Numerische Mathematik

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Numerische Mathematik"

Transcript

1 Numer. Mat. DOI /s Numerisce Matematik Error analysis of a mixed finite element metod for a Can Hilliard Hele Saw system Yuan Liu 1 Wenbin Cen 1 Ceng Wang Steven M. Wise Received: 6 October 015 / Revised: 9 February 016 Springer-Verlag Berlin Heidelberg 016 Abstract We present and analyze a mixed finite element numerical sceme for te Can Hilliard Hele Saw equation, a modified Can Hilliard equation coupled wit te Darcy flow law. Tis numerical sceme was first reported in Feng and Wise SIAM J Numer Anal 50:10 14, 01, wit te weak convergence to a weak solution proven. In tis article, we provide an optimal rate error analysis. A convex splitting approac is taken in te temporal discretization, wic in turn leads to te unique solvability and unconditional energy stability. Instead of te more standard l 0, T ; L l 0, T ; H error estimate, we perform a discrete l 0, T ; H 1 l 0, T ; H error estimate for te pase variable, troug an L inner product wit te numerical error function associated wit te cemical potential. As a result, an unconditional convergence for te time step τ in terms of te spatial resolution isderived.tenonlinearanalysisisaccomplisedwitteelp of a discrete Gagliardo Nirenberg type inequality in te finite element space, gotten by introducing a discrete Laplacian of te numerical solution, suc tat φ S, for every φ S,wereS is te finite element space. B Steven M. Wise swise1@utk.edu Yuan Liu @fudan.edu.cn Wenbin Cen wbcen@fudan.edu.cn Ceng Wang cwang1@umassd.edu 1 Scool of Matematical Sciences, Fudan University, Sangai 004, Cina Matematics Department, University of Massacusetts, Nort Dartmout, MA 0747, USA Matematics Department, University of Tennessee, Knoxville, TN 7996, USA 1

2 Y. Liu et al. Matematics Subject Classification 5K5 5K55 65K10 65M1 65M60 1 Introduction Let R d, d =,, be an open, bounded and convex polygonal or polyedral domain. We consider te following Can Hilliard Hele Saw problem wit natural and no-flux/no-flow boundary conditions: t φ = ε µ φu, in T := 0, T, 1.1a µ = ε 1 φ φ ε φ, in T, 1.1b u + p = γφ µ, in T, 1.1c u = 0, in T, 1.1d n φ = n µ = 0, u n = 0, on 0, T, 1.1e wit initial data φ 0 = φ0, H 1. Weassumetattemodelparameters satisfy ε, γ > 0. We can reformulate te model by eliminating te velocity: t φ = ε µ + φ p + γφ µ, in T, 1.a µ = ε 1 φ φ ε φ, in T, 1.b p = γ φ µ, in T, 1.c n φ = n µ = n p = 0, on 0, T. 1.d If needed, te velocity may be back-calculated as u = p + γφ µ. Aweak formulation of te problem may be expressed as t φ, ν + ε µ, ν + p + γφ µ, φ ν = 0, ν H 1, 1.a ε 1 φ φ, ψ + ε φ, ψ µ, ψ = 0, ψ H 1, 1.b p + γφ µ, q = 0, q H 1, 1.c for almost every t 0, T. Wewillalsoconsideraweakformulationtatkeepste velocity as separate variable: 1 t φ, ν + εa µ, ν b φ, u,µ = 0, ν H 1, 1.4a ε 1 φ φ, ψ + εa φ, ψ µ, ψ = 0, ψ H 1, 1.4b u, v + c v, p γ b φ, v,µ = 0, v L, 1.4c c u, q = 0, q H 1, 1.4d

3 Error Analysis of a Mixed Finite Element Metod were a u,v := u, v, b ψ, v, ν := ψv, ν, c v, q := v, q. 1.5 We consider Eφ = 1 φ 1 + ε 4ε φ = 1 4ε φ4 L 4 1 ε φ + 4ε + ε φ, 1.6 wic is defined for all φ H := { φ H 1 φ φ 0, 1 = 0 }, were φ 0 = φ 0xdx. Fromnowon,wedenoteby te standard L norm, provided 1 tere is no ambiguity. Clearly, Eφ 0forallφ H. It is straigtforward to sow tat weak solutions dissipate te energy 1.6. In oter words, 1.1a 1.1e isa conserved gradient flow wit respect to te energy 1.6. Precisely, for any t [0, T ], we ave te energy law t Eφt γ us + ε µs ds = Eφ 0, 1.7 and, in addition, te following mass conservation law: φt,, 1 = φ 0, 1 = φ 0. Formally,onecanalsoeasilydemonstratetatµ in 1.1b istevariational derivative of E wit respect to φ. Insymbols,µ = δ φ E. Definition 1.1 Define W := { } u L u, q = 0, q H Te projection P : L W is defined via Pw = p + w, 1.9 were p H 1 := { φ H 1 φ, 1 = 0 } is te unique solution to p + w, q = 0, q H Clearly Pw W for any w L.Furtermore,weave Lemma 1. P is linear, and, given w L, itfollowstat Pw w, v = 0, v W In particular, since Pw W, Pw w, Pw = 0, 1.1 1

4 Y. Liu et al. and, consequently, for all w L. Pw w, 1.1 Wit te projection, we ave te following alternate weak formulation: t φ, ν + ε µ, ν + Pγφ µ, φ ν = 0, ν H 1, 1.14a ε 1 φ φ, ψ + ε φ, ψ µ, ψ = 0, ψ H b Equivalently, wit u = Pγφ µ, weave t φ, ν + ε µ, ν u, φ ν = 0, ν H 1, 1.15a ε 1 φ φ, ψ + ε φ, ψ µ, ψ = 0, ψ H b Te well-posedness of tis weak form, as well as te basic regularity of te weak solution, can be found in [19]. In more detail, a convex splitting numerical sceme, wic treats te terms of te variational derivative implicitly or explicitly according to weter te terms corresponding to te convex or concave parts of te energy, was formulated in [19], wit a mixed finite element approximation in space. Suc a numerical approac assures two matematical properties: unique solvability and unconditional energy stability; also see te related works for various PDE systems, including te pase field crystal PFC equation [4,5,7,4,5,9], epitaxial tin film growt model [8,10,1,], and oters [1,]. Moreover, for a gradient system coupled wit fluid motion, te idea of convex splitting can still be applied and tese distinguised matematical properties are retained, as given by a few recent works [9,1,1,19,8]. In particular, a weak convergence of te finite element numerical approximation to a global-in-time weak solution was establised in[19], using certain compactness arguments. In addition to tis weak convergence result, a convergence analysis wit an associated convergence order, for tese gradient flows coupled wit fluid motion, as attracted a great deal of attentions in recent years. For instance, a convex splitting finite element sceme applied to Can Hilliard Stokes equation was analyzed in [1] andanoptimalrateconvergenceanalysiswasprovidedindetail.suca convergence result was derived by an H 1 error estimate, combined wit unconditional energy stability and oter iger order stability properties for certain numerical variables. Meanwile, a careful examination sows tat, tis convergence analysis relies eavily on te l 0, T ; H 1 stability bound of te velocity field, at te numerical level. Wit tis stability available, te maximum norm bound of te pase variable φ could be derived, wic leads to a great simplification in te convergence analysis. However, for te CHHS system 1.1a 1.1e, only an l 0, T ; L bound for te velocity field is valid. As a result, a global-in-time L bound is not available to te pase variable; see more detailed PDE analyses in [6,7], etc. Witout tis estimate, an error estimate for te CHHS equation 1.1a 1.1e becomes very callenging, due to te appearance of a igly nonlinear convection term; te velocity 1

5 Error Analysis of a Mixed Finite Element Metod error term turns out to be a Helmoltz projection of te nonlinear error associated wit γφ µ. Inturn,eventeigestorderdiffusiontermintestandardCan Hilliard part is not able to control te numerical error term associated wit te nonlinear convection. In tis paper, we provide an optimal rate convergence analysis for te mixed finite element sceme applied to te CHHS equation 1.1a 1.1e, as reported in [19]. Instead of te standard l 0, T ; L l 0, T ; H error estimate for te pure Can Hilliard equation [1,,14 16,18,0,], we perform an l 0, T ; H 1 l 0, T ; H error estimate in an alternate way. Tis error estimate is necessary to make te error term associated wit te nonlinear convection ave a non-positive inner product wit te corresponding error test function, wic is crucial to te convergence analysis. In particular, we note tat, altoug te l 0, T ; H 1 error estimates ave been available for te pure Can Hilliard equation in te existing literature [,17,4,9], an l 0, T ; H error estimate remains open for te finite element approximation applied to te related PDE systems, in te autors knowledge. To overcome te difficulty associated wit te lack of regularity for te velocity field in te Darcy law, a discrete Gagliardo Nirenberg inequality is needed in te finite element analysis, in bot -D and -D cases. Meanwile, suc an inequality is involved wit an H norm of te numerical solution, wic is beyond its regularity in te standard finite element space. In tis paper, we establis te desired inequality in a modified version, wic plays a key role in te nonlinear error estimate. First, adiscretelaplacianoperator,,isintroducedforanyh 1 function in te finite element space. Subsequently, by applying various Sobolev inequalities for continuous function, combined wit a few error bounds in te finite element space, te maximum norm bound of te numerical solution could be establised in terms of a discrete Gagliardo Nirenberg inequality. Anoter key point of te analysis presented in tis paper is tat, te l 0, T ; H 1 error estimate is performed troug an L inner product wit te numerical error associated wit te cemical potential term. Suc an inner product yields an L 0, T ; H 1 stability of te cemical potential error term, wic contains certain nonlinear parts. Tese nonlinear errors are analyzed via appropriate Sobolev inequalities, so tat its growt is always controlled. Furtermore, by applying a subtle W 1 estimate for te temporal derivative of te numerical solution at a discrete level, we could convert all te nonlinear error terms at te current time step into te ones at te previous one. Wit tis approac, an l 8 0, T ; L estimate of te numerical solution for te pase variable φ couldbeappliedsotatanunconditionalconvergencefortetimestep τ in terms of te spatial resolution isavailable,andaconstraintforbotτ and turns out to be very mild. Te rest of te paper is organized as follows. Te fully discrete finite element sceme is reviewed in Sect..Tereinwerecallanunconditionalenergystabilityand afewoterrefinedstabilityestimates,andadiscretegagliardo Nirenberginequalityis establised in te finite element space. Subsequently, te detailed convergence analysis is given by Sect., wic results in an optimal rate error estimate. Finally, a useful discrete Gronwall inequality is restated in Appendix 1. 1

6 Y. Liu et al. Some mixed finite element convex splitting scemes.1 Definitions of te scemes Let M be a positive integer and 0 = t 0 < t 1 < < t M = T be a uniform partition of [0, T ], witτ = t i t i 1, i = 1,...,M. Suppose T = {K } is a conforming, sape-regular, globally quasi-uniform family of triangulations of.for r Z +,definemr := { v C 0 } v K P r K, K T H 1. Define L 0 := { φ L φ, 1 = 0 }.WesetS := Mq and S := S L 0,were q is a positive integer. Te mixed convex-splitting sceme is defined as follows [19]: for any 1 m M,givenφ m 1 S,findφ m,µm S and p m S suc tat δτ φ m, ν + ε a µ m, ν + φ m 1 p m + γφm 1 were µ m, ν = 0, ν S,.1a ε 1 φ m φ m 1, ψ + ε a φ m, ψ µ m, ψ = 0, ψ S,.1b p m + γφ m µm, ζ = 0, ζ S,.1c δ τ φ m Te operator R : H 1 S is te Ritz projection: := φm φm 1, φ 0 τ := R φ 0.. a R ϕ ϕ, χ = 0, χ S, R ϕ ϕ, 1 = 0.. Te velocity may be defined from te oter variables as Now we define a discrete projection. Definition.1 Define W := u m := pm γφm 1 µ m L..4 {u L u, q = 0, q S }..5 Observe tat W W.TeprojectionP : L W is defined via P w = p + w,.6 were p S is te unique solution to p + w, q = 0, q S..7 1

7 Error Analysis of a Mixed Finite Element Metod Clearly P W.Furtermore,weave Lemma. P is linear, and given any w L,itfollowstat P w w, v = 0, v W..8 In particular, since P w W, P w w, P w = 0,.9 and, consequently, for all w L. P w w,.10 Tere is an estimate for te difference between te projections P and P. Lemma. Suppose tat w H q wit te compatible boundary conditions w n = 0 on and p H q+1 were p = Pw w..11 Ten P w Pw C q p H q+1..1 Proof By definition, were p H 1 is te unique solution to and were p S is te unique solution to Tus Pw = p + w,.1 p + w, q = 0, q H 1,.14 P w = p + w,.15 p + w, q = 0, q S..16 P w Pw = p p C q p H q+1,.17 by a standard approximation estimate. We may re-express te sceme as δτ φ m, ν + ε a µ m, ν + b φ m 1, P γφ m 1 µ m, ν = 0, ν S,.18a 1

8 Y. Liu et al. ε 1 φ m φ m 1, ψ + ε a φ m, ψ µ m, ψ = 0, ψ S,.18b or equivalently, wit u m := P γφ m 1 µ m L,as δτ φ m, ν + ε a µ m, ν b φ m 1, u m, ν = 0, ν S,.19a ε 1 φ m φ m 1, ψ + ε a φ m, ψ µ m, ψ = 0, ψ S..19b We observe tat, in general, u m is a discontinuous function, its components are not in te finite element spaces so far described. To remedy tis we could formulate a sceme wic keeps te velocity as a separate variable in some appropriate finite element space. To tis end, we will also consider a sceme tat uses a mixed metod for te velocity and pressure: for any 1 m M, given φ m 1 S,findφ m,µm S and u m X, p m Q suc tat δτ φ m, ν + ε a µ m, ν b φ m 1, u m, ν = 0, ν S,.0a ε 1 φ m φ m 1, ψ + ε a φ m, ψ µ m, ψ = 0, ψ S,.0b u m, v + c v, p + γ b φ m 1, v,µ m = 0, v X,.0c c u m, q = 0, q Q,.0d were X L and Q H 1 are compatible and inf-sup stable finite element spaces. Here we ave used te so called primal mixed formulation. A finite element metod based on te dual mixed formulation is also available. We will not pursue tis furter at tis time.. Unconditional solvability and energy stability In tis subsection, we demonstrate some results from [1,19]tat are important forte proof in te following section. Tese results sow tat our scemes are unconditionally uniquely solvable. We begin by defining some macinery for te solvability, as well as te stability and convergence analyses discussed later. First, consider te invertible linear operator T : S S defined via te following variational problem: given ζ S,findT ζ S suc tat a T ζ, χ = ζ, χ, χ S..1 Tis clearly as a unique solution because a, is an inner product on S.We now wis to define a mes-dependent 1 norm, i.e.,adiscreteanaloguetoteh 1 norm. Te following result can be found in [1,19]. 1

9 Error Analysis of a Mixed Finite Element Metod Lemma.4 Let ζ, ξ S and set ζ, ξ 1, := a T ζ, T ξ = ζ, T ξ = T ζ, ξ.. Terefore,, 1, defines an inner product on S,andteinducednegativenorm satisfies ζ, χ ζ 1, := ζ, ζ 1, = sup χ.. 0 =χ S Consequently, for all χ S and all ζ S, Te following Poincaré-type estimate olds: ζ, χ ζ 1, χ..4 ζ 1, C ζ, ζ S,.5 for some C > 0 tat is independent of. Finally, if T is globally quasi-uniform, ten te following inverse estimate olds: for some C > 0 tat is independent of. ζ C 1 ζ 1,, ζ S,.6 Te result for te uniquely solvability of te sceme can be found in [19]. Te solutions to our sceme enjoy stability properties tat are similar to tose of te PDE solutions. Moreover, tese properties old regardless of te sizes of and τ. Te first property, te unconditional energy stability, is a direct result of te convex decomposition represented in te sceme [19]. Lemma.5 Let φ m,µm, pm S S S be te unique solution of.1a,.1b. Tentefollowingenergylawoldsforany, τ > 0: E φ l + τε l { ε + τ + 1 ε m=1 l µ m 1 + τ γ m=1 δ τ φ m 1 + 4ε l u m m=1 δ τ φ m φ m δ τ φ m + 1 } δτ φ m = E φ 0,.7 ε for all 0 l M. Te discrete energy law immediately implies te following uniform in and τ a priori estimates for φ m, µm,andum.notetat,fromtispoint,wewillnottrackte dependence of te estimates on te interface parameter ε > 0, toug tis may be of importance, especially if ε is made smaller [19]. 1

10 Y. Liu et al. Lemma.6 Suppose tat is convex polyedral. Let φ m,µm, pm S S S be te unique solution of.1a.1c.assumetate φ 0 < C0,independentof. Ten for any 0 m M, φ m dx = φ 0 dx,.8 and tere is a constant C > 0 independent of and τ suc tat te following estimates old for any, τ > 0: max 0 m M max 0 m M τ M m=1 m=1 [ φ m + φ m ] 1 C,.9 [ φ m 4 L 4 + φ m ] + φ m H 1 C,.0 [ µ m + u m ] C,.1 M [ φ m φ φm 1 + m φ m 1 + φ m φm φm 1 τ τ + φ m φ m 1 ] C,. M m=1 m=1 [ φ m + µ m + φ m ] 46 d d L CT + 1,. M δτ φ m W 1 C,.4 for some constant C > 0 tat is independent of, τ, andt. We are able to prove te next set of aprioristability estimates witout any restrictions of and τ.beforewebegin,wewillneedtediscretelaplacian, : S S, wic is defined as follows: for any v S, v S denotes te unique solution to te problem v, χ = a v, χ, χ S..5 In particular, setting χ = v in.5, we obtain v = a v, v. Lemma.7 Te discrete Laplacian as te following properties. For any v S, and, tere is some constant C > 0 suc tat 1 v v 1/ v 1/,.6 v C v,.7

11 Error Analysis of a Mixed Finite Element Metod and v C v..8 Proof Te first inequality follows from.6 and te Caucy Scwarz inequality. For te second inequality, starting from te first and using a standard inverse inequality, we ave v v v C 1 v v..9 Applying te inverse inequality again, te tird inequality follows as well. Next we need a kind of discrete Gagliardo Nirenberg inequality in te finite element space. Noting tat te functions in te conforming finite element space only ave te regularity up to H 1,itisimpossibletodirectlyapplystandardGagliardo Nirenberg inequalities involving iger order norms, suc as H or H.Nowtatweavete definition of,wecanprovetefollowingdiscretegagliardo Nirenberginequality. Similar tecniques can be found in te existing works [5,8]forrelatedfiniteelement estimates involved wit iger order derivatives. Teorem.8 Suppose tat is convex and polyedral. Ten, for any ψ S d 4 d ψ L C ψ 6 d 6 d ψ + C ψ L 6 L 6, d =,,.40 ψ L C ψ d 6 ψ 6 d 6 + C ψ, d =,,.41 and, consequently, ψ ψ L C ψ 46 d d ψ 46 d 4 5d + C ψ, d =,,.4 ψ L C ψ d 1 ψ 1 d 1 + C ψ, d =,,.4 using te Poincaré inequality and estimate.6. Proof Define HN := { φ H n φ = 0 }. By elliptic regularity, for any ψ S, tere is a unique function ψ HN suc tat ψ, w = ψ,w, w H 1, ψ ψ, 1 = According to te definitions of R in.andtediscretelaplacianin.5, ψ = R ψ.moreover, ψ = ψ in L. Terefore,tereisaconstantC > 0suc tat ψ H C ψ = C ψ..45 We summarize some standard inverse inequalities, wic can be found in [6,11]: 1

12 Y. Liu et al. ϕ W m q C d q d p l m ϕ W l p, ϕ S, 1 p q, 0 l m 1,.46 for some constant C > 0. By I : H S we denote te C 0, piecewisepolynomial nodal interpolation operator, and we recall te following approximation estimate from [6,11]: for any φ H, andany q, φ I φ W m q C d q d m φ H,.47 for m = 0, 1, and some constant C > 0. Ten, by approximation properties, an inverse inequality, and elliptic regularity, we ave ψ ψ L 6 ψ I ψ L 6 + I ψ ψ L 6 Terefore, by te triangle inequality, C d ψ I ψ + C d ψ H C d ψ ψ + C d ψ I ψ + C d ψ H C d ψ H C d ψ..48 ψ L 6 ψ L 6 + C d ψ..49 On te oter and, using.7 and.46, we ave ψ C + d ψ L 6,.50 and combining te last two inequalities, we ave te reciprocal stability bound ψ L 6 C ψ L 6,.51 for some constant C > 0. Using te Gagliardo Nirenberg inequality, we ave 4 d 6 d ψ L C ψ L 6 4 d d 6 d ψ + C ψ H L 6 6 d C ψ L 6 ψ 6 d d + C ψ L 6..5 Using inverse inequalities, te approximation properties above, and te last inequality, we find ψ L ψ I ψ L + I ψ ψ L + ψ L C d ψ I ψ + C d ψ H + ψ L C d ψ ψ + C d ψ I ψ + C d ψ + ψ L 1

13 Error Analysis of a Mixed Finite Element Metod C d ψ + ψ L C d ψ 4 d 6 d ψ 6 d d 4 d 6 d +C ψ L 6 ψ 6 d d + C ψ L 6 4 d 6 d C ψ L 6 ψ 6 d d + C ψ L 6,.5 were te inequality.50 isappliedintelaststep.teresult.40 isproven. Since ψ is te Ritz projection of ψ, te forward stability ψ ψ follows easily. To obtain te inequality in te oter direction, by te definition of ψ,tetriangle inequality, a standard approximation estimate for te Ritz projection, and te inverse inequality.7, it follows tat ψ ψ φ + ψ ψ + ψ C ψ + ψ = C ψ,.54 wic is anoter type of reciprocal stability. Applying a different Gagliardo Nirenberg inequality and using te reciprocal stability above, it follows tat To finis up, we argue as before ψ L C ψ 6 d 6 ψ d 6 H + C ψ C ψ 6 d 6 ψ d 6 + C ψ..55 ψ L ψ I ψ L + I ψ ψ L + ψ L C d 6 ψ I ψ + C 1 d 6 ψ + ψ L C d 6 ψ ψ + C d 6 ψ I ψ + C 1 d 6 ψ + ψ L C 1 d 6 ψ + C ψ 6 d 6 ψ d 6 + C ψ = C 1 d 6 ψ 6 d 6 ψ d 6 + C ψ 6 d 6 ψ d 6 + C ψ = C ψ 6 d 6 ψ d 6 + C ψ..56 Teorem.9 Let φ m,µm, pm S S S be te unique solution of.1a.1c. Suppose tat E φ 0 < C0, independent of, and tat is a convex polyedral. Te following estimate olds for any, τ > 0: τ M m=1 [ φ m + ] 86 d φ m d L C 4 T + 1,.57 wit some constant C 4 > 0 independent of, τ, andt. 1

14 Y. Liu et al. Proof We first observe tat for any v S, v, v S, a v, v = v = v..58 1, Taking ψ = φm in.1b, we ave ε φ m = ε 1 φ m, φ m ε 1 φ m 1, φm µ m, φm = ε 1 φ m, φ m + ε 1 φ m 1, φ m + µ m, φ m = ε 1 φ m φ m + ε 1 φ m 1 φ m + µ m φ m Cε φ m + Cε φ m 1 + Cε 1 µ m + ε φ m Cε φ m 4 φ m L + C + Cε 1 µ m ε + Cε φ m 4 L + C + Cε 1 µ m + ε φ m Te first estimate follows upon summing and te result from.. To get te second estimate, we appeal to.4: Hence, φ m L φ m φm L + φ m C φ m 46 d d φ m φ m. 4 5d 46 d +C φ m φ + m C + + C φ m 46 d d..59 φ 0 Summing gives te result. φ m 86 d d L C + C φ m..60 Errorestimatesfortefullydiscreteconvexsplittingsceme.1 Preliminary estimates We utilize some notation to simplify te error analysis. To tis end, define te time lag operator L τ φt := φt τ, and te backward difference operator δ τ φt := 1

15 Error Analysis of a Mixed Finite Element Metod φt L τ φt τ.defineteapproximationerrors E φ a := φ R φ, E µ a := µ R µ,.1 σ φ := δ τ R φ t φ.. Define te piecewise constant in time functions, for m = 1,...M and for t t m 1, t m ], ˆφt := φ m, ˆµt := µm, ût := um, ˆpt := pm, were φ m, µm, um,andpm are te solutions of te fully discrete convex-splitting sceme.1a.1c. We take ˆφ0 = φ 0,etcetera,asisnatural.Finally,letus define E φ := R φ ˆφ, E φ := φ ˆφ, E µ := R µ ˆµ, E µ := µ ˆµ.. Proposition.1 Te following key error equation olds for all t [τ, T ]: ε µ E + ε δ τ E φ + ετ = σ φ, E µ µ + b φ, u, E + ε 1 L τ E φ, δ τ E φ δ τ E φ b L τ ˆφ, û, E µ ε 1 φ ˆφ, δ τ E φ + + τ δ τ φ, δ τ E φ ε E a µ, δ τ E φ..4 Proof Weak solutions φ,µ wit te iger regularities.9.1 solve te following variational problem: t φ, ν + ε a µ, ν b φ, u, ν = 0, ν H 1,.5a µ, ψ ε a φ, ψ ε 1 φ φ, ψ ξ, ψ = 0, ψ H 1,.5b were u := Pγφ µ. BydefinitionofteRitzprojection,forallν, ψ S,we see tat δ τ R φ, ν + ε a R µ, ν = σ φ, ν + b φ, u, ν,.6a ε a R φ, ψ R µ, ψ = E a µ, ψ ε 1 φ L τ φ, ψ + τ ε δ τ φ, ψ. Tus, for τ t T,andallν, ψ S, δ τ ˆφ, ν ε a ˆφ, ψ + ε a ˆµ, ν = b L τ ˆφ, û, ν ˆµ, ψ = ε 1 ˆφ L τ ˆφ, ψ.6b,.7a,.7b 1

16 Y. Liu et al. were û = P γ L τ ˆφ ˆµ.Subtracting.7a,.7bfrom.6a,.6b, we ave, for all ν, ψ S, δ τ E φ, ν + ε a E µ, ν = σ φ, ν + b φ, u, ν b L τ ˆφ, û, ν,.8a E φ, ψ E µ, ψ = E a µ, ψ + τ ε δ τ φ, ψ + ε 1 L τ E φ, ψ ε a ε 1 φ ˆφ, ψ..8b Setting ν = E µ ave te result. in.8a, ψ = δ τ E φ in.8b andsummingtetwoequations,we For te error estimates tat we pursue in tis section, we sall assume tat weak solutions ave te additional regularities: φ W 0, T ; W 1 4 L 0, T ; W 1 L 0, T ; W q+1,.9 µ L 0, T ; W 1 6 L 0, T ; W q+1,.10 u L 0, T ; H q,.11 φ µ L 0, T ; H q,.1 were q 1istespatialapproximationorder. We need some preliminary estimates, te proofs of wic can be found in [1]. Lemma. Suppose tat φ,µ is a weak solution to.5a,.5b, witteaddi- tional regularities.9.1.ten,forany,τ > 0,tereexistsC > 0,independent of and τ, suctat σ φ t C q + Cτ..1 Lemma. Suppose tat φ,µ is a weak solution to.5a,.5b, wit te additional regularities.9.1. Ten,forany,τ > 0, φ ˆφ C ˆφ + 1 E φ..14 L Proof For t [0, T ],tefollowingestimateisvalid: φ ˆφ φ = φ ˆφ ˆφ φ φ ˆφ φ + ˆφ E φ φ L 6 φ + ˆφ E φ L 6 L 6 + ˆφ E φ L C ˆφ E + 1 φ,.15 L were C > 0isindependentoft [0, T ]. Ten,usingteunconditionalapriori estimates in.andteassumptiontatφ L 0, T ; H 1, te result follows. 1

17 Error Analysis of a Mixed Finite Element Metod In our error analysis we need to make use of some non-standard approximation results for te Ritz projection. Te proof of te following can be gleaned from te material in [6, C.8]and[]. Teorem.4 Let R be a convex polyedral domain. Assume tat te solution uofteneumann Poissonequation au,v= f,v, v H 1, as regularity u Wp 1,forsomep [, ].TentereareconstantsC > 0 and 0,suctattestability R u W 1 p C u W 1 p.16 olds, provided 0 < < 0.Furtermore,ifu Wp q+1, u R u W 1 p C q u W q+1 p were q is te order of te polynomial approximation defining R.,.17 Remark.5 If is a convex polyedral domain, it is proven in []tattefollowing best approximation property olds for te omogeneous Diriclet Poisson problem: u R u L C inf χ S u χ L,.18 were u H 1 0 W 1.Itisexpectedtobestraigtforwardtoprovesucaresultfor omogeneous Neumann Poisson problem as well. Wit suc a result, te last teorem will follow. Lemma.6 Suppose tat φ,µ is a weak solution to.5a,.5b, wit te additional regularities.9.1.ten,forany,τ > 0 and any arbitrary θ > 0,tere exists a constant C > 0, independentofandτ,butdependentuponθ,suctat ε µ E + ε δ τ E φ + ετ δ τ E φ Cτ + C q + b φ, u, E µ b L τ ˆφ, û, E µ + C L τ E φ + θ δτ E φ L ε 1 R φ ˆφ, δ τ E φ W Proof Using Lemma., tecaucy Scwarzinequality,tePoincaréinequality, and te fact tat σ φ, 1 = 0, we get te following estimates: if E µ t is te spatial average of E µ t,for0< t T,ten σ φ, E µ = σ φ, E µ Eµ C σ φ E µ C σ φ + ε C q + Cτ + ε E µ E µ..0 1

18 Y. Liu et al. An application of Teorem.4 implies tat As a consequence, we arrive at E a µ W 1 = R µ µ W 1 C q µ q+1 W. E a µ, δ τ E φ E a µ W 1 Now, it follows tat δτ E φ C q + θ δ τ E φ 4 τ δ τ φt L τ 4 t t τ W 1 W 1 C q µ W q+1 and, terefore, using a Poincaré-type inequality, for any θ > 0, τ ε δ τ φ, δ τ E φ C τ δτ φ L δ τ E φ δ τ E φ W 1..1 s φs L ds Cτ,. W 1 Cτ + θ δ τ E φ 4 Wit similar steps, te next-to-last term in.4 iscontrolledby, W 1.. ε 1 L τ E φ, δ τ E φ C Lτ E φ L δ τ E φ W 1 C q L τ φ W q+1 + C L τ E φ + θ δ τ E φ L 4 W 1 C q + C L τ E φ + θ δ τ E φ L,.4 4 using Teorem.4 in te second step. Te last term in.4 canbedividedinto W 1 φ ˆφ, δ τ E φ = φ R φ, δ τ E φ R φ ˆφ, δ τ E φ..5 Using te stability R φ W 1 C φ W 1 and te non-standard approximation results from Teorem.4, and te assumed regularities of te PDE solution,te first term above can be bounded as follows: for any θ > 0, 1 φ R φ, δ τ E φ C φ R φ + θ δ τ E φ W 1 4 C φ + φ R φ + R φ Ea φ W 1 L

19 Error Analysis of a Mixed Finite Element Metod + C φ φ R φ R φ + θ δ τ E φ L 4 W 1 C φ 4 E φ L a L + C φ + R φ Ea φ φ L + C R φ Ea φ + θ δ τ E φ L 4 W 1 C φ 4 W E φ 1 a L + C φ W 1 φ E φ L 6 a L 6 + C φ E φ W 1 a L + θ δ τ E φ 4 W 1 C q + θ δ τ E φ..6 4 W 1 Combining.0.6 leadstoteresult. Now, let us consider te error of te triple form in.4. Define I 4 := b φ, u, E µ b L τ ˆφ, û, E µ..7 Lemma.7 Suppose tat φ,µ is a weak solution to.5a,.5b, wit te additional regularities.9.1.ten,forany,τ > 0,tereexistsaconstantC > 0, independent of and τ,suctat I 4 γ P L τ ˆφ E µ + C ˆD 0 τ + q + C ˆD 0 Lτ E φ + ε 4 E µ,.8 were ˆD 0 := L τ ˆφ L Proof By adding and subtracting appropriate terms, we ave I 4 =b E φ a, u, Eµ +b L τ E φ, u, Eµ +b τδ τ R φ, u, E µ +b L τ ˆφ, u û, E µ..0 Te last term is te only one tat will give us any concern. Recall tat te discrete and continuous velocities can be described as u = Pγφ µ, û = P γ L τ ˆφ ˆµ..1 We obtain te following useful decomposition: γ 1 u û = Pφ µ P L τ ˆφ ˆµ 1

20 Y. Liu et al. = Pφ µ P φ µ + P φ µ P L τ ˆφ ˆµ = Pφ µ P φ µ + P τδ τ φ µ + P L τ φ µ P L τ ˆφ ˆµ = Pφ µ P φ µ + P τδ τ φ µ + P L τ E φ µ + P L τ ˆφ E µ.. Let s deal wit all te above terms except for te last one. Define Ten I 5 := Pφ µ P φ µ + P τδ τ φ µ + P L τ E φ µ.. I 5 Pφ µ P φ µ + P τδ τ φ µ + P L τ E φ µ C q φ µ H q + Cτ µ L 6 t φ L + 6 Lτ Ea φ µ + 6 L τ E φ µ C q + τ + C q µ L 6 φ H q+1 + µ Lτ L 6 E φ L C q + τ + C L τ E φ..4 From.0 we ave I 4 = b Ea φ, u, Eµ + b L τ E φ, u, Eµ + b τδ τ R φ, u, E µ E φ L a 6 u L µ E Lτ + E φ u L 6 L E µ + E a φ + L τ Ea φ + τδ τ φ u E µ b C q + ε µ E + C L τ E φ + ε µ E Cτ + ε µ E + b L τ ˆφ, u û, E µ 4 Now, using.4 weave b L τ ˆφ, u û, E µ 1 = γ b L τ ˆφ, I 5, E µ + b L τ ˆφ, u û, E µ L τ ˆφ, u û, E µ..5 γ b L τ ˆφ, P L τ ˆφ E a µ, Eµ γ b L τ ˆφ, P L τ ˆφ E µ, Eµ C L τ ˆφ I 5 + ε E µ L +C q Lτ ˆφ 4 16 L µ H q+1 + ε µ E γ b L τ ˆφ, P L τ ˆφ E µ 16, Eµ C ˆD 0 τ + q Lτ + C ˆD 0 E φ + ε µ E 8 γ P L τ ˆφ E µ..6

21 Error Analysis of a Mixed Finite Element Metod To finis up, adding.5 and.6 leadstoteresult. Combining Lemmas.6 and.7, wegetimmediatelytefollowingresult: Lemma.8 Suppose tat φ,µ is a weak solution to.5a,.5b, wit te additional regularities.9.1.ten,forany,τ > 0,and any arbitraryθ > 0,tere exists a constant C > 0, independentofandτ,butdependentonθ,suctat ε µ E + ε 4 δ τ E φ + ετ δ τ E φ + γ P L τ ˆφ E µ C ˆD 0 τ + q + C ˆD 0 Lτ E φ + C L τ E φ L + θ δ τ E φ ε 1 R φ ˆφ, δ τ E φ W 1 Te next step is to prove tat te dual norm δ τ E φ convenient way...7 W 1 can be bounded in a Lemma.9 Suppose tat φ,µ is a weak solution to.5a,.5b, wit te additional regularities.9.1. Ten,forany,τ > 0, δ τ E φ W 1 Cε µ E P + Cγ L τ ˆφ E µ were C > 0 is independent of and τ. + C Lτ E φ + C ˆD 1 0 q + τ,.8 Proof Here we follow te ideas in [19]. Let Q be te standard L projection into S. For any ν W 1,, denoteν = Q ν in.8a. Recall te estimate for σ φ from Lemma., δ τ E φ, ν = δ τ E φ, ν = ε a E µ, ν + σ φ, ν + b φ, u, ν b L τ ˆφ, û, ν ε E µ ν + σ φ ν + b φ, u, ν b L τ ˆφ, û, ν C ε µ E + q + τ ν W 1 + b φ, u, ν b L τ ˆφ, û, ν..9 For te last two terms above, we repeat te tecniques used to analyze I 4 in.0. Define I 6 := b φ, u, ν b L τ ˆφ, û, ν..40 1

22 Y. Liu et al. Recalling te estimates in.4.6, we can estimate I 6 as follows: I 6 = b Ea φ, u, ν + b L τ E φ, u, ν E φ L a 6 u L ν + L τ E φ L τ ˆφ, u û, ν + b τδ τ R φ, u, ν + b L τ ˆφ, u û, ν u L 6 L ν + τδ τ R φu ν b C q + τ + L τ E φ ν + γ b L τ ˆφ, I 5, ν + γ b L τ ˆφ, P L τ ˆφ E a µ, ν + γ b L τ ˆφ, P L τ ˆφ E µ, ν C q + τ + L τ E φ ν + γ L τ ˆφ I 5 ν L 6 L + C q Lτ ˆφ µ L H q+1 ν L + γ L τ ˆφ P L 6 L τ ˆφ E µ ν L C ˆD 1 0 q + τ + γ P L τ ˆφ E µ Lτ + E φ ν L..41 Combining.9 and.41, we get δ τ E φ, ν C ˆD 1 0 q +τ +ε µ E P +γ L τ ˆφ E µ + Lτ E φ ν W 1 = C ˆD 1 0 q +τ +ε E µ +γ P L τ ˆφ E µ + Lτ E φ ν W 1..4 Te last estimate is due to te W 1 stability of te L projection into te finite element space. See, for example [7]. Now, if we coose θ in.7 sufficiently small, and apply Lemma.9, te following result could be easily obtained: Lemma.10 Suppose tat φ,µis a weak solution to.5a,.5b, wit te additional regularities.9.1.ten,forany,τ > 0,tereexistsaconstantC > 0, independent of and τ,suctat ε µ E + ε 8 δ τ E φ + γ P L τ ˆφ E µ C ˆD 0 τ + q + C ˆD 0 Lτ E φ + C L τ E φ L ε 1 R φ ˆφ, δ τ E φ..4. Estimates for te cubic nonlinear error term Now tat all te preliminary estimates ave been done, we will ten elaborate ow to deduce te stability for te error function.4. Te result.7 is not enoug to 1

23 Error Analysis of a Mixed Finite Element Metod get wat we want, since te last term of te rigt side as not been estimated yet. If it is estimated in te normal way, suc as using te Caucy Scwarz inequality directly and summing every step, wat we get is at most a stable inequality coupled wit an implicit term like τĉ E φ on te rigt side wit Ĉ is dependent on some norm of te numerical solution ˆφ. In tis case,τ needs to be small enoug in order to be absorbed by te left side. In addition, te ig nonlinearity of te last term in.7isanoterdifficultytobeovercome.ifwedonotusedualnormestimates,wat we get from.7 isadiscretenonlineargronwallinequalitywicleadsustote sub-optimal convergence rate. Te main result is demonstrated below. Lemma.11 Suppose tat φ,µis a weak solution to.5a,.5b, wit te additional regularities.9.1.ten,forany,τ > 0,tereexistsaconstantC > 0, independent of and τ,suctat ε E φ t m + ετ 4 Cτ E µ t j + γτ j=0 P φ j 1 E µ t j ˆD j m 1 0 τ + q + C A j φ E t j + ε m 1 τ E φ 8 t j, were ˆD j 0 := ˆD 0 t j and A j := τ ˆD j τ 1 7 τδ τ φ j+1 τδ τ φ j+1 + τδ τ φ j W 1 j=0 W τ 1 τδ τ φ j+1 W Proof Our starting point is estimate.4. Te last term of.4 can be rewritten as R φt m φ m, δ τ E φ t m = ζ m E φ t m, δ τ E φ t m,.46 were By Lemma 4., ζ m := R φt m + φ m R φt m + φ m τ ε = τ ε 1 ε ζ m E φ t m, δ τ E φ t m δ τ ζ m, E φ t m 1 τ ε ζ m, ζ m, δ τ E φ t m E φ t m..48 1

24 Y. Liu et al. Observe tat te last two terms on te rigt-and-side of te last identity are nonpositive and can be dropped in te analysis. For any 1 m M, summationof.4 impliestat ε E φ t m + ετ 4 Cτ + q τ + τ ε µ E t j + γτ ˆD j m Cτ j=0 ˆD j+1 0 P φ j 1 E µ t j E φ t j + C E φ t j L δ τ ζ m, E φ t m 1,.49 were we ave dropped te indicated non-positive terms from te rigt-and-side. Due to te definition of ζ j, ζ j+1 ζ j = τδ τ R φt j+1 R φt j+1 + R φt j +τδ τ R φt j+1 φ j + τδ τ φ j+1 + τδ τ φ j+1 R φt j+1 + R φt j E φ t j..50 Ten for every step t j,tefollowingestimateisavailable: ζ j+1 ζ j,e φ t j C φt j+1 + φt j τδτ W 1 φt j+1 L E φ t j L + C φ j τδ L 4 τ φt j+1 L 4 E φ t j L 4 + C τδ τ φ j+1 E φ L 4 t j + C τδ τ φ j+1 L 4,E φ t j + C τδ τ φ j+1,e φ t j Cτ E φ t j + C τδ τ φ j+1 φ E t j E + C τδ τ φ j+1 φ W 1 t j W + E φ 1 t j W Now define I 7 := E φ t j W + E φ 1 t j W. 1 1

25 Error Analysis of a Mixed Finite Element Metod We observe tat I 7 can be analyzed as E φ I 7 C t j E L + φ t j E φ t E j + φ L t j L + E φ t j E φ t j L E E φ C t E j + 1 φ L t j E + C φ L 6 t E j + φ L t j φ L t j C E φ t j + C E φ 1 t 4 φ j E t j + C E φ 1 t 4 φ j E t j + C E φ 1 t 5 φ j E t j C E φ t j + C E φ 1 t 7 4 φ j E t j 4 + C E φ 1 t φ j E t j L Here we reduce te power of E φ t j in some terms above according to te L H 1 bound of E φ.wealsoappealtotediscretegagliardo Nirenberginequality.4 and.4. Tis is ten fed into.51 toobtain ζ j+1 ζ j, E φ t j Cτ E φ t j τδτ + C φ j+1 E + τδ τ φ j+1 φ W 1 t j + C τδ τ φ j+1 + C τδ τ φ j+1 W 1 W 1 E φ t j E φ t j Cτ E φ t j τδτ + C φ j+1 + τδ τ φ j+1 + Cτ 1 7 τδ τ φ j+1 + Cτ 1 τδ τ φ j W 1 4 W φ E t j 1 φ E t j W E φ t j E φ t j + ε τ E φ t j E φ t j + ε τ E φ t j..5 Due to te definition of A j from.45, we arrive at ζ j+1 ζ j, E φ t j CA j φ E t j + ε τ E φ 16 t j..54 1

26 Y. Liu et al. For te term τ E φ t j in.49, we apply te discrete Gagliardo Nirenberg L inequality and Young s inequality again:.τ E φ t j Cτ E φ 1 L t 7 4 φ j E t j 4 + Cτ E φ t j Cτ E φ t j + ε τ E φ 16 t j.55 Combining.49.55, we finis te proof. Te following lemma demonstrates an approac to deal wit te term τ E φ t j on te rigt-and-side in.44. Lemma.1 Suppose tat φ,µis a weak solution to.5a,.5b, wit te additional regularities.9.1. Ten,forany,τ > 0, Proof Since ε E φ t j µ E t j +C ˆD j+1 0 E φ t j + C E φ t j 1 + C ˆD j+1 0 τ + q..56 ε E φ t j µ E t j + E µ t j + ε E φ t j,.57 wat we need to estimate is te last term above. To bound E µ + ε E φ, set ψ = E µ + ε Eφ E µ + ε E φ in.8b, wic in turn implies tat = E a µ, E µ + ε Eφ + τ δ τ φ, E µ ε + ε Eφ +ε 1 L τ E φ, E µ + ε Eφ ε 1 φ ˆφ, E µ + ε Eφ E µ C a + τ δ τ φ + φ ˆφ + Lτ E φ + 1 E µ + ε E φ..58 Using tecniques from Lemmas. and.6, teabovenormcanbecontrolledas E µ t j + ε E φ t j Cτ + C ˆφt j q + C E φ L t j 1 1 E + C ˆφt j φ L t j

27 Error Analysis of a Mixed Finite Element Metod C ˆD j+1 0 τ + q + C ˆD j+1 0 E φ t j +C E φ t j A combination of Lemmas.1 and.11 yields te following teorem. Teorem.1 Suppose tat φ,µis a weak solution to.5a,.5b, wit te additional regularities.9.1.ten,forany,τ > 0,tereexistsaconstantC > 0, independent of and τ,suctat ε E φ t m + ετ 8 Cτ E µ t j + γτ P φ j 1 E µ t j ˆD j ˆD j m 1 0 τ + q + C A j φ E t j..60 Te summability of te sequence A j is ten essential to apply te discrete Gronwall inequality. We ave te following lemma: Lemma.14 Suppose tat φ,µis a weak solution to.5a,.5b, wit te additional regularities.9.1. Ten,forany1 m Mandany,τ > 0, tere exists a constant C > 0, independentofandτ,suctat j=0 A j C..61 j=0 Proof Recalling.45 fortedefinitionofa j, τ ˆD j+1 0 is summable due to Teo- rem.9. τδ τ φ j+1 and τδ τ φ j+1 are summable due to. and.4 W 1 respectively. For te last two terms in.45, it can be estimated due to te Caucy Scwarz inequality j=0 τ 1 7 τδ τ φ j W j=0 Cτ 7 j=0 j=0 τ 1 4 τ 1 4 τδ τ φ j+1 τδ τ φ j+1 C τ 1 τδτ φ j+1 j=0 W 1 W W C,.6 1

28 Y. Liu et al. and j=0 τ 1 τδ τ φ j+1 4 W j=0 Cτ 1 j=0 j=0 τ 1 τ 1 τδ τ φ j+1 τδ τ φ j+1 C τ 1 τδτ φ j+1 j=0 W 1 W W 1 C..6. Main convergence result Applying te discrete Gronwall inequality to.60, we get te optimal convergence rate for te numerical sceme. Teorem.15 Suppose tat φ,µis a weak solution to.5a,.5b, wit te additional regularities.9.1.ten,forany,τ > 0,tereexistsaconstantC > 0, independent of and τ,suctat ε E φ t m + ετ 8 + γτ µ E t j P φ j 1 E µ j t Cτ + q..64 Remark.16 A combination of.59 and.64 yieldstat τ E φ t j Cτ + q..65 Acknowledgments Tis work is supported in part by te grants NSF DMS C. Wang, NSFC C. Wang, NSF DMS S. Wise, NSFC , and W. Cen, and te fund by Cina Scolarsip Council Y. Liu. Y. Liu tanks University of California- San Diego for support during is visit. C. Wang also tanks Sangai Key Laboratory for Contemporary Applied Matematics, Fudan University, for support during is visit. Appendix 1: Discrete Gronwall inequality We need te following discrete Gronwall inequality, cited in [6,0]: 1

29 Error Analysis of a Mixed Finite Element Metod Lemma 4.1 Fix T > 0, andsuppose{a m } m=1 M, {b m} m=1 M and {c m} m=1 M 1 are nonnegative sequences suc tat τ M 1 m=1 c m C 1,wereC 1 is independent of τ and M, and M τ = T.Supposetat,forallτ > 0, a M + τ M b m C + τ m=1 M 1 m=1 a m c m, 4.1 were C > 0 is a constant independent of τ and M. Ten, for all τ > 0, a M + τ M b m C exp τ m=1 M 1 m=1 Note tat te sum on te rigt-and-side of 4.1 must be explicit. c m C expc Lemma 4. Suppose {a m } M m=1 and {b m} M m=0 are sequences suc tat b 0 = 0.Define, for any integer m, 1 m M, I m := a j b j b j b j Ten te following identity is valid: I m = 1 a j a j 1 b j a j b j b j a mbm. 4.4 References 1. Baňas, L., Nürnberg, R.: Adaptive finite element metods for te Can Hilliard equations. J. Comput. Appl. Mat. 181, Baňas, L., Nürnberg, R.: A posteriori estimates for te Can Hilliard equation wit obstacle. MAN Mat. Model. Numer. Anal. 45, Barrett, J.W., Blowey, J.F.: An optimal error bound for a finite element approximation of a model for pase separation of a multi-component alloy wit non-smoot free energy. MAN. Mat. Model. Numer. Anal. 5, Baskaran, A., Hu, Z., Lowengrub, J., Wang, C., Wise, S.M., Zou, P.: Energy stable and efficient finite-difference nonlinear multigrid scemes for te modified pase field crystal equation. J. Comput. Pys. 50, Baskaran, A., Lowengrub, J., Wang, C., Wise, S.: Convergence analysis of a second order convex splitting sceme for te modified pase field crystal equation. SIAM J. Numer. Anal. 51, Brenner, S.C., Scott, L.R.: Te Matematical Teory of Finite Element Metods, rd edn. Springer, Berlin Cen, C.M., Huang, Y.Q.: Hig Accuracy Teory in Finite Element Metods, in Cinese. Hunan Science and Tecnology Press, Cangsa Cen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable sceme for a tin film model witout slope selection. J. Sci. Comput. 5, Cen, W., Liu, Y., Wang, C., Wise, S.M.: Convergence analysis of a fully discrete finite difference sceme for Can-Hilliard Hele Saw equation. Mat. Comput doi: /mcom05 1

30 Y. Liu et al. 10. Cen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algoritm for a second-order energy stable sceme for a tin film model witout slope selection. J. Sci. Comput. 59, Ciarlet, P.G.: Finite Element Metod for Elliptic Problems. Nort-Holland, Amsterdam Collins, C., Sen, J., Wise, S.M.: Unconditionally stable finite difference multigrid scemes for te Can Hilliard Brinkman equation. Commun. Comput. Pys. 1, Diegel, A., Feng, X., Wise, S.M.: Convergence analysis of an unconditionally stable metod for a Can Hilliard Stokes system of equations. SIAM J. Numer. Anal. 5, Du, Q., Nicolaides, R.: Numerical analysis of a continuum model of a pase transition. SIAM J. Numer. Anal. 8, Elliott, C.M., Frenc, D.A.: Numerical studies of te Can Hilliard equation for pase separation. IMA J. Appl. Mat. 8, Elliott, C.M., Frenc, D.A., Milner, F.A.: A second-order splitting metod for te Can Hilliard equation. Numer. Mat. 54, Elliott, C.M., Larsson, S.: Error estimates wit smoot and nonsmoot data for a finite element metod for te Can Hilliard equation. Mat. Comput. 58, Feng, X., Karakasian, O.A.: Fully discrete dynamic dynamic mes discontinuous Galerkin metods for te Can Hilliard equation of pase transition. Mat. Comput. 76, Feng, X., Wise, S.M.: Analysis of a Darcy Can Hilliard diffuse interface model for te Hele Saw flow and its fully discrete finite element approximation. SIAM J. Numer. Anal. 50, Feng, X., Wu, H.: A posteriori error estimates for finite element approximations of te Can Hilliard equation and te Hele Saw flow. J. Comput. Mat. 6, Guan, Z., Lowengrub, J.S., Wang, C., Wise, S.M.: Second-order convex splitting scemes for nonlocal Can Hilliard and Allen Can equations. J. Comput. Pys. 77, Guan, Z., Wang, C., Wise, S.M.: A convergent convex splitting sceme for te periodic nonlocal Can Hilliard equation. Numer. Mat. 18, Guzmán, J., Leykekman, D., Rossmann, J., Scatz, A.H.: Hölder estimates for Green s functions on convex polyedral domains and teir applications to finite element metods. Numer. Mat. 11, He, L.: Error estimation of a class of stable spectral approximation to te Can Hilliard equation. J. Sci. Comput. 41, Heywood, J.G., Rannacer, R.: Finite element approximation of te nonstationary Navier Stokes problem. I. regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, Heywood, J.G., Rannacer, R.: Finite element approximation of te nonstationary Navier Stokes problem. IV. Error analysis for te second-order time discretization. SIAM J. Numer. Anal. 7, Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinearmultigrid scemes for te pase-field crystal equation. J. Comput. Pys. 8, Kay, D., Styles, V., Süli, E.: Discontinuous Galerkin finite element approximation of te Can Hilliard equation wit convection. SIAM J. Numer. Anal. 47, Kiari, N., Acouri, T., Ben Moamed, M.L., Omrani, K.: Finite difference approximate solutions for te Can Hilliard equation. Numer. Metods Partial Differ. Equ., Layton, W.: Introduction to te Numerical Analysis of Incompressible Viscous Flows. SIAM, Piladelpia Sen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting scemes for gradient flows wit Erlic Scwoebel type energy: application to tin film epitaxy. SIAM J. Numer. Anal. 50, Sen, J., Yang, X.: Numerical approximations of Allen Can and Can Hilliard equations. Discrete Contin. Dyn. Syst. A 8, Wang, C., Wang, X., Wise, S.M.: Unconditionally stable scemes for equations of tin film epitaxy. Discrete Contin. Dyn. Syst. A 8, Wang, C., Wise, S.M.: Global smoot solutions of te modified pase field crystal equation. Metods Appl. Anal. 17, Wang, C., Wise, S.M.: An energy stable and convergent finite-difference sceme for te modified pase field crystal equation. SIAM J. Numer. Anal. 49, Wang, X., Wu, H.: Long-time beavior for te Hele Saw Can Hilliard system. Asympt. Anal. 784,

31 Error Analysis of a Mixed Finite Element Metod 7. Wang, X., Zang, Z.: Well-posedness of te Hele Saw Can Hilliard system. Ann. I. H. Poincaré CAN. 0, Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of te Can Hilliard Hele Saw system of equations. J. Sci. Comput. 44, Wise, S.M., Wang, C., Lowengrub, J.: An energy stable and convergent finite-difference sceme for te pase field crystal equation. SIAM J. Numer. Anal. 47,

Error Analysis of a Mixed Finite Element Method for a Cahn-Hilliard-Hele-Shaw System

Error Analysis of a Mixed Finite Element Method for a Cahn-Hilliard-Hele-Shaw System Error Analysis of a Mixed Finite Element Metod for a Can-Hilliard-Hele-Saw System Yuan Liu Wenbin Cen Ceng Wang Steven M. Wise June 1, 016 Abstract We present and analyze a mixed finite element numerical

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION L.Arkeryd, Chalmers, Goteborg, Sweden, R.Esposito, University of L Aquila, Italy, R.Marra, University of Rome, Italy, A.Nouri,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Mitsuharu ÔTANI Waseda University, Tokyo, JAPAN One Forum, Two Cities: Aspect of Nonlinear PDEs 29 August, 211 Mitsuharu

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx. Numerical Metods for Civil Engineers Lecture Ordinar Differential Equations -Basic Ideas -Euler s Metod -Higer Order One-step Metods -Predictor-Corrector Approac -Runge-Kutta Metods -Adaptive Stepsize

Διαβάστε περισσότερα

inv lve a journal of mathematics 2008 Vol. 1, No. 2

inv lve a journal of mathematics 2008 Vol. 1, No. 2 inv lve a journal of matematics Boundary data smootness for solutions of nonlocal boundary value problems for n-t order differential equations Jonny Henderson, Britney Hopkins, Eugenie Kim and Jeffrey

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

The Study of Micro-Fluid Boundary Layer Theory

The Study of Micro-Fluid Boundary Layer Theory Long Li Huasui Zan Te Study of Micro-Fluid Boundary Layer Teory LONG LI Jimei University Scools of Sciences Xiamen 3602 Fujian Province P.R.CHINA 2007539003@stu.jmu.edu.cn HUASHUI ZHAN(corresponding autor)

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

Appendix S1 1. ( z) α βc. dβ β δ β

Appendix S1 1. ( z) α βc. dβ β δ β Appendix S1 1 Proof of Lemma 1. Taking first and second partial derivatives of the expected profit function, as expressed in Eq. (7), with respect to l: Π Π ( z, λ, l) l θ + s ( s + h ) g ( t) dt λ Ω(

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

NUMERICAL ANALYSIS OF A FRACTIONAL STEP θ-method FOR FLUID FLOW PROBLEMS. A Dissertation Presented to the Graduate School of Clemson University

NUMERICAL ANALYSIS OF A FRACTIONAL STEP θ-method FOR FLUID FLOW PROBLEMS. A Dissertation Presented to the Graduate School of Clemson University NUMERICAL ANALYSIS OF A FRACTIONAL STEP θ-method FOR FLUID FLOW PROBLEMS A Dissertation Presented to te Graduate Scool of Clemson University In Partial Fulfillment of te Requirements for te Degree Doctor

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation

A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation Hui Cao joint work with Michael Klibanov and Sergei Pereverzev

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα