AN ADVANCED COMPUTATIONAL TOOL FOR INELASTIC ANALYSIS OF STEEL STRUCTURES
|
|
- Νατάσα Γερμανού
- 8 χρόνια πριν
- Προβολές:
Transcript
1 AN ADVANCED COMPUTATIONAL TOOL FOR INELASTIC ANALYSIS OF STEEL STRUCTURES Andreas E. Kampitsis Civil Engineer, MSc, PhD Student Institute of Structural Analysis, School of Civil Engineering National Technical University of Athens Zografou Campus, GR Athens, Greece Evangelos J. Sapountzakis Professor N.T.U.A. Institute of Structural Analysis, School of Civil Engineering National Technical University of Athens Zografou Campus, GR Athens, Greece 1. ABSTRACT In this paper an advanced computational tool for the inelastic analysis of steel structures accounting for axial-shear flexure interaction, is presented. The proposed formulation is based on Boundary Element Method (BEM). The steel member is subjected to arbitrarily distributed or concentrated vertical loading along its length, while its edges are subjected to the most general boundary conditions. A disacement based procedure is emoyed and inelastic redistribution is modeled through a distributed asticity model exoiting material constitutive laws and numerical integration over the cross-sections. An incremental - iterative solution strategy along with an efficient iterative process are emoyed, while the arising boundary value problem is solved emoying the boundary element method. The proposed computational tool is emoyed for the analysis of representative numerical apications, illustrating its efficiency and accuracy. 2. INTRODUCTION Design of steel structures based on elastic analysis are most likely to be extremely conservative not only due to significant difference between initial yield and full astification in a cross section, but also due to the unaccounted for yet significant reserves of strength that are not mobilized in redundant members until after inelastic redistribution takes ace. Thus, material nonlinearity is important for investigating the ultimate strength of a steel member that resists bending loading, while distributed asticity models are acknowledged in the literature [1-3] to capture more rigorously
2 material nonlinearities than cross sectional stress resultant approaches [4] or lumped asticity idealizations [5, 6]. In this paper, a boundary element method is developed for the inelastic analysis of steel members accounting for axial-shear flexure interaction. The essential features and novel aspects of the present formulation compared with previous ones are summarized as follows. i. Axial, shear and flexure interaction is incorporated in this formulation. ii. The shear deformation effect in the steel member is taken into account while shear locking is avoided by emoying the same order of approximation for both the rotation due to bending and the derivative of the deflection. iii. The formulation is a disacement based one taking into account inelastic redistribution along the member axis by exoiting material constitutive laws and numerical integration over the cross sections (distributed asticity approach). iv. An incremental - iterative solution strategy is adopted to restore global equilibrium of the beam. v. The beam is supported by the most general nonlinear boundary conditions including elastic support or restrain. vi. To the authors knowledge, a BEM approach has not yet been used for the solution of the aforementioned problem, while the developed procedure retains most of the advantages of a BEM solution even though domain discretization is required. Numerical results are worked out to illustrate the method, demonstrate its efficiency and accuracy. 3. STATEMENT OF THE PROBLEM Let us consider a steel member of length l of arbitrary constant cross-section having at least one axis of symmetry (z-axis), occupying the two dimensional multiy connected region of the y,z ane bounded by the j j 1,2,...,K boundary curves, which are piecewise smooth, i.e. they may have a finite number of corners. The normal stress-strain relationship of the material is assumed to be elastic-asticstrain hardening with initial modulus of elasticity E 0, shear modulus G, post-yield modulus of elasticity E t, yield stress Y 0 and yield strain Y0. The member is subjected to the combined action of arbitrarily distributed or concentrated transverse loading m x acting in the x direction. pz x and bending moment y 3.1 Equations of global equilibrium To establish global equilibrium equations, the princie of virtual work neglecting body forces is emoyed, that is S S dv t u t w df xx xx xz xz x z (1) V F where the integral quantities represent the strain energy and the external load work while denotes virtual quantities, V is the volume and F is the surface of the
3 member. After conducting some algebraic manipulations, the global equilibrium equations are obtained as N d N N dn EAu ww px px x dx dx M dm EI GA zw Q m Q m x dx y y z y z y z y 1 2 N w Qz EA u' w' w GA zw p 2 x x dnw dqz dx el z y z along with its corresponding boundary conditions 1 2 a u a EAu' w' N a a u a N a y 2 y y 3 1 y 2 y 3 b b EI M b b b M b (6) z y z c w c EAu' w' w' N w GA z w Q c3 2 (7) c 1w c2vz c3 where u, w are the disacement components of the centroid, y is the angle of rotation due to bending of the cross-section with respect to its centroid, N, Q, M are the stress resultant corresponding to the internal axial force, shear force and bending moment, respectively, while a i,b i,c i (i 1,2,3 ) are functions specified at the member ends. dx z y (2) (3) (4) (5) 3.2 Integral Representations Numerical Solution According to the precedent analysis, the inelastic problem of steel members reduces to establishing the disacement components satisfying the boundary value problem described by the governing differential eq. (2-4) along the boundary conditions (5-7). This boundary value problem is solved emoying BEM [7], as this is developed in [8] for the solution of second order differential equation with constant coefficients, after some modifications. 4. NUMERICAL EXAMPLES The influence of the axial-shear flexure couing on the behavior of the steel structures is investigated in this exame. For this purpose, an I-shaped cross section beam of length l 2m, has been studied. The geometric properties of the selected cross section are given in Table 1, while the beam s material is considered to be elastic-perfectly astic with modulus of elasticity E 213.4GPa, shear modulus
4 y G 82GPa and yielding stress 285MPa. The beam is either clamed of fixedpinned supported, while it is subjected to monotonically increasing uniformly distributed load. The beam is discretized with 22 linear longitudinal elements, 43 quadrilateral cells (12 layers in the wed and 2 in each flange) and a 1 1 Gauss integration scheme for each cell. Total height h 0.3m Flange width t 0.02m Total width b 0.3m Web width t 0.01m Moment of Inertia Iy m Shear Correction Factor Table 1. Geometric properties of the I-shaped cross section f w a In Fig. 1(a,b) the load-disacement curves are presented, performing either geometrically linear or nonlinear analysis, for both the boundary condition cases. The results are compared with those obtained from a FEM model imemented in NX Nastran [9] by emoying 2400 quadrilateral shell elements. Excellent convergence between the results is observed. In the same figures the von Mises stress vm distribution is also presented illustrating the astification of the wed, as well as the non-symmetry of the normal stresses due to the developed axial force. Additionally, the flexure-only response is presented in these figures. Since the beam yields in shear, the Euler-Bernoulli model fails to capture the nonlinear response and overestimates the collapse load of approximately 320% for the clamed and 256% for the fixedpinned boundary conditions. z Fig 1. Midpoint load disacement curve of the clamed (a)and fixed-pinned (b) beam. The main reason for that divergence is its inability to predict the exact collapse mechanism. This can be also evident from the von Mises stress distribution contour diagram presented in Fig 2. In more detail, Fig. 2(a) show the stress distribution along the length of the web for geometrically nonlinear analysis as compared with those obtained from the shell model [9], while in Fig. 2 (b) the same results are resented for
5 Height (m) Height (m) geometrically linear analysis. From this figure, the predominant shear character of the collapse mechanism is observed while the accuracy of the proposed beam formulation is verified Geometrically Nonlinear Analysis - Load 720kN/m Present Study FEM Shell Model Nastran [9] (a) 0.15 Geometrically Linear Analysis - Load=680kN/m Present Study FEM Shell Model Nastran [9] (b) Fig.2 von Mises stress distribution contour diagrams along the length of the web for geometrically nonlinear (a) & linear (b) analysis. 5. CONCLUDING REMARKS In this paper, BEM approach is developed for the inelastic analysis of steel members accounting for axial-shear flexure interaction. The main conclusions that can be drawn from this investigation are: a. The proposed beam formulation is capable of obtaining results of high accuracy, as verified by comparing with 2D/3D FEM models, with minimum computational cost. Its advantageous character over more refined approaches is also enhanced by the following:
6 The developed beam formulation reduces significantly modeling effort (shell/solid models require cumbersome pre-processing even in relatively sime cases). It permits isolation of structural phenomena and results interpretation (quantities such as stress resultants etc. are also evaluated in contrast to shell/solid model which yields only disacements and stress components). It allows straightforward model handling (boundary conditions and external loading are easily simulated). It facilitates parametric analyses (solid modeling often requires construction of multie models). b) Accurate results are obtained using a relatively small number of nodal points across the longitudinal axis. c) The interaction between shear and flexure is of paramount importance in the inelastic analysis of steel structures. d) The influence of the geometrically nonlinear analysis is confirmed. 6. ACKNOWLEDGMENT This research has been financially supported by the Bodossakis Foundation 7. REFERENCES [1] Nukala P.and White D. A mixed finite element for three-dimensional nonlinear analysis of steel frames, Computer Methods in Apied Mechanics and Engineering, Vol. 193, 2004, pp [2] Teh L. and Clarke M. Plastic-zone analysis of 3D steel frames using beam elements, Journal of Structural Engineering, Vol. 125, 1999, pp [3] Saritas A. and Filippou FC. Frame Element for Metallic Shear-Yielding Members under Cyclic Loading, J. Struct. Engrg, Vol. 135, 2009, pp [4] Attalla MR., Deierlein GG. and McGuire W. Spread of Plasticity: Quasi- Plastic-Hinge Approach, J. Struct. Engrg, Vol. 120, 1994, pp [5] Orbison JG., McGuire W. and Abel JF., Yield surface apications in nonlinear steel frame analysis, Computer Methods in Apied Mechanics and Engineering, Vol. 33, 1982, pp [6] Ngo-Huu C., Kim S. and Oh J., Nonlinear analysis of space steel frames using fiber astic hinge concept, Engineering Structures, Vol. 29, 2007, pp [7] Katsikadelis JT., Boundary Elements: Theory and Apications, Amsterdam- London, United Kingdom, Elsevier, [8] Sapountzakis EJ., Solution of non-uniform torsion of bars by an integral equation method, Computers and Structures, Vol. 77, 2000, pp [9] NX Nastran User s Guide, Siemens PLM Software Inc, 2007.
7 ΣΤΟΙΧΕΙΟ ΔΟΚΟΥ ΓΙΑ ΠΡΟΧΩΡΗΜΕΝΗ ΑΝΕΛΑΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΑΠΟ ΧΑΛΥΒΑ Ανδρέας Ε. Καμπίτσης Πολιτικός Μηχανικός, MSc, Υποψήφιος Διδάκτωρ Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Πολυτεχνειούπολη Ζωγράφου, Αθήνα Ευάγγελος Ι. Σαπουντζάκης Καθηγητής E.M.Π. Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Πολυτεχνειούπολη Ζωγράφου, Αθήνα ΠΕΡΙΛΗΨΗ Στην παρούσα εργασία, παρουσιάζεται η μεθοδολογία για τη ανάπτυξη στοιχείου δοκού για την ανελαστική ανάλυση κατασκευών από χάλυβα, λαμβάνοντας υπόψη την αλληλεπίδραση αξονικής, τέμνουσας και καμπτικής ροπής. Η προτεινόμενη μεθοδολογία βασίζεται στη Μέθοδο Συνοριακών Στοιχείων (ΒΕΜ). Το δομικό στοιχείο, τυχούσης διατομής μονής συμμετρίας, υπόκειται στις πλέον γενικές μη γραμμικές συνοριακές συνθήκες, ενώ κατά την ανάλυση λαμβάνεται υπόψη το φαινόμενο διατμητικής παραμόρφωσης με τη βοήθεια της θεωρίας δοκού Timoshenko, η οποία συνυπολογίζει έμμεσα το φαινόμενο αυτό μέσω διορθωτικών συντελεστών διάτμησης. Το στοιχείο υπόκειται σε τυχαία κατανεμημένα ή/και συγκεντρωμένα αξονικά και εγκάρσια φορτία. Οι εξισώσεις ισορροπίας εξάγονται στην παραμορφωμένη κατάσταση συνυπολογίζοντας τη γεωμετρική μη γραμμικότητα λόγω των μετρίως μεγάλων μετατοπίσεων. Οι πλαστικές παραμορφώσεις προσδιορίζονται μέσω προσομοιώματος κατανεμημένης πλαστικότητας (distributed asticity model) χρησιμοποιώντας τριδιάστατες καταστατικές σχέσεις. Οι σχέσεις αυτές ολοκληρώνονται με τη βοήθεια κατάλληλης επαναληπτικής μεθόδου. Η αποτελεσματικότητα και το εύρος εφαρμογής της μεθόδου παρουσιάζεται μέσα από παραδείγματα με ιδιαίτερο πρακτικό ενδιαφέρον.
ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΛΥΣΕΩΝ ΚΑΝΟΝΙΣΤΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ
Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Μεταπτυχιακή Εργασία
ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών ΠΜΣ οµοστατικός Σχεδιασµός και Ανάλυση Κατασκευών Εργαστήριο Μεταλλικών Κατασκευών Μεταπτυχιακή ιπλωµατική Εργασία ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ
Αλληλεπίδραση Ανωδοµής-Βάθρων-Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Αλληλεπίδραση Ανωδοµής-Βάθρων- Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα ΙΠΛΩΜΑΤΙΚΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ ιπλωµατική εργασία: Λεµονάρη Μαρίνα Επιβλέπων καθηγητής:
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ ΦΟΙΤΗΤΡΙΑ: Γ.ΦΕΒΡΑΝΟΓΛΟΥ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Χ.ΓΑΝΤΕΣ ΑΘΗΝΑ, ΟΚΤΩΒΡΙΟΣ 2000
Introduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τοµέας οµοστατικής Εργαστήριο Μεταλλικών Κατασκευών ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ιπλωµατική Εργασία Ιωάννη Σ. Προµπονά
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ιερεύνηση αξιοπιστίας EC3 για τον έλεγχο αστοχίας µεταλλικών πλαισίων ιπλωµατική Εργασία: Καλογήρου
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
MECHANICAL PROPERTIES OF MATERIALS
MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain
ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ
ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ Νικόλαος Αντωνίου Πολιτικός Μηχανικός Τµήµα Πολιτικών Μηχανικών, Α.Π.Θ.,
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΛΥΓΙΣΜΟΣ ΠΛΑΚΩΝ ΚΑΙ Η ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΤΗΝ ΚΑΤΑΤΑΞΗ ΤΩΝ ΙΑΤΟΜΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ Εργαστήριο Μεταλλικών Κατασκευών ΛΥΓΙΣΜΟΣ ΠΛΑΚΩΝ ΚΑΙ Η ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΤΗΝ ΚΑΤΑΤΑΞΗ ΤΩΝ ΙΑΤΟΜΩΝ ιπλωµατική Εργασία Μαρία Μ. Βίλλη
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ιπλωµατική Εργασία «ΙΕΡΕΥΝΗΣΗ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΚΑΘΟΛΙΚΟΥ ΚΑΙ ΤΟΠΙΚΟΥ ΑΝΕΛΑΣΤΙΚΟΥ ΛΥΓΙΣΜΟΥ ΜΕ ΤΗ ΜΕΘΟ
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ Εργαστήριο Μεταλλικών Κατασκευών ιπλωµ ατική εργασία «Α Ν Α Λ Υ Τ Ι Κ Η Κ Α Ι Α Ρ Ι Θ Μ Η Τ Ι Κ Η Ι Ε Ρ Ε Υ Ν Η Σ Η Π Ρ Ο Β Λ Η
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική και µη γραµµική συµπεριφορά
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική
ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΤΟΞΩΝ ΑΠΟ ΧΑΛΥΒΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΤΟΞΩΝ ΑΠΟ ΧΑΛΥΒΑ ΦΟΙΤΗΤΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Π. Α ΑΜΑΚΟΣ ΕΠΙΒΛΕΠΟΝΤΕΣ
ΑΞΙΟΠΙΣΤΙΑ ΘΕΩΡΙΑΣ ΛΕΠΤΟΤΟΙΧΩΝ ΙΑΤΟΜΩΝ ΣΕ ΡΑΒ ΟΥΣ ΥΠΟ ΜΗ ΓΡΑΜΜΙΚΗ ΕΛΑΣΤΟΠΛΑΣΤΙΚΗ ΟΜΟΙΟΜΟΡΦΗ ΣΤΡΕΨΗ
ΑΞΙΟΠΙΣΤΙΑ ΘΕΩΡΙΑΣ ΛΕΠΤΟΤΟΙΧΩΝ ΙΑΤΟΜΩΝ ΣΕ ΡΑΒ ΟΥΣ ΥΠΟ ΜΗ ΓΡΑΜΜΙΚΗ ΕΛΑΣΤΟΠΛΑΣΤΙΚΗ ΟΜΟΙΟΜΟΡΦΗ ΣΤΡΕΨΗ Ευάγγελος Ι. Σαπουντζάκης Αναπληρωτής Καθηγητής Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ» ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ Εργαστήριο Μεταλλικών Κατασκευών Μεταπτυχιακή εργασία «Α Ν Α Λ
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΙΑΓΡΑΜΜΑΤΑ ΡΟΗΣ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΣΥΜΜΕΙΚΤΩΝ ΣΤΟΙΧΕΙΩΝ ΒΑΣΕΙ ΤΟΥ EC4 KAI ΣΥΓΚΡΙΣΗ ΜΕ ΤΟΝ LRFD
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΙΑΓΡΑΜΜΑΤΑ ΡΟΗΣ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΣΥΜΜΕΙΚΤΩΝ ΣΤΟΙΧΕΙΩΝ
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ Εργαστήριο Μεταλλικών Κατασκευών ιπλωµ ατική εργασία του ηµητρίου Ε. Σταντίδη Μ Ε Θ Ο Ο Ι Ε Ν Ι Σ Χ Υ Σ Η Σ Κ Α Τ Α Σ Κ Ε Υ Ω Ν
katoh@kuraka.co.jp okaken@kuraka.co.jp mineot@fukuoka-u.ac.jp 4 35 3 Normalized stress σ/g 25 2 15 1 5 Breaking test Theory 1 2 Shear tests Failure tests Compressive tests 1 2 3 4 5 6 Fig.1. Relation between
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
«Διερεύνηση μη γραμμικής συμπεριφοράς μεταλλικών διατμητικών τοιχωμάτων»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Διερεύνηση μη γραμμικής συμπεριφοράς μεταλλικών διατμητικών τοιχωμάτων» Βιολέττα
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΕΙΚΟΝΙΚΗΣ ΠΛΑΤΦΟΡΜΑΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΤΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΑΝΘΡΩΠΙΝΟΥ ΗΠΑΤΟΣ ΜΕ ΤΗ ΧΡΗΣΗ ΑΠΤΙΚΟΥ ΜΕΣΟΥ Δηµήτρης Δούνας
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά. Κωδικός μαθήματος:
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά Γενικές πληροφορίες μαθήματος: Τίτλος μαθήματος: ΕΛΑΣΤΟΠΛΑΣΤΙΚΉ ΑΝΆΛΥΣΗ ΤΩΝ
Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης
Διπλωματική Εργασία Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική Αντωνίου Φάνης Επιβλέπουσες: Θεοδώρα Παπαδοπούλου, Ομότιμη Καθηγήτρια ΕΜΠ Ζάννη-Βλαστού Ρόζα, Καθηγήτρια
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ tf=14 mm 140 120 100 ροπή (kn*m) 80 60 40 Nastran 20 EK-3 0 0 0.01 0.02 0.03 0.04 0.05 0.06 στροφή
Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers
1/5 Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Deendent Polymers by Yukio SANOMURA Hydrostatic ressure deendence in mechanical behavior of olymers is studied for the constitutive
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ οµοστατικός Σχεδιασµός και Ανάλυση Κατασκευών
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ οµοστατικός Σχεδιασµός και Ανάλυση Κατασκευών ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΚΩΝ/ΝΟΥ ΑΘΑΝΑΣΙΟΥ ΜΕ ΘΕΜΑ Παραµετρικές
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ
Σχολή Μηχανικής και Τεχνολογίας Πτυχιακή εργασία ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ Σωτήρης Παύλου Λεμεσός, Μάιος 2018 i ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ
Οριακή και Παραμορφωσιακή Ανάλυση Κατασκευών με χρήση Μαθηματικού Προγραμματισμού
Ημερίδα Διάχυσης Αποτελεσμάτων Οριακή και Παραμορφωσιακή Ανάλυση Κατασκευών με χρήση Μαθηματικού Προγραμματισμού Μανωλά Μ.Μ. Σ., Κουμούσης Β.Κ. Τομέας Στατικής & Αντισεισμικών Ερευνών Αθήνα, Μάιος 2014
Εθνικό Μετσόβιο Πολυτεχνείο. Τµήµα Πολιτικών Μηχανικών. Τοµέας οµοστατικής Εργαστήριο Μεταλλικών Κατασκευών
Εθνικό Μετσόβιο Πολυτεχνείο Τµήµα Πολιτικών Μηχανικών Τοµέας οµοστατικής Εργαστήριο Μεταλλικών Κατασκευών Πειραµατική και Αριθµητική ιερεύνηση Μεταλλικών Συνδέσεων οκού - Υποστυλώµατος ιπλωµατική εργασία
ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα
ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜOΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΙΑ ΝΕΑ ΜΕΘΟ ΟΣ ΠΡΟΜΕΛΕΤΗΣ ΓΙΑ ΤΑ ΥΨΗΛΑ ΚΤΙΡΙΑ ΕΠΙΒΛΕΠΩΝ: ρ. Χ. ΓΑΝΤΕΣ -ΛΕΚΤΟΡΑΣ Ε.Μ.Π. ΙΠΛΩΜΑΤΙΚΗ
AN ADVANCED BEAM ELEMENT FOR THE ANALYSIS OF STEEL STRUCTURES
AN ADVANCED BEAM ELEMENT FOR THE ANALI OF TEEL TRUCTURE Εvangelos J. apountzakis rofessor chool of Civil Engineering, National Technical University of Athens ografou Campus, GR-157 80, Athens, Greece e-mail:
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Εθνικό Μετσόβιο Πολυτεχνείο Τµήµα Πολιτικών Μηχανικών Τοµέας οµοστατικής Εργαστήριο Μεταλλικών Κατασκευών
Εθνικό Μετσόβιο Πολυτεχνείο Τµήµα Πολιτικών Μηχανικών Τοµέας οµοστατικής Εργαστήριο Μεταλλικών Κατασκευών Προσοµοίωση Μεταλλικών Συνδέσεων µε τη Μέθοδο των Πεπερασµένων Στοιχείων ιπλωµατική Εργασία του
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Aerodynamics & Aeroelasticity: Beam Theory
Εθνικό Μετσόβιο Πολυτεχνείο National Technical Universit of thens erodnamics & eroelasticit: Beam Theor Σπύρος Βουτσινάς / Spros Voutsinas Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
ΠΡΟΜΕΛΕΤΗ ΥΨΗΛΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΙΣΟ ΥΝΑΜΟΥ ΠΡΟΒΟΛΟΥ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ENGINEERING ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ NATIONAL UNIVERSITY OF ATHENS FACULTY OF CIVIL ENGINEERING DIVISION OF STRUCTURAL LABORATORY
DETERMINATION OF THE ROTATIONAL CAPACITY OF COMPACT STEEL BEAMS AT ELEVATED TEMPERATURES CONSIDERING LOCAL AND GLOBAL GEOMETRIC IMPERFECTIONS
DETERMINATION OF THE ROTATIONAL CAPACITY OF COMPACT STEEL BEAMS AT ELEVATED TEMPERATURES CONSIDERING LOCAL AND GLOBAL GEOMETRIC IMPERFECTIONS Daphne Pantousa Civil Engineer, Msc, Doctoral Candidate Department
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
ΙΕΡΕΥΝΗΣΗ ΜΕΘΟ ΩΝ ΣΧΕ ΙΑΣΜΟΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΙΕΡΕΥΝΗΣΗ ΜΕΘΟ ΩΝ ΣΧΕ ΙΑΣΜΟΥ ΟΧΥΡΩΜΑΤΙΚΩΝ ΕΡΓΩΝ ιπλωµατική Εργασία Γεώργιος Κ. Πανούσης Επιβλέπων ρ. Χάρης Γαντές Επίκουρος Καθηγητής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΑΕΙΦΟΡΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Δημήτριος Πάντζαλης Πτυχιούχος Γεωπόνος Α.Π.Θ.
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Α.Σ.ΠΑΙ.Τ.Ε.) «Αρχιμήδης ΙΙΙ Ενίσχυση Ερευνητικών ομάδων στην Α.Σ.ΠΑΙ.Τ.Ε.» Υποέργο: 8 Τίτλος: «Εκκεντρότητες αντισεισμικού σχεδιασμού ασύμμετρων
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα
Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα Experimental verification of shear wall modeling using finite element
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ
ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ
Mechanical Behaviour of Materials Chapter 5 Plasticity Theory
Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Dr.-Ing. 郭瑞昭 Yield criteria Question: For what combinations of loads will the cylinder begin to yield plastically? The criteria for deciding
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ
ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
ΙΕΡΕΥΝΗΣΗ ΕΙ ΙΚΩΝ ΘΕΜΑΤΩΝ ΑΝΗΡΤΗΜΕΝΟΥ ΣΤΕΓΑΣΤΡΟΥ ΜΕΣΩ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΝΑΛΥΣΕΩΝ ΜΕ ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Μεταπτυχιακή Εργασία ΙΕΡΕΥΝΗΣΗ ΕΙ ΙΚΩΝ ΘΕΜΑΤΩΝ ΑΝΗΡΤΗΜΕΝΟΥ ΣΤΕΓΑΣΤΡΟΥ ΜΕΣΩ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΝΑΛΥΣΕΩΝ
Mechanics of Materials Lab
Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"
Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For