενική Φυσική Ενότητα: Ταλαντώσεις
Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση
Διαβάστε περισσότεραΕισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα #5: Δομές επιλογής Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Δομές επιλογής MATLAB Programming Α. Καλαμπούνιας Η δομή επιλογής if Η δομή if στο
Διαβάστε περισσότεραΜυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης
Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα
Διαβάστε περισσότεραΦιλοσοφία της Ιστορίας και του Πολιτισμού
Φιλοσοφία της Ιστορίας και του Πολιτισμού Ενότητα 1: Εισαγωγή στις έννοιες Ιστορίας και Πολιτισμού Λάζου Άννα Εθνικὸ και Καποδιστριακὸ Πανεπιστήμιο Aθηνών Τμήμα Φιλοσοφίας Παιδαγωγικής και Ψυχολογίας Φιλοσοφία
Διαβάστε περισσότεραΔιδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διαβάστε περισσότεραΠρογραμματισμός Η/Υ. 6 η ενότητα: Συναρτήσεις. Τμήμα. Τεχνολόγων Περιβάλλοντος. ΤΕΙ Ιονίων Νήσων. Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Προγραμματισμός Η/Υ 6 η ενότητα: Συναρτήσεις Τμήμα Τεχνολόγων Περιβάλλοντος ΤΕΙ Ιονίων Νήσων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Διαβάστε περισσότεραΓενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας
Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις στην Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας... 4 1.1
Διαβάστε περισσότεραΛογικός Προγραμματισμός Ασκήσεις
Λογικός Προγραμματισμός Ασκήσεις Παναγιώτης Σταματόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Ασκήσεις "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2003-04... 3 1.1 Άσκηση 1 (0.2 μονάδες)...
Διαβάστε περισσότεραΛογικός Προγραμματισμός Ασκήσεις
Λογικός Προγραμματισμός Ασκήσεις Παναγιώτης Σταματόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Β Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2012-13... 3 1.1 Άσκηση 4...
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΈλεγχος Ποιότητας Φαρμάκων
Έλεγχος Ποιότητας Φαρμάκων Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Συσκευές Αποσάθρωση Δισκίων (ενός καλαθιού (δεξιά) και δύο καλαθιών (αριστερά) 2 Συσκευή Αποσάθρωσης 4
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους Φροντιστήριο 1
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΜαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Διαβάστε περισσότεραΚβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί
Διαβάστε περισσότεραΜαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Διαβάστε περισσότεραΔιδακτική Πληροφορικής
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 7: Η πληροφορική και ο προγραμματισμός στο εκπαιδευτικό σύστημα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative
Διαβάστε περισσότεραΘερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
Διαβάστε περισσότεραΕισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ ΙI Ενότητα 3: Έλεγχος ροής προγράμματος
ΠΛΗΡΟΦΟΡΙΚΗ ΙI Ενότητα 3: Έλεγχος ροής προγράμματος Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (Java) Ενότητα 3 ΕΛΕΓΧΟΣ ΡΟΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Ι. Ελεγκτές συνθηκών ή περιπτώσεων:
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra
Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΓενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος
Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Δυναμικής Άκαμπτου Σώματος... 4 1.1 Ερώτηση 1... 4 1.2 Ερώτηση 2... 4 1.3 Ερώτηση
Διαβάστε περισσότεραΔιδακτική Απειροστικού Λογισμού
Διδακτική Απειροστικού Λογισμού Ενότητα 4: Θέματα σχετικά με τη διδασκαλία της συνέχειας. Ζαχαριάδης Θεοδόσιος Τμήμα Μαθηματικών 4. ΣΥΝΕΧΕΙΑ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ 1. Σε μια τάξη Γ Λυκείου στα μαθηματικά κατεύθυνσης
Διαβάστε περισσότεραΕφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Ενότητα: Εργασίες Διδάσκων: Βασίλης Κόμης, Καθηγητής komis@upatras.gr www.ecedu.upatras.gr/komis/ Τμήμα Επιστημών
Διαβάστε περισσότεραΕνότητα. Εισαγωγή στις βάσεις δεδομένων
Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.
Διαβάστε περισσότεραΔομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 4: Εντολές ελέγχου ροής Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διαβάστε περισσότεραΔιεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Διαβάστε περισσότεραΥπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ
Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 10 Βάσεις Groebner ενός ιδεώδους 10.1 Τρίτο μέρος Επαναλαμβάνουμε
Διαβάστε περισσότεραΘεατρικές Εφαρμογές και Διδακτική της Φυσικής Ι
Θεατρικές Εφαρμογές και Διδακτική της Φυσικής Ι Ενότητα 2: Παράλληλες θεωρητικές και εργαστηριακές προσεγγίσεις των τεχνικών και της δομής του κουκλοθέατρου, της κινούμενης εικόνας και ενός θέματος από
Διαβάστε περισσότεραΠληροφορική ΙΙ Ενότητα 1
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός
Διαβάστε περισσότεραΛογικός Προγραμματισμός Ασκήσεις
Λογικός Προγραμματισμός Ασκήσεις Παναγιώτης Σταματόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Α Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2011-12... 3 1.1 Άσκηση 1...
Διαβάστε περισσότεραΕισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΥπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού
Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μέρος II Πολυώνυμα μίας μεταβλητής 17 Κεφάλαιο 3 Πολυώνυμα τρίτου βαθμού 3.1 Μάθημα
Διαβάστε περισσότεραΜαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 6: Όριο και συνέχεια συναρτήσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Διαβάστε περισσότεραΑρχές Προγραμματισμού
Αρχές Προγραμματισμού Ενότητα: Εργαστηριακή Άσκηση 2 Παλιουράς Βασίλης, Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1. Σκοποί ενότητας----------------------------------------------------------------------------------------------------------
Διαβάστε περισσότεραΤεχνικό Σχέδιο - CAD
Τεχνικό Σχέδιο - CAD Προσθήκη Διαστάσεων & Κειμένου ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Εντολές προσθήκης διαστάσεων & κειμένου Στο βασική (Home)
Διαβάστε περισσότεραΔιδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διαβάστε περισσότεραΤο Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 1.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Βασιλική Λεβέντη.
Διαβάστε περισσότεραΠρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 5: H έννοια της μαθηματικής δραστηριότητας, H Θεωρία Διδακτικών Καταστάσεων ως πλαίσιο σχεδιασμού δραστηριοτήτων Δέσποινα Πόταρη, Γιώργος
Διαβάστε περισσότεραΔομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 1: Εισαγωγή Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
Διαβάστε περισσότεραΠρογραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 3: Αρχεία script- Αρχεία συναρτήσεων Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΈρευνα στη Διδακτική των Μαθηματικών και Διδακτική Πράξη
Έρευνα στη Διδακτική των Μαθηματικών και Διδακτική Πράξη Δέσποινα Πόταρη Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Επιλογή 1 Σκεφτείτε τα παρακάτω θέματα που οι μαθητές φαίνεται να αντιμετωπίζουν δυσκολία
Διαβάστε περισσότεραΕισαγωγή στη Μουσική Τεχνολογία Ενότητα: Ελεγκτές MIDI μηνυμάτων (Midi Controllers)
Εισαγωγή στη Μουσική Τεχνολογία Ενότητα: Ελεγκτές MIDI μηνυμάτων (Midi Controllers) Αναστασία Γεωργάκη Τμήμα Μουσικών Σπουδών Περιεχόμενα 5. Ελεγκτές MIDI μηνυμάτων (Midi Controllers)... 3 Σελίδα 2 5.
Διαβάστε περισσότεραΕισαγωγή στις Επιστήμες της Αγωγής
Εισαγωγή στις Επιστήμες της Αγωγής Αλεξάνδρα Ανδρούσου - Βασίλης Τσάφος Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Επίπεδα Κοινωνιολογίας της Εκπαίδευσης Αναλύει τη θέση και τη λειτουργία
Διαβάστε περισσότεραΤίτλος Μαθήματος. Ενότητα 1: Γενικά περί λογικού προγραμματισμού
Τίτλος Μαθήματος Ενότητα 1: Παναγιώτης Σταματόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Εισαγωγική ενότητα για τον λογικό προγραμματισμό. 2 Γενικά περί λογικού
Διαβάστε περισσότεραΧωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
Διαβάστε περισσότεραΔομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 9: Μνήμη Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 1: Εισαγωγή Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται
Διαβάστε περισσότεραΕισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΕισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΠρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 4: Η έννοια της γωνίας και του εμβαδού Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό ΟΝΟΜΑ: 1) 2) ΗΜΕΡΟΜΗΝΙΑ:
Διαβάστε περισσότεραΑριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Ενότητα 1: Εισαγωγή Βασικές Έννοιες Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΛΙΕΡΗΣ Εισαγωγή 2 Περιεχόμενα 1. Εισαγωγή 2. Αριθμητική παραγώγιση
Διαβάστε περισσότερα