1. Δύο ίδιες, λεπτές, ισοπαχείς και ομογενείς ράβδοι ΟΑ και

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Δύο ίδιες, λεπτές, ισοπαχείς και ομογενείς ράβδοι ΟΑ και"

Transcript

1 1 ΠΡΟΒΛΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( ) 1. Δύο ίδιες, λεπτές, ισοπαχείς και ομογενείς ράβδοι ΟΑ και ΟΒ, που έχουν μάζα Μ = 4 Κg και μήκος L = 1,5 m η καθεμία, συγκολλούνται στο ένα άκρο τους Ο, ώστε να σχηματίζουν ορθή γωνία. Το σύστημα των δύο ράβδων μπορεί να περιστρέφεται περί οριζόντιο άξονα, κάθετο στο επίπεδο ΑΟΒ, που διέρχεται από την κορυφή Ο της ορθής γωνίας. Το σύστημα αρχικά συγκρατείται στη θέση όπου η ράβδος ΟΑ είναι οριζόντια (όπως στο σχήμα). Η ροπή αδράνειας της κάθε ράβδου ως προς το κέντρο μάζας της είναι. Α. Να υπολογίσετε τη ροπή αδράνειας της κάθε ράβδου ως προς τον άξονα περιστροφής που διέρχεται από το Ο. Β. Από την αρχική του θέση το σύστημα των δύο ράβδων αφήνεται ελεύθερο να περιστραφεί περί τον άξονα περιστροφής στο σημείο Ο, χωρίς τριβές. Να υπολογίσετε το μέτρο της γωνιακής επιτάχυνσης του συστήματος των δύο ράβδων τη στιγμή της εκκίνησης. Γ. Τη χρονική στιγμή κατά την οποία οι ράβδοι σχηματίζουν ίσες γωνίες με την κατακόρυφο Οx, να υπολογίσετε: α. Το μέτρο της γωνιακής ταχύτητας του συστήματος των δύο ράβδων. β. Το μέτρο της στροφορμής της κάθε ράβδου ως προς τον άξονα περιστροφής που διέρχεται από το σημείο Ο. Μονάδες ( ) Δίνονται: g = 10ms -2, ημ45 ο = συν45 ο = = 0,7. 2. Oμογενής άκαμπτη ράβδος ΑΖ έχει μήκος L = 4m, μάζα M = 3kg και ισορροπεί σε οριζόντια θέση, όπως φαίνεται στο σχήμα. Στο άκρο της Α υπάρχει ακλόνητη άρθρωση από την οποία η ράβδος μπορεί να περιστρέφεται, χωρίς τριβές, ενώ στο άλλο άκρο της Ζ υπάρχει στερεωμένο k Δ m 2 γύρω Α Γ Ζ σφαιρίδιο μάζας m1 = 0,6kg και αμελητέων διαστάσεων. Ένα αβαρές τεντωμένο νήμα ΔΓ συνδέει το σημείο Γ της ράβδου με σφαιρίδιο μάζας m2 = 1kg το οποίο είναι στερεωμένο στο ελεύθερο άκρο ιδανικού ελατηρίου σταθεράς k = 100 N/m. Το άλλο άκρο του ελατηρίου είναι ακλόνητο. Η απόσταση ΑΓ είναι ίση με 2,8m. Όλη η διάταξη βρίσκεται στο ίδιο κατακόρυφο επίπεδο, στο οποίο γίνονται και όλες οι κινήσεις. m 1

2 2 Α. Να υπολογίσετε: Α1.Tη ροπή αδράνειας του συστήματος ράβδου σφαιριδίου m1 ως προς τον οριζόντιο άξονα που διέρχεται από το σημείο Α και είναι κάθετος στο επίπεδο της διάταξης Α2. Tο μέτρο της τάσης του νήματος ΔΓ. Β. Αν κόψουμε το νήμα ΔΓ, το σφαιρίδιο m2 εκτελεί αμείωτη αρμονική ταλάντωση, ενώ η ράβδος μαζί με το σώμα m1, υπό την επίδραση της βαρύτητας, περιστρέφονται χωρίς τριβές γύρω από το σημείο Α. Να υπολογίσετε: Β1.Tο χρόνο που χρειάζεται το σφαιρίδιο m2 από τη στιγμή που κόβεται το νήμα μέχρι τη στιγμή που θα φθάσει στην ψηλότερη θέση του για πρώτη φορά Β2. Το μέτρο της γραμμικής ταχύτητας του σημείου Ζ, τη στιγμή που η ράβδος περνάει από την κατακόρυφη θέση. Δίνονται: g = 10ms -2, ροπή αδράνειας της ράβδου ως προς το κέντρο μάζας της: Icm = (1/12) Ml 2, π = 3, Συμπαγής και ομογενής σφαίρα μμάζας m=10 kg και ακτίνας R=0,1 m κυλίεται ευθύγραμμα χωρίς ολίσθηση ανερχόμενη κατά μήκος κεκλιμένου επιπέδου γωνίας φ με ημφ=0,56. Τη χρονική στυγνή t=0 το κέντρο μάζας της σφαίρας έχει ταχύτητα με μέτρο υο=8m/s.να υπολογίσετε για τη σφαίρα: α. το μέτρο της γωνιακής ταχύτητας περιστροφής της τη χρονική στιγμή t=0. β. το μέτρο της επιτάχυνσης του κέντρου μάζας της. γ. το μέτρο του ρυθμού μεταβολής της στροφορμής κατά τη διάρκεια της κίνησής της. δ. το μέτρο της ταχύτητας του κέντρου μάζας της καθώς ανεβαίνει, τη στιγμή που έχει διαγράψει περιστροφές. ίνονται: η ροπή αδράνειας της σφαίρας περί άξονα διερχόμενο από το κέντρο της: Ι= mr 2 και η επιτάχυνση της βαρύτητας: g = 10m/s 2.

3 3 4. Άκαμπτη ομογενής ράβδος ΑΓ με μήκος l και μάζα Μ=3kg έχει το άκρο της Α αρθρωμένο και ισορροπεί οριζόντια. Στο άλλο άκρο Γ ασκείται σταθερή κατακόρυφη δύναμη F μέτρου 9Ν, με φορά προς τα κάτω. Η ράβδος ΑΓ εφάπτεται στο σημείο Β με στερεό που αποτελείται από δύο ομοαξονικούς κυλίνδρους με ακτίνες R1=0,1m και R2 =0,2m, όπως φαίνεται στο σχήμα. Η απόσταση του σημείου επαφής Β από το άκρο Γ της ράβδου είναι 4l. To στερεό μπορεί να περιστρέφεται χωρίς τριβές, σαν ένα σώμα γύρω από σταθερό οριζόντιο άξονα που περνάει από το κέντρο του. Ο άξονας περιστροφής συμπίπτει με τον άξονα συμμετρίας των δύο κυλίνδρων. Η ροπή αδράνειας του στερεού ως προς τον άξονα περιστροφής είναι Ι=0,09 kgm 2.Γύρω από τον κύλινδρο ακτίνας R1 είναι τυλιγμένο αβαρές και μη εκτατό νήμα στο άκρο του οποίου κρέμεται σώμα μάζας m=1kg. α. Να υπολογίσετε την κατακόρυφη δύναμη που δέχεται η ράβδος στο σημείο Β από το στερεό. β. Αν το σώμα μάζας m ισορροπεί, να βρείτε το μέτρο της δύναμης της στατικής τριβής μεταξύ της ράβδου και του στερεού. γ. Στο σημείο επαφής Β μεταξύ ράβδου και στερεού ρίχνουμε ελάχιστη ποσότητα λιπαντικής ουσίας έτσι, ώστε να μηδενιστεί η τριβή χωρίς να επιφέρει μεταβολή στη ροπή αδράνειας του στερεού. Να υπολογίσετε το μέτρο της ταχύτητας του σώματος μάζας m, όταν θα έχει ξετυλιχθεί νήμα μήκους 0,5m. Να θεωρήσετε ότι το νήμα ξετυλίγεται χωρίς να ολισθαίνει στον εσωτερικό κύλινδρο. δ. Να υπολογίσετε το ρυθμό παραγωγής έργου στο στερεό τη χρονική στιγμή που έχει ξετυλιχθεί νήμα μήκους 0,5m. Μονάδες( ) Δίνεται g=10m/s 2.

4 4 5. Ομογενής ράβδος μήκους L=0,3 m και μάζας Μ=1,2 kg μπορεί να περιστρέφεται χωρίς τριβές γύρω από οριζόντιο άξονα που διέρχεται από το άκρο της Α. Αρχικά την κρατούμε σε οριζόντια θέση και στη συνέχεια την αφήνουμε ελεύθερη. Θεωρούμε την αντίσταση του αέρα αμελητέα. α. Να βρείτε τη γωνιακή επιτάχυνση της ράβδου ως προς τον άξονα περιστροφής τη στιγμή που αφήνεται ελεύθερη. β. Να βρείτε τη στροφορμή της ράβδου όταν φθάσει σε κατακόρυφη θέση. Τη στιγμή που η ράβδος φθάνει στην κατακόρυφη θέση το κάτω άκρο της ράβδου συγκρούεται ακαριαία με ακίνητο σώμα Σ αμελητέων διαστάσεων που έχει μάζα m=0,4 kg. Μετά την κρούση το σώμα κινείται κατά μήκος κυκλικού τόξου ακτίνας L, ενώ η ράβδος συνεχίζει να κινείται με την ίδια φορά. Δίνεται ότι η γωνιακή ταχύτητα της ράβδου αμέσως μετά την κρούση είναι, όπου ω η γωνιακή ταχύτητά της αμέσως πριν την κρούση. γ. Να βρείτε την ταχύτητα του σώματος Σ αμέσως μετά την κρούση. δ. Να βρείτε το ποσοστό της κινητικής ενέργειας που μετατράπηκε σε θερμική ενέργεια κατά την κρούση. Μονάδες( ) Δίνονται: η ροπή αδράνειας της ράβδου ως προς τον άξονα Α και g=10 m/s Ομογενής και ισοπαχής ράβδος μήκους L=4m και μάζας M=2kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου αβαρούς νήματος σταθερού μήκους, με το επάνω άκρο του συνδεδεμένο στην οροφή, όπως φαίνεται στο σχήμα. Στο σημείο Γ ισορροπεί ομογενής σφαίρα μάζας m=2,5kg και ακτίνας r=0,2m. Δίνονται AK = AΓ =

5 5 α. Να υπολογισθεί το μέτρο της δύναμης που ασκεί το νήμα στη ράβδο. Τη χρονική στιγμή t=0 ασκείται στο κέντρο μάζας της σφαίρας με κατάλληλο τρόπο, σταθερή οριζόντια δύναμη μέτρου F=7N, με φορά προς το άκρο Β. Η σφαίρα κυλίεται χωρίς να ολισθαίνει. β. Να υπολογισθεί το μέτρο της επιτάχυνσης του κέντρου μάζας της σφαίρας κατά την κίνησή της. γ. Να υπολογισθεί το μέτρο της ταχύτητας του κέντρου μάζας της σφαίρας όταν φθάσει στο άκρο Β. δ. Να υπολογισθεί το μέτρο της στροφορμής της σφαίρας όταν φθάσει στο άκρο Β. Δίνονται: η ροπή αδράνειας της σφαίρας μάζας m ως προς άξονα που διέρχεται από το κέντρο μάζας της Ι = mr 2 και g=10 m/s Στερεό Π μάζας Μ=10 kg αποτελείται από δύο κολλημένους ομοαξονικούς κυλίνδρους με ακτίνες R και 2R, όπου R=0,2 m όπως στο σχήμα. Η ροπή αδράνειας του στερεού Π ως προς τον άξονα περιστροφής του είναι Ι=ΜR 2. Το στερεό περιστρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα Ο Ο, που συμπίπτει με τον άξονά του. Το σώμα Σ μάζας m=20 kg κρέμεται από το ελεύθερο άκρο αβαρούς νήματος που είναι τυλιγμένο στον κύλινδρο ακτίνας R. Γύρω από το τμήμα του στερεού Π με ακτίνα 2R είναι τυλιγμένο πολλές φορές νήμα, στο ελεύθερο άκρο Α του οποίου μπορεί να ασκείται οριζόντια δύναμη F. α. Να βρείτε το μέτρο της αρχικής δύναμης F0 που ασκείται στο ελεύθερο άκρο Α του νήματος, ώστε το σύστημα που εικονίζεται στο σχήμα να παραμένει ακίνητο. Τη χρονική στιγμή to=0 που το σύστημα του σχήματος είναι ακίνητο, αυξάνουμε τη δύναμη ακαριαία έτσι ώστε να γίνει F=115 N. β. Να βρείτε την επιτάχυνση του σώματος Σ. Για τη χρονική στιγμή που το σώμα Σ έχει ανέλθει κατά h=2m, να βρείτε:

6 6 γ. Το μέτρο της στροφορμής του στερεού Π ως προς τον άξονα περιστροφής του. δ. Τη μετατόπιση του σημείου Α από την αρχική του θέση. ε. Το ποσοστό του έργου της δύναμης F που μετατράπηκε σε κινητική ενέργεια του στερεού Π κατά τη μετατόπιση του σώματος Σ κατά h. Μονάδες ( ) Δίνεται g=10 m/s 2. Το συνολικό μήκος κάθε νήματος παραμένει σταθερό. 8. Θέλουμε να μετρήσουμε πειραματικά την άγνωστη ροπή αδράνειας δίσκου μάζας m=2 kg και ακτίνας r=1 m. Για το σκοπό αυτό αφήνουμε τον δίσκο να κυλίσει χωρίς ολίσθηση σε κεκλιμένο επίπεδο γωνίας φ=30 ξεκινώντας από την ηρεμία. Διαπιστώνουμε ότι ο δίσκος διανύει την απόσταση x=2 m σε χρόνο t=1 s. Δ1. Να υπολογίσετε τη ροπή αδράνειάς του ως προς τον άξονα που διέρχεται από το κέντρο μάζας του και είναι κάθετος στο επίπεδό του. Δ2. Από την κορυφή του κεκλιμένου επιπέδου αφήνονται να κυλίσουν ταυτόχρονα δίσκος και δακτύλιος ίδιας μάζας Μ και ίδιας ακτίνας R. Η ροπή αδράνειας του δίσκου είναι 1= ΜR 2 και του δακτυλίου Ι2=ΜR 2 ως προς τους άξονες που διέρχονται από τα κέντρα μάζας τους και είναι κάθετοι στα επίπεδά τους. Να υπολογίσετε ποιο από τα σώματα κινείται με τη μεγαλύτερη επιτάχυνση. Συνδέουμε με κατάλληλο τρόπο τα κέντρα μάζας των δύο στερεών, όπως φαίνεται και στο σχήμα, με ράβδο αμελητέας μάζας, η οποία δεν εμποδίζει την περιστροφή τους και δεν ασκεί τριβές. Το σύστημα κυλίεται στο κεκλιμένο επίπεδο χωρίς να ολισθαίνει. Δ3. Να υπολογίσετε το λόγο των κινητικών ενεργειών K1/K2 όπου K1 η κινητική ενέργεια του δίσκου και Κ2 η κινητική ενέργεια του δακτυλίου. Δ4. Αν η μάζα κάθε στερεού είναι Μ=1,4 kg, να υπολογίσετε τις δυνάμεις που ασκεί η ράβδος σε κάθε σώμα. Μεταφέρετε το σχήμα στο τετράδιό σας και σχεδιάστε τις πιο πάνω δυνάμεις. Μονάδες ( ) Δίνεται: g=10 m/s 2, ημ30 =

7 7 9. Αβαρής ράβδος μήκους 3d (d=1m) μπορεί να στρέφεται γύρω από οριζόντιο άξονα, που είναι κάθετος σε αυτήν και διέρχεται από το Ο. Στο άκρο Α που βρίσκεται σε απόσταση 2d από το Ο υπάρχει σημειακή μάζα ma=1 kg και στο σημείο Γ, που βρίσκεται σε απόσταση d από το Ο έχουμε επίσης σημειακή μάζα mγ=6 kg. Στο άλλο άκρο της ράβδου, στο σημείο Β, είναι αναρτημένη τροχαλία μάζας Μ=4 kg από την οποία κρέμονται οι μάζες m1 =2 kg, m2=m3=1 kg. Η τροχαλία μπορεί να περιστρέφεται γύρω από άξονα Ο. Δ1. Αποδείξτε ότι το σύστημα ισορροπεί με τη ράβδο στην οριζόντια θέση. Κόβουμε το Ο Β, που συνδέει την τροχαλία με τη ράβδο στο σημείο Β. Δ2. Βρείτε τη γωνιακή επιτάχυνση της ράβδου, όταν αυτή σχηματίζει γωνία 30 0 με την κατακόρυφο. Όταν η σημειακή μάζα mα φτάνει στο κατώτατο σημείο, συγκρούεται πλαστικά με ακίνητη σημειακή μάζα m4=5 kg. Δ3. Βρείτε τη γραμμική ταχύτητα του σημείου Α αμέσως μετά τη κρούση. Στην αρχική διάταξη, όταν η τροχαλία με τα σώματα είναι δεμένη στο Β, κόβουμε το νήμα που συνδέει μεταξύ τους τα σώματα m2 και m3 και αντικαθιστούμε την mα με μάζα m. Δ4. Πόση πρέπει να είναι η μάζα m, ώστε η ράβδος να διατηρήσει την ισορροπία της κατά τη διάρκεια περιστροφής της τροχαλίας; Μονάδες ( ) Τα νήματα είναι αβαρή, τριβές στους άξονες δεν υπάρχουν και το νήμα δεν ολισθαίνει στη τροχαλία. Δίνεται: g=10 m/s 2, ημ30 =1/2, ροπή αδράνειας της τροχαλίας ως προς άξονα που διέρχεται από το κέντρο της Ι=MR 2 / Ομογενής και ισοπαχής δοκός (ΟΑ), μάζας M=6 kg και μήκους l=0,3 m, μπορεί να στρέφεται χωρίς τριβές σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα που περνά από το ένα άκρο της Ο. Στο άλλο της άκρο Α υπάρχει στερεωμένη μικρή σφαίρα μάζας m=μ/2. Γ1. Βρείτε την ροπή αδράνειας του συστήματος δοκού-σφαίρας ως προς τον άξονα περιστροφής του. Ασκούμε στο άκρο Α δύναμη, σταθερού μέτρου F=, που είναι συνεχώς κάθετη στη δοκό, όπως φαίνεται στο σχήμα. Γ2. Βρείτε το έργο της δύναμης F κατά την περιστροφή του συστήματος μέχρι την οριζόντια θέση της. Γ3. Βρείτε την γωνιακή ταχύτητα του συστήματος δοκού- σφαίρας στην οριζόντια θέση. Επαναφέρουμε το σύστημα δοκού-σφαίρας στην αρχική κατακόρυφη θέση του. Ασκούμε στο άκρο Α δύναμη, σταθερού μέτρου F =30 N, που είναι συνεχώς κάθετη στη δοκό.

8 8 Γ4. Βρείτε τη γωνία που σχηματίζει η δοκός με την κατακόρυφο τη στιγμή που η κινητική της ενέργεια γίνεται μέγιστη. Δίνονται: g=10 m/s 2, ροπή αδράνειας ομογενούς δοκού μάζας Μ και μήκους l, ως προς άξονα που διέρχεται από το κέντρο μάζας της και είναι κάθετος σε αυτήν ICM= M l 2, ημ 60 0 =συν 30 0 =, ημ 30 0 = συν 60 0 = 11. Ομογενής στερεά ράβδος ΟΑ, μήκους L = 2 m και μάζας Μ = 0,3 kg μπορεί να περιστρέφεται ελεύθερα (χωρίς τριβές) στο οριζόντιο επίπεδο, περί κατακόρυφο άξονα που διέρχεται από το σταθερό σημείο Ο. Στο άκρο Α της ράβδου στερεώνεται σφαιρίδιο Σ1 μάζας m = 0,1 kg, και το σύστημα ράβδου και σφαιριδίου Σ1 περιστρέφεται με σταθερή γωνιακή ταχύτητα ω = 1 rad/s. Στο ίδιο οριζόντιο επίπεδο βρίσκεται δεύτερο σφαιρίδιο Σ2, ίσης μάζας με το Σ1, προσδεμένο στο άκρο αβαρούς ελατηρίου, σταθεράς Κ = 20 Ν/m. Ο άξονας του ελατηρίου είναι οριζόντιος και εφάπτεται της κυκλικής τροχιάς του σφαιριδίου Σ1 (όπως στο σχήμα). Το άλλο άκρο του ελατηρίου είναι στερεωμένο ακλόνητα. Οι διαστάσεις των σφαιριδίων είναι αμελητέες. Όταν η ταχύτητα υ του σφαιριδίου Σ1 έχει τη διεύθυνση του άξονα του ελατηρίου, το σφαιρίδιο Σ1 αποκολλάται από τη ράβδο και κινούμενο ευθύγραμμα συγκρούεται με το σφαιρίδιο Σ2 με το οποίο ενσωματώνεται. Να βρείτε: α. Τη στροφορμή του συστήματος ράβδου-σφαιριδίου Σ1 ως προς τον άξονα περιστροφής που διέρχεται από το σημείο Ο. β. Το μέτρο υ της ταχύτητας του σφαιριδίου τη στιγμή που αποκολλάται από τη ράβδο. γ. Την περίοδο Τ της ταλάντωσης του συστήματος ελατηρίου-συσσωματώματος Σ1 και Σ2. δ. Το πλάτος της ταλάντωσης αυτής. Μονάδες( ) 12. Μια ομογενής ράβδος ΑΒ που έχει μήκος = 1 m και μάζα Μ = 6 kg, έχει στο άκρο της Β μόνιμα στερεωμένο ένα σώμα μικρών διαστάσεων με μάζα m = 2 kg. Η ράβδος στηρίζεται με το άκρο της Α μέσω άρθρωσης και αρχικά διατηρείται οριζόντια με τη βοήθεια νήματος, το ένα άκρο του οποίου είναι δεμένο στο μέσο της ράβδου και το άλλο στον κατακόρυφο τοίχο, όπως στο σχήμα. Η διεύθυνση του νήματος σχηματίζει γωνία φ = 30 ο με την διεύθυνση της ράβδου στην οριζόντια θέση ισορροπίας. A. Να υπολογίσετε: Α1. Το μέτρο της τάσης του νήματος. Α2. Τη ροπή αδράνειας του συστήματος ράβδου-σώματος ως προς άξονα που διέρχεται από το Α και είναι κάθετος στο επίπεδο του σχήματος.

9 9 Κάποια στιγμή το νήμα κόβεται και η ράβδος μαζί με το σώμα που είναι στερεωμένο στο άκρο της, αρχίζει να περιστρέφεται στο επίπεδο του σχήματος. Β1.Θεωρώντας τις τριβές αμελητέες να υπολογίσετε το μέτρο της γωνιακής επιτάχυνσης του συστήματος ράβδου-σώματος ως προς τον άξονα περιστροφής μόλις κόβεται το νήμα: Β2 Της ταχύτητας του σώματος στο άκρο της ράβδου, όταν αυτή φτάνει στην κατακόρυφη θέση. Μονάδες ( ) Δίνονται: Για τη ράβδο η ροπή αδράνειας ως προς τον άξονα που διέρχεται από το κέντρο μάζας και είναι παράλληλος στον άξονα περιστροφής της: Icm = (1/12) Ml 2. Η επιτάχυνση της βαρύτητας g = 10 m/s Ομογενής ράβδος μήκους 1=2 m και μάζας Μ=3 kg, είναι αναρτημένη από οριζόντιο άξονα Α, γύρω από τον οποίο μπορεί να περιστραφεί σε κατακόρυφο επίπεδο. Στον ίδιο άξονα Α είναι δεμένο αβαρές νήμα με το ίδιο μήκος l, στο άλλο άκρο του οποίου είναι δεμένο σφαιρίδιο μάζας m=0,5 kg. Αρχικά το νήμα είναι τεντωμένο στο ίδιο κατακόρυφο επίπεδο και το σφαιρίδιο βρίσκεται σε ύψος h=0,8 m πάνω από το κατώτερο σημείο της ράβδου. Στη συνέχεια το σφαιρίδιο αφήνεται ελεύθερο και προσκρούει στο άκρο της ράβδου. Μετά την κρούση το σφαιρίδιο ακινητοποιείται. Οι τριβές θεωρούνται αμελητέες. Να βρείτε: A. Την ταχύτητα του σφαιριδίου λίγο πριν την κρούση. Β. Τη γωνιακή ταχύτητα της ράβδου αμέσως μετά την κρούση. Γ. Τη γραμμική ταχύτητα του κέντρου μάζας Κ της ράβδου αμέσως μετά την κρούση. Δ. Το ποσό της μηχανικής ενέργειας που μετατράπηκε σε θερμική κατά την κρούση. Ε. Τη μέγιστη ανύψωση του κέντρου μάζας της ράβδου. Μονάδες ( ) Δίνονται: Η ροπή αδράνειας της ράβδου ως προς οριζόντιο άξονα που διέρχεται από το κέντρο μάζας της: Icm = (1/12) Ml 2. Η επιτάχυνση της βαρύτητας g = 10 m/s 2

10 Στο γιογιό του σχήματος που έχει μάζα Μ=6kg και ακτίνα R=0,1m, έχει τυλιχτεί πολλές φορές γύρω του λεπτό αβαρές νήμα. Με σταθερό το ένα άκρο του νήματος αφήνουμε το γιογιό να κατεβαίνει. Όταν αυτό έχει κατέβει κατά h=5/3 m αποκτά μεταφορική ταχύτητα υcm=5 m/s. Να βρείτε: A. Τη μεταφορική επιτάχυνση του κέντρου μάζας του σώματος. Β. Τη γωνιακή επιτάχυνση του σώματος και την τάση του νήματος. Γ. Το λόγο της στροφικής κινητικής ενέργειας προς τη μεταφορική κινητική ενέργεια του σώματος, χωρίς να θεωρήσετε γνωστό τον τύπο της ροπής αδράνειας του γιογιό. Δ. Τη σχέση που περιγράφει πώς μεταβάλλεται η στροφική κινητική ενέργεια του σώματος σε συνάρτηση με το χρόνο. Δίνονται: g = 10 m/s Ομογενής και συμπαγής κύλινδρος μάζας m = 5 Kg και ακτίνας R= 0,2m αφήνεται από την ηρεμία (θέση Α) να κυλήσει κατά μήκος πλάγιου επιπέδου, όπως φαίνεται στο σχήμα. Ο κύλινδρος κυλίεται χωρίς να ολισθαίνει. Τη στιγμή που το κέντρο μάζας του κυλίνδρου έχει κατακόρυφη μετατόπιση h (θέση Γ), η ταχύτητα του κέντρου μάζας του είναι υcm=8m/s. Να υπολογίσετε: α. Τη γωνιακή ταχύτητα ω του κυλίνδρου στη θέση Γ. β. Τη στροφορμή του κυλίνδρου στη θέση Γ. γ. Την κατακόρυφη μετατόπιση h. δ. Τον λόγο της μεταφορικής προς την περιστροφική κινητική ενέργεια του κυλίνδρου σε κάποια χρονική στιγμή, κατά τη διάρκεια της κίνησής του. Δίνονται: g=10 m/s 2, ροπή αδράνειας του κυλίνδρου ως προς άξονα περιστροφής του Ι=mR 2 / Κυκλική στεφάνη ακτίνας R=0,2m και μάζας m=lkg κυλίεται χωρίς να ολισθαίνει, όπως φαίνεται στο σχήμα. Η ταχύτητα του κέντρου μάζας Κ είναι υcm=10m/s. Η ροπή αδράνειας της στεφάνης ως προς άξονα που διέρχεται από το κέντρο μάζας της και είναι κάθετος προς το επίπεδό της είναι Ιcm= mr 2. Ο είναι το κατώτατο και A το ανώτατο σημείο της στεφάνης. Η ευθεία ΚΒ είναι παράλληλη στο δάπεδο. Να υπολογίσετε: Γ 1. τα μέτρα των ταχυτήτων στα σημεία Ο, Α και Β της στεφάνης. Γ2. τη γωνιακή ταχύτητα της στεφάνης. Γ3. τη ροπή αδράνειας της στεφάνης ως προς το σημείο Ο. Γ4. την κινητική ενέργεια της στεφάνης. Μονάδες ( )

11 Η τροχαλία του σχήματος είναι ομογενής με μάζα m=4 kg και ακτίνα R=0,5m. Τα σώματα Σ1 και Σ2 έχουν μάζες m1=2 kg και m2=1 kg αντίστοιχα και βρίσκονται αρχικά ακίνητα στο ίδιο ύψος. Κάποια στιγμή (t0=0) αφήνονται ελεύθερα. Να βρείτε: Δ1. Το μέτρο της επιτάχυνσης που θα αποκτήσουν τα σώματα Σ1 και Σ2. Δ2. Τα μέτρα των τάσεων των νημάτων. Δ3. Το μέτρο της γωνιακής ταχύτητα της τροχαλίας τη στιγμή t=2 s. Δ4. Την κινητική ενέργεια του συστήματος, τη στιγμή που το κάθε σώμα έχει μετατοπιστεί κατά h=3 m. Μονάδες( ) Δίνεται: g=10m/s 2. Η ροπή αδράνειας της τροχαλίας ως προς άξονα που διέρχεται από το κέντρο της είναι Ι=MR 2 /2 Τα νήματα δεν ολισθαίνουν στην τροχαλία. 18. Ομογενής ράβδος ΑΓ μήκους L=lm και μάζας Μ=3kg ισορροπεί οριζόντια, όπως στο σχήμα. Το άκρο Α της ράβδου στηρίζεται με άρθρωση σε κατακόρυφο τοίχο. Το άλλο άκρο Γ συνδέεται με την οροφή με κατακόρυφο σχοινί. Κάποια στιγμή κόβουμε το σχοινί και η ράβδος αφήνεται να περιστραφεί γύρω από την άρθρωση χωρίς τριβές. Η ροπή αδράνειας της ράβδου, ως προς άξονα που διέρχεται από το κέντρο μάζας της και είναι κάθετος σ αυτή, είναι: Icm = M L 2 και g = 10 m/s 2. Να υπολογίσετε: Δ1. τη δύναμη που δέχεται η ράβδος από το σχοινί, όταν αυτή ισορροπεί. Δ2. το μέτρο της γωνιακής επιτάχυνσης τη στιγμή που κόβεται το σχοινί και η ράβδος είναι οριζόντια. Δ3. το μέτρο της γωνιακής ταχύτητας της ράβδου στην κατακόρυφη θέση της. Δ4. το ρυθμό μεταβολής της στροφορμής στην κατακόρυφη θέση της.

12 Οριζόντιος ομογενής δίσκος με μάζα Μ = 2 Kg και ακτίνα R = 0,5 m μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό κατακόρυφο άξονα που διέρχεται από το κέντρο του. Ο δίσκος αρχικά είναι ακίνητος. Κάποια στιγμή t0 = 0, ασκείται σε σημείο της περιφέρειας του δίσκου δύναμη σταθερού μέτρου F = 10 N, συνεχώς εφαπτόμενη σε αυτόν. Γ1. Να υπολογίσετε το έργο της δύναμης F από τη στιγμή t0 = 0 έως τη στιγμή που η γωνιακή ταχύτητα του δίσκου έχει γίνει ω = 8 rad/s. Γ 2. Να υπολογίσετε τη γωνία που έχει διαγράψει ο δίσκος μέχρι εκείνη τη στιγμή. Γ3. Να υπολογίσετε την ισχύ της δύναμης F την ίδια στιγμή. Τη στιγμή που η γωνιακή ταχύτητα του δίσκου είναι ω = 8 rad/s, η δύναμη F καταργείται και ο δίσκος συνεχίζει να στρέφεται με την ταχύτητα αυτή. Από κάποιο ύψος αφήνεται να πέσει ένα κομμάτι λάσπης μάζας m = 1 Kg αμελητέων διαστάσεων, που κολλάει στον δίσκο σε σημείο της περιφέρειάς του. Γ 4. Να υπολογίσετε τη νέα γωνιακή ταχύτητα που θα αποκτήσει το σύστημα δίσκος - λάσπη. Δίνεται η ροπή αδράνειας του δίσκου ως προς τον άξονα περιστροφής του είναι : 20. Λεία οριζόντια σανίδα μήκους L = 3m και μάζας Μ = 0,4 Kg αρθρώνεται στο άκρο της Α σε κατακόρυφο τοίχο. Σε απόσταση d = 1m από τον τοίχο, η σανίδα στηρίζεται ώστε να διατηρείται οριζόντια. Ιδανικό αβαρές ελατήριο σταθεράς Κ = 100 Ν/m συνδέεται με το ένα άκρο του στον τοίχο και το άλλο σε σώμα Σ1 μάζας m1 = 1 Kg. Το ελατήριο βρίσκεται στο φυσικό του μήκος, ο άξονάς του είναι οριζόντιος και διέρχεται από το κέντρο μάζας του σώματος Σ1.Το κέντρο μάζας του σώματος Σ1 βρίσκεται σε απόσταση d από τον τοίχο. Στη συνέχεια, ασκούμε στο σώμα Σ1 σταθερή οριζόντια δύναμη μέτρου F = 40 N με κατεύθυνση προς το άλλο άκρο Γ της σανίδας. Όταν το σώμα Σ1 διανύσει απόσταση S = 5 cm, η δύναμη παύει να ασκείται στο σώμα και, στη συνέχεια, το σώμα εκτελεί απλή αρμονική ταλάντωση. Δ1. Να υπολογίσετε το πλάτος της απλής αρμονικής ταλάντωσης που θα εκτελέσει το σώμα Σ1. Δ2. Να εκφράσετε το μέτρο της δύναμης FΑ που δέχεται η σανίδα από τον τοίχο σε συνάρτηση με την απομάκρυνση του σώματος Σ1 και να σχεδιάσετε την αντίστοιχη γραφική παράσταση. Για το σχεδιασμό της γραφικής παράστασης να χρησιμοποιηθεί χαρτί μιλιμετρέ.

13 13 Κατά μήκος της σανίδας από το άκρο Γ κινείται σώμα Σ2 μάζας m2 = 1 Kg με ταχύτητα υ2 = m/s. Τα δύο σώματα συγκρούονται κεντρικά και ελαστικά, όταν η απομάκρυνση του σώματος Σ1 είναι x1, όπου. Το σώμα Σ1 μετά την κρούση ταλαντώνεται με το μέγιστο δυνατό πλάτος. Δ3. Να βρείτε την απομάκρυνση x1. Δ4. Να βρείτε το πλάτος της νέας ταλάντωσης που θα κάνει το Σ1. Μονάδες ( ) Θεωρούμε θετική τη φορά της απομάκρυνσης προς το Γ. Τριβές στην άρθρωση και στο υποστήριγμα δεν υπάρχουν. Δίνεται: επιτάχυνση βαρύτητας g = 10m/s Ομογενής δίσκος ακτίνας R=40cm και μάζας m=5kg στρέφεται με γωνιακή ταχύτητα μέτρου ω1=5rad/s γύρω από άξονα που διέρχεται από το κέντρο του δίσκου και είναι κάθετος στο επίπεδό του. Κάποια στιγμή ασκείται, εφαπτομενικά της περιφέρειας του δίσκου και σε τυχαίο σημείο αυτής, δύναμη σταθερού μέτρου F=5N. Η δύναμη ασκείται για ορισμένο χρονικό διάστημα Δt, στο τέλος του οποίου η γωνιακή ταχύτητα του δίσκου έχει αποκτήσει μέτρο ω2=30rad/s. Να υπολογίσετε: α. το μέτρο της ροπής της δύναμης. β. το μέτρο της γωνιακής επιτάχυνσης που αποκτά ο δίσκος. γ. το χρονικό διάστημα Δt στο οποίο ασκείται η δύναμη. δ. τη μεταβολή της κινητικής ενέργειας του δίσκου στο χρονικό διάστημα που ασκήθηκε η δύναμη. Μονάδες( ) Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα περιστροφής του είναι 22. Η ομογενής τροχαλία του σχήματος ακτίνας R = 0,2 m και μάζας Μ = 3 kg μπορεί να περιστρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα που περνάει από το κέντρο της Ο και είναι κάθετος στο επίπεδό της. Σώμα Σ1 μάζας m1 = 1 kg είναι δεμένο στο ελεύθερο άκρο αβαρούς νήματος το οποίο είναι τυλιγμένο στην περιφέρεια της τροχαλίας. Αρχικά το σύστημα είναι ακίνητο. Κάτω από το σώμα Σ1 και σε απόσταση h βρίσκεται σώμα Σ2 μάζας m2 = 3 kg το οποίο ισορροπεί στερεωμένο στη μια άκρη κατακόρυφου ιδανικού ελατηρίου σταθεράς k = 200 N/m η άλλη άκρη του οποίου είναι στερεωμένη στο έδαφος. Αφήνουμε ελεύθερο το σύστημα τροχαλίας-σώματος Σ1 να κινηθεί. Μετά από χρόνο t = 1s το σώμα Σ1 συγκρούεται μετωπικά και πλαστικά με το σώμα Σ2, ενώ το νήμα κόβεται. Το συσσωμάτωμα εκτελεί αμείωτη απλή αρμονική ταλάντωση στην κατακόρυφη διεύθυνση. Να υπολογίσετε: α. το μέτρο της επιτάχυνσης με την οποία κινείται το σώμα Σ1 μέχρι την κρούση.

14 14 β. την κινητική ενέργεια της τροχαλίας μετά την κρούση. γ. το πλάτος της ταλάντωσης που εκτελεί το συσσωμάτωμα. δ. το μέτρο του ρυθμού μεταβολής της ορμής του συσσωματώματος, τη στιγμή που απέχει από τη θέση ισορροπίας της ταλάντωσης απόσταση x = 0,1 m. Να θεωρήσετε ότι το νήμα δεν ολισθαίνει στο αυλάκι της τροχαλίας. Δίνονται: η ροπή αδράνειας της τροχαλίας ως προς τον άξονα περιστροφής της: Ι = 1/2ΜR 2 και η επιτάχυνση της βαρύτητας: g = 10 m/s Το γιο-γιο του σχήματος αποτελείται από ομογενή συμπαγή κύλινδρο που έχει μάζα m=0,12kg και ακτίνα R=1, m.. Γύρω από τον κύλινδρο έχει τυλιχτεί νήμα. Τη χρονική στιγμή t=0 αφήνουμε τον κύλινδρο να πέσει. Το νήμα ξετυλίγεται και ο κύλινδρος περιστρέφεται γύρω από νοητό οριζόντιο άξονα x x, ο οποίος ταυτίζεται με τον άξονα συμμετρίας του. Το νήμα σε όλη τη διάρκεια της κίνησης του κυλίνδρου παραμένει κατακόρυφο και τεντωμένο και δεν ολισθαίνει στην περιφέρεια του κυλίνδρου. Τη στιγμή που έχει ξετυλιχτεί νήμα μήκους l=20r, η ταχύτητα του κέντρου μάζας του κυλίνδρου είναι υcm=2m/s. α. Να υπολογίσετε τη ροπή αδράνειας του κυλίνδρου ως προς τον άξονα περιστροφής του. (Ο τύπος που μας δίνει τη ροπή αδράνειας του κυλίνδρου ως προς άξονα που διέρχεται από το κέντρο μάζας του, δεν θεωρείται γνωστός). β. Να υπολογίσετε το μέτρο του ρυθμού μεταβολής της στροφορμής του κυλίνδρου, καθώς αυτός κατέρχεται. γ. Τη χρονική στιγμή που η ταχύτητα του κέντρου μάζας του κυλίνδρου είναι υcm=2m/s, το νήμα κόβεται. Να υπολογίσετε το μέτρο της στροφορμής του κυλίνδρου ως προς τον άξονα περιστροφής του μετά την πάροδο χρόνου 0,8s από τη στιγμή που κόπηκε το νήμα. δ. Να κάνετε σε βαθμολογημένους άξονες το διάγραμμα του μέτρου της στροφορμής σε συνάρτηση με το χρόνο από τη χρονική στιγμή t=0, μέχρι τη χρονική στιγμή που αντιστοιχεί σε χρόνο 0,8s από τη στιγμή που κόπηκε το νήμα. Μονάδες ( ) Δίνεται g=10m/s 2

15 Τροχαλία μάζας Μ = 6kg και ακτίνας R = 0,25m μπορεί να περιστρέφεται χωρίς τριβές γύρω από οριζόντιο άξονα που διέρχεται από το κέντρο της. Γύρω από την τροχαλία υπάρχει αβαρές και μη εκτατό νήμα. Στα άκρα του νήματος υπάρχουν σε κατακόρυφη θέση τα σώματα Σ1 και Σ2 με μάζες m1 =4kg και m2 = 1kg αντίστοιχα. Το σώμα Σ2 είναι κολλημένο με σώμα Σ3 μάζας m3 = 1kg, το οποίο συγκρατείται από κατακόρυφο ελατήριο σταθεράς Κ= 100Ν/m. Το σύστημα αρχικά ισορροπεί όπως φαίνεται στο σχήμα. Κάποια χρονική στιγμή, την οποία θεωρούμε ως χρονική στιγμή μηδέν (t0 = 0),τα σώματα Σ2 και Σ3 αποκολλώνται και το Σ3 εκτελεί απλή αρμονική ταλάντωση κατά τη διεύθυνση της κατακορύφου. α. Nα υπολογιστεί το πλάτος της ταλάντωσης του σώματος Σ3. β. Να γραφεί η εξίσωση της απομάκρυνσης του σώματος Σ3 σε συνάρτηση με το χρόνο, θεωρώντας ως θετική φορά, τη φορά προς τα επάνω. γ. Να υπολογιστεί η γωνιακή επιτάχυνση της τροχαλίας μετά την αποκόλληση των σωμάτων Σ2 και Σ3. δ. Να υπολογιστεί ο ρυθμός μεταβολής της κινητικής ενέργειας της τροχαλίας τη χρονική στιγμή t = 0,1 s. Δίνονται η ροπή αδράνειας της τροχαλίας ως προς άξονα που διέρχεται από το κέντρο μάζας της Ι = 1/2ΜR 2, η τριβή ανάμεσα στην τροχαλία και στο νήμα είναι αρκετά μεγάλη, ώστε να μην παρατηρείται ολίσθηση και g = 10 m/s Η ράβδος ΟΑ του σχήματος με μήκος L = 1 m και μάζα Μ = 6 kg είναι οριζόντια και περιστρέφεται υπό την επίδραση οριζόντιας δύναμης F που έχει σταθερό μέτρο και είναι διαρκώς κάθετη στη ράβδο, στο άκρο της Α. Η περιστροφή γίνεται γύρω από σταθερό κατακόρυφο άξονα που διέρχεται από το Ο. Αρχικά η ράβδος είναι ακίνητη. Οι τριβές θεωρούνται αμελητέες. Να υπολογιστούν: α. Η τιμή της δύναμης F, αν γνωρίζουμε ότι το έργο που έχει προσφέρει η δύναμη στη διάρκεια της πρώτης περιστροφής είναι 30π J. β. Η γωνιακή επιτάχυνση της ράβδου. γ. Ο ρυθμός με τον οποίο η δύναμη μεταφέρει ενέργεια στη ράβδο στο τέλος της πρώτης περιστροφής. Μονάδες(6+7+12) Δίνονται: Η ροπή αδράνειας της ράβδου ως προς άξονα που διέρχεται από το κέντρο μάζας της και είναι κάθετος στη ράβδο.

16 Στην επιφάνεια ενός ομογενούς κυλίνδρου μάζας Μ = 40 kg και ακτίνας R = 0,2 m, έχουμε τυλίξει λεπτό σχοινί αμελητέας μάζας, το ελεύθερο άκρο του οποίου έλκεται με σταθερή δύναμη F παράλληλη προς την επιφάνεια κεκλιμένου επιπέδου γωνίας κλίσεως 30 ο, όπως φαίνεται στο σχήμα. Το σχοινί ξετυλίγεται χωρίς ολίσθηση, περιστρέφοντας ταυτόχρονα τον κύλινδρο. Ο κύλινδρος κυλίεται πάνω στην επιφάνεια του κεκλιμένου επιπέδου χωρίς ολίσθηση. α. Να υπολογισθεί το μέτρο της δύναμης F, ώστε ο κύλινδρος να ανεβαίνει στο κεκλιμένο επίπεδο με σταθερή ταχύτητα. Αν αρχικά ο κύλινδρος είναι ακίνητος με το κέντρο μάζας του στη θέση Α και στο ελεύθερο άκρο του σχοινιού ασκηθεί σταθερή δύναμη F = 130Ν, όπως στο σχήμα: β. Να υπολογισθεί η επιτάχυνση του κέντρου μάζας του κυλίνδρου. γ. Να υπολογισθεί το μέτρο της στροφορμής του κυλίνδρου ως προς τον άξονα περιστροφής του όταν το κέντρο μάζας του περνάει από τη θέση Γ του σχήματος, η οποία βρίσκεται h = 1m ψηλότερα από τη θέση Α. δ. Να υπολογισθεί το έργο της δύναμης F κατά τη μετακίνηση του κέντρου μάζας του κυλίνδρου από τη θέση Α στη θέση Γ και να δείξετε ότι αυτό ισούται με τη μεταβολή της μηχανικής ενέργειας του κυλίνδρου κατά τη μετακίνηση αυτή. Μονάδες ( ) Δίνονται: επιτάχυνση βαρύτητας g= 10m/s 2, ροπή αδράνειας του κυλίνδρου ως προς τον άξονα περιστροφής του, ημ30 ο =1/2 27. Λεπτή ομογενής ράβδος ΑΓ μήκους L και μάζας Μ μπορεί να στρέφεται γύρω από οριζόντιο άξονα κάθετο στη ράβδο χωρίς τριβές, ο οποίος διέρχεται από το σημείο Ο της ράβδου. Η απόσταση του σημείου Ο από το Α είναι. Στο άκρο Α της ράβδου στερεώνεται σημειακή μάζα m, όπως φαίνεται στο σχήμα. Η ράβδος ισορροπεί σε οριζόντια θέση και δέχεται από τον άξονα δύναμη μέτρου F = 20Ν. Δ1. Να υπολογιστούν οι μάζες m και Μ. Στη συνέχεια τοποθετούμε τον άξονα περιστροφής της ράβδου στο άκρο Γ, ώστε να παραμένει οριζόντιος και κάθετος στη ράβδο, και αφήνουμε το σύστημα ελεύθερο να περιστραφεί από την οριζόντια θέση. Να υπολογίσετε: Δ2. το μήκος L της ράβδου, αν τη στιγμή που αφήνεται ελεύθερη έχει γωνιακή επιτάχυνση μέτρου αγων= 3,75rad/s 2. Δ3. το λόγο της κινητικής ενέργειας της μάζας m προς τη συνολική κινητική ενέργεια του συστήματος, κατά τη διάρκεια της περιστροφής του συστήματος των δύο σωμάτων. Δ4. το μέτρο της στροφορμής του συστήματος των δύο σωμάτων, όταν η ράβδος έχει στραφεί κατά γωνία φ ως προς την οριζόντια διεύθυνση τέτοια, ώστε ημφ = 0,3. Μονάδες ( )

17 17 Δίνονται: επιτάχυνση βαρύτητας g = 10m/s 2, ροπή αδράνειας της ράβδου ως προς άξονα κάθετο στη ράβδο που διέρχεται από το κέντρο μάζας της 28. Λεία οριζόντια σανίδα μήκους L = 3m και μάζας Μ = 0,4 Kg αρθρώνεται στο άκρο της Α σε κατακόρυφο τοίχο. Σε απόσταση d = 1m από τον τοίχο, η σανίδα στηρίζεται ώστε να διατηρείται οριζόντια. Ιδανικό αβαρές ελατήριο σταθεράς Κ = 100 Ν/m συνδέεται με το ένα άκρο του στον τοίχο και το άλλο σε σώμα Σ1 μάζας m1= 1 Kg. Το ελατήριο βρίσκεται στο φυσικό του μήκος, ο άξονάς του είναι οριζόντιος και διέρχεται από το κέντρο μάζας του σώματος Σ1. Το κέντρο μάζας του σώματος Σ1 βρίσκεται σε απόσταση d από τον τοίχο. Στη συνέχεια, ασκούμε στο σώμα Σ1 σταθερή οριζόντια δύναμη μέτρου F = 40 N με κατεύθυνση προς το άλλο άκρο Γ της σανίδας. Όταν το σώμα Σ1 διανύσει απόσταση s= 5 cm, η δύναμη παύει να ασκείται στο σώμα και, στη συνέχεια, το σώμα εκτελεί απλή αρμονική ταλάντωση. Δ1. Να υπολογίσετε το πλάτος της απλής αρμονικής ταλάντωσης που θα εκτελέσει το σώμα Σ1. Δ2. Να εκφράσετε το μέτρο της δύναμης FΑ που δέχεται η σανίδα από τον τοίχο σε συνάρτηση με την απομάκρυνση του σώματος Σ1 και να σχεδιάσετε την αντίστοιχη γραφική παράσταση. Για το σχεδιασμό της γραφικής παράστασης να χρησιμοποιηθεί χαρτί μιλιμετρέ. Κατά μήκος της σανίδας από το άκρο Γ κινείται σώμα Σ2 μάζας m2= 1 Kg με ταχύτητα υ2= 2 m/s. Τα δύο σώματα συγκρούονται κεντρικά και ελαστικά, όταν η απομάκρυνση του σώματος Σ1 είναι x1, όπου x1 0. Το σώμα Σ1 μετά την κρούση ταλαντώνεται με το μέγιστο δυνατό πλάτος. Δ3. Να βρείτε την απομάκρυνση x1. Δ4. Να βρείτε μετά από πόσο χρονικό διάστημα από τη στιγμή της κρούσης τα δύο σώματα θα συγκρουστούν για δεύτερη φορά. Μονάδες ( ) Θεωρούμε θετική τη φορά της απομάκρυνσης προς το Γ. Τριβές στην άρθρωση και στο υποστήριγμα δεν υπάρχουν. Δίνεται: επιτάχυνση βαρύτητας g = 10m/s 2

18 Συμπαγής ομογενής δίσκος, μάζας Μ=2 2 kg και ακτίνας R=0,1 m, είναι προσδεδεμένος σε ιδανικό ελατήριο, σταθεράς k=100 N/m στο σημείο Α και ισορροπεί πάνω σε κεκλιμένο επίπεδο, που σχηματίζει γωνία φ=45 ο με το οριζόντιο επίπεδο, όπως στο σχήμα. Το ελατήριο είναι παράλληλο στο κεκλιμένο επίπεδο και ο άξονας του ελατηρίου απέχει απόσταση d= από το κέντρο (Ο) του δίσκου. Το άλλο άκρο του ελατηρίου είναι στερεωμένο ακλόνητα στο σημείο Γ. Γ1. Να υπολογίσετε την επιμήκυνση του ελατηρίου. Γ2. Να υπολογίσετε το μέτρο της στατικής τριβής και να προσδιορίσετε την κατεύθυνσή της. Κάποια στιγμή το ελατήριο κόβεται στο σημείο Α και ο δίσκος αμέσως κυλίεται, χωρίς να ολισθαίνει, κατά μήκος του κεκλιμένου επιπέδου. Γ3. Να υπολογίσετε την επιτάχυνση του κέντρου μάζας του δίσκου. Γ4. Να υπολογίσετε τη στροφορμή του δίσκου ως προς τον άξονα περιστροφής του, όταν το κέντρο μάζας του έχει μετακινηθεί κατά διάστημα s=0,3 m στη διεύθυνση του κεκλιμένου επιπέδου. Δίνονται: η ροπή αδράνειας ομογενούς συμπαγούς δίσκου ως προς άξονα που διέρχεται κάθετα από το κέντρο του Ι=1/2MR 2, η επιτάχυνση της βαρύτητας g=10m/s 2, ημ45 ο = 30. Οριζόντιος ομογενής και συμπαγής δίσκος, μάζας M=3Kg και ακτίνας R = 0,2m, μπορεί να περιστρέφεται χωρίς τριβές γύρω από κατακόρυφο άξονα που διέρχεται από το κέντρο του. Τη χρονική στιγμή t=0 ασκούμε στο δίσκο δύναμη F σταθερού μέτρου 3Ν που εφάπτεται στην περιφέρεια του, οπότε ο δίσκος αρχίζει να περιστρέφεται. Κάποια χρονική στιγμή t, ο δίσκος έχει κινητική ενέργεια K=75J. Να υπολογίσετε: α. τη ροπή αδράνειας του δίσκου ως προς τον άξονα περιστροφής του. β. τη γωνιακή επιτάχυνση του δίσκου γ. τη γωνιακή του ταχύτητα τη χρονική στιγμή t1 δ. τη ροπή αδράνειας του δίσκου, αν η περιστροφή του γινόταν γύρω από κατακόρυφο άξονα που περνάει από το μέσου μιας ακτίνας του. Μονάδες ( ) Η ροπή αδράνειας του παραπάνω δίσκου, ως προς άξονα που είναι κάθετος στο επίπεδο του και διέρχεται από το κέντρο του. δίνεται από τη σχέση.

19 Ομογενής και ισοπαχής ράβδος ΑΓ με μήκος 1m και βάρος 30Ν ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Το άλλο άκρο της Γ συνδέεται με τον τοίχο με αβαρές νήμα ΔΓ που σχηματίζει γωνία 30 με τη ράβδο, όπως φαίνεται στο σχήμα. Α. Να υπολογίσετε τα μέτρα των δυνάμεων που ασκούνται στη ράβδο από το νήμα και την άρθρωση. Β. Κάποια στιγμή κόβουμε το νήμα στο άκρο Γ και η ράβδος αρχίζει να περιστρέφεται χωρίς τριβές γύρω από την άρθρωση σε κατακόρυφο επίπεδο. Να υπολογίσετε: 1. Το μέτρο της γωνιακής επιτάχυνσης της ράβδου μόλις κοπεί το νήμα. 2. Το μέτρο του ρυθμού μεταβολής της στροφορμής της ράβδου, τη στιγμή που αυτή σχηματίζει γωνία 60 με την αρχική της θέση. 3. Την κινητική ενέργεια της ράβδου, τη στιγμή που διέρχεται από την κατακόρυφη θέση. Μονάδες ( ) Δίνονται : η ροπή αδράνειας της ράβδου ως προς τον οριζόντιο άξονα που διέρχεται από το άκρο της Α και είναι κάθετος σε αυτή είναι ΙΑ=1kg m 2 =, 32. Ένας ομογενής και συμπαγής κύλινδρος μάζας Μ = 2 kg και ακτίνας R = 0,2 m αφήνεται να κυλήσει κατά μήκος ενός πλάγιου επιπέδου γωνίας κλίσης φ, με ημφ = 0,6, όπως φαίνεται στο σχήμα: Ο κύλινδρος κυλίεται χωρίς να ολισθαίνει. Να υπολογίσετε: α. το μέτρο της επιτάχυνσης του κέντρου μάζας του κυλίνδρου καθώς αυτός κυλίεται. β. το μέτρο της δύναμης της στατικής τριβής που ασκείται στον κύλινδρο από το πλάγιο επίπεδο. γ. το μέτρο της στροφορμής του κυλίνδρου κατά τον άξονά του, όταν η κατακόρυφη μετατόπιση του κέντρου μάζας του κυλίνδρου από το σημείο που αυτός αφέθηκε ελεύθερος είναι h1= 4,8 m. δ. τo πλήθος των περιστροφών που εκτελεί ο κύλινδρος από τη στιγμή που αφήνεται ελεύθερος μέχρι τη στιγμή που το κέντρο μάζας του έχει μετατοπιστεί κατακόρυφα κατά h2 = 2,4π m. Μονάδες ( ) Δίνoνται: Η ροπή αδράνειας του κυλίνδρου ως προς τον άξονά του Ι= 1/2ΜR 2 και η επιτάχυνση της βαρύτητας g = 10 m/s 2

20 Ομογενής δίσκος μάζας m = 40 kg και ακτίνας R = 20 cm στρέφεται με γωνιακή συχνότητα ω = 5 rad/s γύρω από σταθερό άξονα που διέρχεται από το κέντρο του και είναι κάθετος σ αυτόν. Να υπολογίσετε: α. Την κινητική ενέργεια του δίσκου λόγω της περιστροφής του. β. Το μέτρο της αρχικής στροφορμής του δίσκου. γ. Τη μέση ισχύ της ροπής (σε απόλυτη τιμή) που θα ακινητοποιήσει το δίσκο σε χρόνο 5 s. δ. Το μέτρο της σταθερής ροπής που ακινητοποιεί το δίσκο σε χρόνο 5 s. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα περιστροφής του είναι. 34. Η ομογενής τροχαλία του σχήματος έχει μάζα Μ = 6 Κg και ακτίνα R= 0,3 m. Τα σώματα Σ1 και Σ2 έχουν αντίστοιχα μάζες m1 = 5 Κg και m2 = 2 Κg. Η τροχαλία και τα σώματα Σ1 Σ2 είναι αρχικά ακίνητα και τα κέντρα μάζας των Σ1 και Σ2 βρίσκονται στο ίδιο οριζόντιο επίπεδο. Τη χρονική στιγμή t = 0 το σύστημα αφήνεται ελεύθερο να κινηθεί. Να υπολογίσετε: α. το μέτρο της επιτάχυνσης με την οποία θα κινηθούν τα σώματα Σ1 και Σ2. β. το μέτρο της γωνιακής επιτάχυνσης της τροχαλίας. γ. το μέτρο της στροφορμής της τροχαλίας, ως προς τον άξονα περιστροφής της, τη χρονική στιγμή t = 2 s. δ. τη χρονική στιγμή t2 κατά την οποία η κατακόρυφη απόσταση των κέντρων μάζας των Σ1, Σ2 θα είναι h = 3 m. Δίνονται: Η ροπή αδράνειας της τροχαλίας ως προς τον άξονα περιστροφής της και η επιτάχυνση της βαρύτητας g = 10m/s 2. Σημείωση: Η τριβή ανάμεσα στην τροχαλία και στο νήμα είναι αρκετά μεγάλη, ώστε να μην παρατηρείται ολίσθηση. Να θεωρήσετε ότι τα σώματα Σ1 και Σ2 δεν φτάνουν στο έδαφος ούτε συγκρούονται με την τροχαλία.

21 Μια μικρή σφαίρα μάζας m=1kg, ακτίνας r=0,02m και ροπής αδράνειας ως προς άξονα που διέρχεται από το κέντρο μάζας της, αφήνεται από το σημείο Α που βρίσκεται σε ύψος h=9m πάνω από το οριζόντιο επίπεδο, όπως φαίνεται στο σχήμα. Η σφαίρα κυλίεται χωρίς να ολισθαίνει. Όταν η σφαίρα διέρχεται από το σημείο Β του οδηγού, το οποίο απέχει απόσταση R=2m από το οριζόντιο επίπεδο, να υπολογίσετε: Δ1. Τη ροπή αδράνειας της σφαίρας ως προς άξονα που διέρχεται από το σημείο Β και είναι παράλληλος προς τον άξονα περιστροφής της. Δ2. Το μέτρο της ταχύτητας του κέντρου μάζας της σφαίρας. Δ3. Το μέτρο της στροφορμής της σφαίρας ως προς τον άξονα περιστροφής της. Δ4. Το μέγιστο ύψος στο οποίο θα φθάσει το κέντρο μάζας της σφαίρας, από το σημείο Β. Η αντίσταση του αέρα θεωρείται αμελητέα. Δίνεται η επιτάχυνση της βαρύτητας: g = 10m/s Ομογενής δίσκος μάζας m=4kg και ακτίνας R=0,1m είναι ακίνητος πάνω σε πλάγιο επίπεδο γωνίας κλίσης φ=30 0 με τον άξονά του οριζόντιο. Γύρω από το δίσκο είναι τυλιγμένο λεπτό αβαρές και μη ελαστικό νήμα. Στην ελεύθερη άκρη του νήματος ασκείται σταθερή δύναμη μέτρου F1 με διεύθυνση παράλληλη προς την επιφάνεια του πλάγιου επιπέδου και με φορά προς τα πάνω,όπως φαίνεται στο σχήμα. Δ1. Να υπολογίσετε το μέτρο της στατικής τριβής που δέχεται ο δίσκος από το πλάγιο επίπεδο. Αντικαθιστούμε τη δύναμη F1 με δύναμη F2 ίδιας κατεύθυνσης με την F1 και μέτρου F2 =7N, με αποτέλεσμα ο δίσκος να αρχίσει να κυλίεται χωρίς να ολισθαίνει προς τα κάτω. Το νήμα τυλίγεται γύρω από το δίσκο χωρίς να ολισθαίνει. Δ2. Να υπολογίσετε την επιτάχυνση του κέντρου μάζας του δίσκου, καθώς και τη νέα τιμή της στατικής τριβής. Δ3. Να υπολογίσετε το μέτρο της ταχύτητας του σημείου εφαρμογής της F2 τη χρονική στιγμή t1 κατά την οποία ο δίσκος έχει αποκτήσει γωνιακή ταχύτητα μέτρου ω1=10rad/s. Δ4. Να υπολογίσετε το διάστημα που διάνυσε το κέντρο μάζας του δίσκου από τη στιγμή που άρχισε να κινείται μέχρι τη χρονική στιγμή t1. Μονάδες ( ) Δίνονται: ημ30 =1/2, η επιτάχυνση της βαρύτητας g=10m/s 2 και η ροπή αδράνειας του δίσκου ως προς άξονα περιστροφής του

22 Μια ομογενής ράβδος ΑΒ που έχει μήκος l=3 m και μάζα Μ=6 kg έχει στο ένα άκρο της Β μόνιμα στερεωμένο ένα σώμα μικρών διαστάσεων μάζας m=1 kg. H ράβδος στηρίζεται με το άλλο άκρο της Α σε κατακόρυφο τοίχο μέσω άρθρωσης. Η ράβδος συγκρατείται σε θέση ισορροπίας, σχηματίζοντας γωνία φ με την κατακόρυφο, με νήμα το οποίο είναι συνδεδεμένο στον τοίχο και στο μέσο (Κ) της ράβδου και είναι κάθετο σε αυτή, όπως φαίνεται στο σχήμα. Να υπολογίσετε: 1. Τη ροπή αδράνειας του συστήματος ράβδου-σώματος ως προς άξονα που διέρχεται από το σημείο Α και είναι κάθετος στη ράβδο. 2. Το μέτρο της τάσης του νήματος. Κάποια στιγμή το νήμα κόβεται και η ράβδος μαζί με το σώμα αρχίζει να περιστρέφεται στο επίπεδο του σχήματος, χωρίς τριβές. Να υπολογίσετε: 3. Το μέτρο της γωνιακής επιτάχυνσης της ράβδου μόλις κοπεί το νήμα. 4. Το μέτρο της ταχύτητας του σημείου Β της ράβδου όταν αυτή γίνει οριζόντια για πρώτη φορά. Μονάδες ( ) Δίνονται: συνφ=0,8, ημφ=0,6, η ροπή αδράνειας της ράβδου ως προς τον άξονα περιστροφής ΙΑ= Μl 2 και η επιτάχυνση της βαρύτητας g=10 m/s 2.

23 Δίνεται συμπαγής, ομογενής κύλινδρος μάζας Μ και ακτίνας R. Αφήνουμε τον κύλινδρο να κυλίσει χωρίς ολίσθηση, υπό την επίδραση της βαρύτητας (με επιτάχυνση της βαρύτητας g), πάνω σε κεκλιμένο επίπεδο γωνίας φ, όπως φαίνεται στο σχήμα που ακολουθεί: Δ1. Να υπολογίσετε την επιτάχυνση του κέντρου μάζας του κυλίνδρου. Ο άξονας του κυλίνδρου διατηρείται οριζόντιος. Δ2. Από το εσωτερικό αυτού του κυλίνδρου, που έχει ύψος h, αφαιρούμε πλήρως ένα ομοαξονικό κύλινδρο ακτίνας r, όπου r < R, όπως απεικονίζεται στο παρακάτω σχήμα: Να αποδείξετε ότι η ροπή αδράνειας του κοίλου κυλίνδρου, ως προς τον άξονα του, που προκύπτει μετά την αφαίρεση του εσωτερικού κυλινδρικού τμήματος, είναι IΚΟΙΛ= MR 2 (1- ) Στη συνέχεια λιπαίνουμε το κυλινδρικό τμήμα που αφαιρέσαμε και το επανατοποθετούμε στη θέση του, ούτως ώστε να εφαρμόζει απόλυτα με τον κοίλο κύλινδρο χωρίς τριβές. Το νέο σύστημα που προκύπτει αφήνεται να κυλίσει χωρίς ολίσθηση, υπό την επίδραση της βαρύτητας (με επιτάχυνση της βαρύτητας g), στο ίδιο κεκλιμένο επίπεδο, όπως φαίνεται στο παρακάτω σχήμα: Δ3. Να υπολογίσετε την επιτάχυνση του κέντρου μάζας του συστήματος. Δ4. Όταν r = R/2, να υπολογίσετε, σε κάθε χρονική στιγμή της κύλισης στο κεκλιμένο επίπεδο, το λόγο της μεταφορικής προς την περιστροφική κινητική ενέργεια του συστήματος. Ο άξονας του συστήματος διατηρείται πάντα οριζόντιος. Μονάδες ( ) Δίνονται : Η ροπή αδράνειας Ι συμπαγούς και ομογενούς κυλίνδρου μάζας Μ και ακτίνας R, ως προς τον άξονα γύρω από τον οποίο στρέφεται: Ι = M R 2. Ο όγκος V ενός συμπαγούς κυλίνδρου ακτίνας R και ύψους h:v = π R 2 h

24 Δίνεται συμπαγής, ομογενής κύλινδρος μάζας Μ και ακτίνας R. Αφήνουμε τον κύλινδρο να κυλίσει χωρίς ολίσθηση, υπό την επίδραση της βαρύτητας (με επιτάχυνση της βαρύτητας g), πάνω σε κεκλιμένο επίπεδο γωνίας φ, όπως φαίνεται στο σχήμα που ακολουθεί: Δ1. Να υπολογίσετε την επιτάχυνση του κέντρου μάζας του κυλίνδρου. Ο άξονας του κυλίνδρου διατηρείται οριζόντιος. Δ2. Από το εσωτερικό αυτού του κυλίνδρου, που έχει ύψος h, αφαιρούμε πλήρως ένα ομοαξονικό κύλινδρο ακτίνας r = R/2 και μάζας m = M/4, όπως απεικονίζεται στο παρακάτω σχήμα. Να υπολογίσετε τη ροπή αδράνειας του κοίλου κυλίνδρου, ως προς τον άξονά του, που προκύπτει μετά την αφαίρεση του εσωτερικού κυλινδρικού τμήματος. Ο κοίλος κύλινδρος που προκύπτει αφήνεται να κυλίσει χωρίς ολίσθηση, υπό την επίδραση της βαρύτητας (με επιτάχυνση βαρύτητας g), στο ίδιο κεκλιμένο επίπεδο, όπως φαίνεται στο παρακάτω σχήμα: Δ3. Να υπολογίσετε την επιτάχυνση του κέντρου μάζας του κοίλου κυλίνδρου. Ο άξονας του κυλίνδρου διατηρείται πάντα οριζόντιος. Δ4. Να υπολογίσετε, σε κάθε χρονική στιγμή της κύλισης στο κεκλιμένο επίπεδο, το λόγο της μεταφορικής προς την περιστροφική κινητική ενέργεια του κοίλου κυλίνδρου. Ο άξονας του κυλίνδρου διατηρείται πάντα οριζόντιος. Μονάδες ( ) Δίνονται : Η ροπή αδράνειας Ι συμπαγούς και ομογενούς κυλίνδρου μάζας Μ και ακτίνας R, ως προς τον άξονα γύρω από τον οποίο στρέφεται: Ι = M R 2

25 Μια ισοπαχής δοκός ΑΒ αποτελείται από δύο ομογενή τμήματα ΑΚ και ΚΒ, μήκους το καθένα, με μάζες m1 = 5m2 και m2 = 0,5 kg, αντίστοιχα. Τα κομμάτια αυτά είναι κολλημένα μεταξύ τους στο σημείο Κ, ώστε να σχηματίζουν τη δοκό ΑΒ μήκους L = 1 m. H δοκός ισορροπεί σε οριζόντια θέση, με το άκρο της Α να στηρίζεται στον τοίχο μέσω άρθρωσης, ενώ το μέσο της Κ συνδέεται με τον τοίχο με σχοινί που σχηματίζει γωνία φ = 30 με τη δοκό. Δ1.Να υπολογίσετε τις δυνάμεις που δέχεται η δοκός από το σχοινί και την άρθρωση Κάποια στιγμή το σχοινί κόβεται και η ράβδος αρχίζει να στρέφεται χωρίς τριβές γύρω από το άκρο της Α σε κατακόρυφο επίπεδο. Δ2.Να υπολογίσετε το μέτρο της γωνιακής επιτάχυνσης της ράβδου σε συνάρτηση με τη γωνία θ, που σχηματίζει αυτή με την αρχική της θέση (0 θ < 90 ). Δ3. Να υπολογίσετε το μέτρο της ταχύτητας του άκρου Β της ράβδου (υβ ) σε συνάρτηση με τη γωνία θ. Τη στιγμή που η ράβδος έχει στραφεί κατά γωνία θ = 30, συγκρούεται πλαστικά με αρχικά ακίνητο σφαιρίδιο αμελητέων διαστάσεων και μάζας m = m2, το οποίο σφηνώνεται στο μέσο Κ της ράβδου. Δ4.Να υπολογίσετε το ποσοστό απώλειας της κινητικής ενέργειας κατά την κρούση. Μονάδες( ) Δίνονται: η επιτάχυνση της βαρύτητας g = 10 m/s 2,ροπή αδράνειας ομογενούς και ισοπαχούς ράβδου μάζας m και μήκους L ως προς άξονα κάθετο στο μέσο της,ημ30 0 =, συν30 0 =

26 Λεπτή ομογενής ράβδος ΑΓ μήκους l = 1,5 m και μάζας Μ μπορεί να στρέφεται χωρίς τριβή γύρω από οριζόντιο άξονα κάθετο σε αυτή, ο οποίος διέρχεται από σημείο Κ της ράβδου και απέχει από το άκρο Γ απόσταση d = l / 6. Στο άκρο Γ τοποθετούμε σώμα μάζας m = 3,2 kg αμελητέων διαστάσεων και το σύστημα ισορροπεί με τη ράβδο σε οριζόντια θέση. Να υπολογίσετε : Δ1. τη μάζα Μ της ράβδου και το μέτρο της δύναμης που δέχεται η ράβδος από τον άξονα. Δ2. τη ροπή αδράνειας του συστήματος ράβδος σώμα ως προς τον άξονα περιστροφής. Απομακρύνουμε το σώμα μάζας m και τη στιγμή t = 0 αφήνουμε τη ράβδο ελεύθερη να περιστραφεί από την οριζόντια θέση. Να υπολογίσετε: Δ3. το μέτρο της γωνιακής επιτάχυνσης της ράβδου τη στιγμή t = 0. Δ4. το μέτρο της στροφορμής της ράβδου, όταν αυτή σχηματίζει με την αρχική της οριζόντια θέση γωνία φ ( ημφ = 0,7 ) για πρώτη φορά. Δίνονται : η ροπή αδράνειας της ράβδου ως προς άξονα που διέρχεται από το κέντρο μάζας της και είναι κάθετος στη ράβδο : ΙCM = Μl 2 και η επιτάχυνση της βαρύτητας: g = 10 m/s 2 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ) ( I=3 kgm 2, αγων= 5 rad/s 2, ω=2 rad/s, L=6 Kgm 2 /s) 2 ) ( Iol=25,6 kgm 2, T=30N, t=0,314s, υ= m/s) 3 ) ( ωο=80rad/s, αcm = -4 m/s 2,, υcm=4m/s) 4 ) ( 32N, T=5N, υcm= 1 m/s, ) 5 ) ( αγων=50 rad/s 2, L=0,36 Kgm 2 /s, υ =2,4 m/s, 32% ) 6 ) ( Τ=115 Ν, αcm= 2 m/s 2, υcm=2 m/s, L=0,4 Kg.m 2 /s) 7 ) ( F0=100N, αcm=1 m/s 2, L= 4 Kg m 2 /s, x=4m, % ) 8 ) (I=0,5 kgm 2, αcm1> αcm2,, F=1N) 9 ) ( αγων= 4 rad/s, υα= m/s, m=0,4 kg ) 10 ) (I=0,45kgm 2, W=18 J, ω=0, θ=60 0 ) 11 ) ( L= 0,8 kgm 2 /s, υ= 2 m/s, T= 2π.10-1 s, A= 0,1 m ) 12 ) ( T=200N, I= 4 kgm 2, αγων= 12,5 rad/s, υ = 5 m/s ) 13 ) (υ = 4 m/s, ω=1rad/s, Q=2J, 1/15 m )

27 27 14 ) (αcm=1 m/s 2, αγων= 75 rad/s 2, T=15 N,, Κστρ= 56,25t 2 ) 15 ) (ω=40rad/s, L=4 kgm 2 /s, h=4,8 m, ) 16 ) (υα = 20 m/s, υβ = m/s, υ0 = 0 m/s, ω=50rad/s, Ι0 = 0,08 kgm 2, K=100 J ) 17 ) (αcm=2 m/s 2, T1=16 N, T2=12 N, ω=8 rad/s, K= 30 J ) 18 ) ( T=15 N, αγων= 15 rad/s 2, ω= rad/s, ) 19 ) ( W=8J, θ=1,6 rad, P=40 W, ω1 =4 rad/s) 20 ) ( Α=0,2 m, FA = -2-10x, x1 = 0,2 m, A =0,4m, t= 2π/15 s ) ίδια με την 28 με διαφορετικό το Δ4 ερώτημα. 21 ) ( τ=2 Nm, αγων= 5 rad/s 2, Δt= 5 s, ΔΚ= 175 J ) 22 ) ( 4 m/s 2, 12 j, 0,15 m, 20 N) 23 ) ( I=1, kgm 2, kgm 2 /s 2, L= kgm 2 /s ) 24 ) ( A =0,3 m, y=0,3ημ(10t+ ) (S.I), αγων=15 rad/s 2, J/s ) 25 ) ( F=15 N, αγων= 7,5 rad/s 2, P= 145,5 J/s ) 26 ) ( F = 100 N, αcm=1m/s 2, L= 8 Kgm 2 /s, WF = 520 J, Eμηχ= 520 J) 27 ) ( M=m=1 kg, L= 3m,, L=18 Kgm 2 /s ) 28 ) Ίδια με την ) ( Δl= 0,4m, T=20 N, αcm= m/s 2, L = 0,2 kgm 2 /s) 30 ) ( I = 0,06 kgm 2, αγων= 10 rad/s 2, ω =50 rad/s, I= 0,09 kgm 2 ) 31 ) ( F =T=30N, αγων= 15 rad/s 2,, K = 15 J ) 32 ) (αcm= 4 m/s 2, T= 4 N, L= 1,6 kgm 2 /s, N=10 ) 33 ) ( K = 10 J, L=4 kgm 2 /s, P= 2 J/s, τ = 0,8 Nm ) 34 ) (αcm = 3 m/s 2, αγων= 15 rad/s 2, L = 5,4 Kgm 2 /s, t2 = 1s ) 35 ) ( I= 0, kgm 2, υcm= 10 m/s, L= 0,08 Kgm 2 /s, H=5 m (πάνω από το Β ) 36 ) ( Τ= 10 Ν, αcm= 1 m/s 2, T = 9 N, υ=2m/s, S=0,5m) 37 ) ( r/s 2, υβ = 8 m/s ) 38 ) (, 32/15 ) 39 ) ( ) 40 ) ( m/s, 20% ) 41 ) ( m/s, 20% ) 42 ) ( )

1. Δύο ίδιες, λεπτές, ισοπαχείς και ομογενείς ράβδοι ΟΑ και ΟΒ,

1. Δύο ίδιες, λεπτές, ισοπαχείς και ομογενείς ράβδοι ΟΑ και ΟΒ, 1 ΠΡΟΒΛΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ (2002 2013) 1. Δύο ίδιες, λεπτές, ισοπαχείς και ομογενείς ράβδοι ΟΑ και ΟΒ, που έχουν μάζα Μ = 4 Κg και μήκος L = 1,5 m η καθεμία, συγκολλούνται στο ένα άκρο τους Ο,

Διαβάστε περισσότερα

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου 1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ

ΘΕΜΑΤΑ ΑΠΟ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ΘΕΜΑΤΑ ΑΠΟ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 3ο, 4ο ΘΕΜΑ Πανελληνίων εξετάσεων -O.Ε.Φ.Ε 196 ΘΕΜΑ 4 ο 00 Δύο ίδιες, λεπτές, ισοπαχείς και ομογενείς ράβδοι ΟΑ και ΟΒ, που έχουν μάζα Μ = 4 Κg και μήκος L =

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής) ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων

Διαβάστε περισσότερα

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s] ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από

Διαβάστε περισσότερα

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 3ο: Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 ιδακτική Ενότητα: Ροπή

Διαβάστε περισσότερα

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί. 1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

Δίνονται: π=3,14 και συν3π/4 = 2

Δίνονται: π=3,14 και συν3π/4 = 2 1. Στην επιφάνεια ενός υγρού που ηρεμεί, βρίσκονται δύο σύγχρονες σημειακές πηγές Π 1 και Π 2, που δημιουργούν στην επιφάνεια του υγρού εγκάρσια αρμονικά κύματα ίσου πλάτους. Οι πηγές αρχίζουν να ταλαντώνονται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

Ασκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος

Ασκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος - Μηχανική στερεού σώματος Ασκήσεις 1. Στερεό στρέφεται γύρω Ένας δίσκος μπορεί να περιστρέφεται γύρω από σταθερό άξονα ο οποίος διέρχεται από το κέντρο και είναι κάθετος στο επίπεδο του. Ο δίσκος είναι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. ΚΕΦΑΛΑΙΟ 4 3ο, 4ο ΘΕΜΑ Πανελληνίων εξετάσεων -OΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ ΘΕΜΑ 3 o 00 Ομογενής και ισοπαχής ράβδος ΑΓ, μήκους L=1 m και μάζας m=10 kg, μπορεί να στρέφεται γύρω από ακλόνητο οριζόντιο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 4ο: ιδακτική Ενότητα: Ροπή ύναµης Ισορροπία Στερεού Σώµατος Ασκήσεις

Διαβάστε περισσότερα

ΘΕΜΑ Γ, Δ. γ. 0,3 m δ. 112,5 rad] 3. Η ράβδος του σχήματος περιστρέφεται με σταθερή γωνιακή

ΘΕΜΑ Γ, Δ. γ. 0,3 m δ. 112,5 rad] 3. Η ράβδος του σχήματος περιστρέφεται με σταθερή γωνιακή ΘΕΜΑ Γ, Δ 1. Μια ευθύγραμμη ράβδος ΑΒ αρχίζει από την ηρεμία να περιστρέφεται με σταθερή γωνιακή επιτάχυνση 4 rad/s. Η ράβδος έχει μήκος l 1 m. 0 άξονας περιστροφής της ράβδου είναι κάθετος στη ράβδο και

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί. 1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1 1. Ένα βλήμα μάζας 0,1 kg που κινείται οριζόντια με ταχύτητα 100 m/s σφηνώνεται σε ακίνητο ξύλο μάζας 1,9 kg. Να βρεθεί η απώλεια ενέργειας που οφείλεται στην κρούση, όταν το ξύλο είναι: α. πακτωμένο στο

Διαβάστε περισσότερα

Μηχανική Στερεού Ασκήσεις Εμπέδωσης

Μηχανική Στερεού Ασκήσεις Εμπέδωσης Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή

Διαβάστε περισσότερα

Διαγώνισμα Μηχανική Στερεού Σώματος

Διαγώνισμα Μηχανική Στερεού Σώματος Διαγώνισμα Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

3.3. Δυναμική στερεού.

3.3. Δυναμική στερεού. 3.3.. 3.3.1. Ροπή και γωνιακή επιτάχυνση Μια οριζόντια τετράγωνη πλάκα ΑΒΓΔ, πλευράς 1m και μάζας 20kg μπορεί να στρέφεται γύρω από σταθερό άξονα z που περνά από το κέντρο της. Η πλάκα αποκτά γωνιακή ταχύτητα

Διαβάστε περισσότερα

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

3.6. Σύνθετα θέματα στερεού. Ομάδα Δ.

3.6. Σύνθετα θέματα στερεού. Ομάδα Δ. 3.5.61. Μια κινούμενη τροχαλία. 3.6. Σύνθετα θέματα στερεού. Ομάδα Δ. Γύρω από μια τροχαλία μάζας Μ=0,8kg έχουμε τυλίξει ένα αβαρές νήμα, στο άκρο του οποίου έχουμε δέσει ένα σώμα Σ μάζας m=0,1kg. Συγκρατούμε

Διαβάστε περισσότερα

Μηχανική Στερεού σώματος

Μηχανική Στερεού σώματος ο ΘΕΜΑ Μηχανική Στερεού σώματος Α Ερωτήσεις Πολλαπλής Επιλογής Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Η μονάδα μέτρησης

Διαβάστε περισσότερα

Διαγώνισμα: Μηχανική Στερεού Σώματος

Διαγώνισμα: Μηχανική Στερεού Σώματος Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R 2

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R 2 ΚΕΦΑΛΑΙΟ 4 Γενικές ερωτήσεις Γενικές ασκήσεις Κριτήρια αξιολόγησης ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική

Διαβάστε περισσότερα

ΡΟΠΗ ΔΥΝΑΜΗΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ

ΡΟΠΗ ΔΥΝΑΜΗΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΡΟΠΗ ΔΥΝΑΜΗΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ 1. Ένας ελαιοχρωματιστής βάρους w 1 =700 N βρίσκεται σε μια οριζόντια σανίδα AB, μήκους l =5m και βάρους w=300 N. Η σανίδα κρέμεται από δυο κατακόρυφα σχοινιά

Διαβάστε περισσότερα

Προτεινόμενα ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ

Προτεινόμενα ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΜΑΤΑ Β. Β1. Από ύψος h (σημείο Α) αφήνουμε να κυλίσει δακτύλιος μάζας m 1 =m χωρίς ολίσθηση σε οδηγό που καταλήγει σε τεταρτοκύκλιο. Στο σημείο Β και όταν η u cm είναι κατακόρυφη ο δακτύλιος εγκαταλείπει

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/04 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1.

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΠΕΝΤΕ (15) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Θέματα Εξετάσεων Μηχανική στερεού σώματος

Θέματα Εξετάσεων Μηχανική στερεού σώματος Θέματα Εξετάσεων 00 05 Μηχανική στερεού σώματος ΗΜΕΡΗΣΙΑ ΕΣΠΕΡΙΝΑ - ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΓΕΛ ΑΓ. ΤΡΙΑΔΑΣ Θέμα ο Α. Ερωτήσεις πολλαπλής επιλογής. Η ροπή αδράνειας ενός στερεού σώματος ως προς άξονα περιστροφής

Διαβάστε περισσότερα

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 4: ΣΤΡΟΦΟΡΜΗ 26. Δύο σημειακές σφαίρες που η καθεμιά έχει μάζα συνδέονται μεταξύ τους με οριζόντια αβαρή ράβδο. Το σύστημα περιστρέφεται γύρω από κατακόρυφο

Διαβάστε περισσότερα

. α. περιστροφή σώματος με σταθερή γωνιακή ταχύτητα. και 0

. α. περιστροφή σώματος με σταθερή γωνιακή ταχύτητα. και 0 Επανάληψη: Περιστροφή στερεού σώματος (Φ25) 1. Να αποδείξετε ότι, για τροχό ακτίνας R που κυλίεται χωρίς να ολισθαίνει, ισχύει α cm =Rα γων. 2. Τροχός ακτίνας R έχει α cm =0 και α γων =0. Τι είδους κίνηση

Διαβάστε περισσότερα

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο Διαγώνισμα Μηχανική Στερεού Σώματος Σάββατο 24 Φεβρουαρίου 2018 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Ένας δίσκος στρέφεται γύρω από άξονα που

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ 1. Κατακόρυφο ελατήριο σταθεράς k=1000 N /m έχει το κάτω άκρο του στερεωμένο σε ακίνητο σημείο. Στο πάνω άκρο του ελατηρίου έχει προσδεθεί σώμα Σ 1 μάζας m 1 =8 kg, ενώ ένα δεύτερο

Διαβάστε περισσότερα

ΘΕΜΑ Α 018 Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία συμπληρώνει σωστά την ημιτελή πρόταση. A1. Δύο μικρά σώματα με

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 28/2/2016

ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 28/2/2016 ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 8//06 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΣΤΕΡΕΟ ΚΑΙ Doppler ΘΕΜΑ Α Α Μικρότερη συχνότητα ακούει ένας παρατηρητής σε σχέση με την πραγματική συχνότητα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης

Διαβάστε περισσότερα

[50m/s, 2m/s, 1%, -10kgm/s, 1000N]

[50m/s, 2m/s, 1%, -10kgm/s, 1000N] ΚΕΦΑΛΑΙΟ 5 ο - ΜΕΡΟΣ Α : ΚΡΟΥΣΕΙΣ ΕΝΟΤΗΤΑ 1: ΚΡΟΥΣΕΙΣ 1. Σώμα ηρεμεί σε οριζόντιο επίπεδο. Βλήμα κινούμενο οριζόντια με ταχύτητα μέτρου και το με ταχύτητα, διαπερνά το σώμα χάνοντας % της κινητικής του

Διαβάστε περισσότερα

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας.

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Επαναληπτικό 4 ΘΕΜ aa ΤΕΣΤ 16 1. Στη διάταξη του σχήματος, ασκούμε κατακόρυφη δύναμη σταθερού μέτρου F στο άκρο του νήματος, ώστε ο τροχός () να ανέρχεται κυλιόμενος χωρίς ολίσθηση στο κεκλιμένο επίπεδο.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 1. Ο κύλινδρος και ο δίσκος του σχήματος, έχουν την ίδια μάζα και περιστρέφονται με την ίδια γωνιακή ταχύτητα ω. Ποιό σώμα θα σταματήσει πιο δύσκολα; α) Το Α. β) Το Β. γ) Και τα δύο το ίδιο. 2. Ένας ομογενής

Διαβάστε περισσότερα

α.- β. γ. δ. Μονάδες 5

α.- β. γ. δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 13/11/2016 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα

Διαβάστε περισσότερα

Μηχανική Στερεού σώματος

Μηχανική Στερεού σώματος ο ΘΕΜΑ Μηχανική Στερεού σώματος Α. Ερωτήσεις Πολλαπλής Επιλογής Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Η μονάδα μέτρησης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου] ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι. ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1 61 Η κινητική ενέργεια ενός δίσκου μάζας m και ακτίνας R που εκτελεί στροφική κίνηση, εξαρτάται: α Μόνο από την γωνιακή του ταχύτητα β Μόνο από την μάζα και την ακτίνα του γ Μόνο από την γωνιακή του ταχύτητα,

Διαβάστε περισσότερα

το άκρο Β έχει γραμμική ταχύτητα μέτρου.

το άκρο Β έχει γραμμική ταχύτητα μέτρου. ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Μια ράβδος ΑΒ περιστρέφεται με σταθερή γωνιακή ταχύτητα γύρω από έναν σταθερό οριζόντιο άξονα που περνάει από ένα σημείο πάνω

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25) ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 1 ΙΟΥΝΙΟΥ 019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης

Διαβάστε περισσότερα

Μηχανική Στερεού σώματος

Μηχανική Στερεού σώματος ο ΘΕΜΑ Μηχανική Στερεού σώματος Α Ερωτήσεις Πολλαπλής Επιλογής Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Η μονάδα μέτρησης

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

3.4. Στροφορμή. Ομάδα Β.

3.4. Στροφορμή. Ομάδα Β. 3.4. Στροφορμή. Ομάδα Β. 1. Στροφορμή και άξονας περιστροφής Έστω ένας οριζόντιος δίσκος μάζας m και ακτίνας R, ο οποίος στρέφεται με γωνιακή ταχύτητα ω. Να υπολογίσετε την στροφορμή του δίσκου ως προς

Διαβάστε περισσότερα

προς ένα ακίνητο σωμάτιο α (πυρήνας Ηe), το οποίο είναι ελεύθερο να κινηθεί,

προς ένα ακίνητο σωμάτιο α (πυρήνας Ηe), το οποίο είναι ελεύθερο να κινηθεί, ΚΡΟΥΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 1. Σφαίρα Α μάζας 3m κινείται πάνω σε λείο οριζόντιο επίπεδο κατά τη θετική φορά και συγκρούεται κεντρικά και ελαστικά με άλλη σφαίρα Β μάζας m που κινείται κατά την

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ. Θέµατα Εξετάσεων

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ. Θέµατα Εξετάσεων ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέµατα Εξετάσεων ΣΤΕΡΕΟ. Θέµατα Εξετάσεων 2 1) Αν το αλγεβρικό άθροισµα των ροπών που δρουν πάνω σ' ένα στερεό σώµα, το οποίο περιστρέφεται γύρω από σταθερό άξονα, είναι µηδέν, τότε α.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018 Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018 ΦΥΣΙΚΗ Ο.Π ΘΕΜΑ Α Α1. Μία ηχητική πηγή που εκπέμπει ήχο συχνότητας κινείται με σταθερή ταχύτητα πλησιάζοντας ακίνητο παρατηρητή, ενώ απομακρύνεται από άλλο ακίνητο παρατηρητή.

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Θέµα 1 0 1. Το αλγεβρικό άθροισµα των... που δρουν σ' ένα στερεό που περιστρέφεται γύρω από σταθερό άξονα, είναι ίσο µε την αλγεβρική τιµή του ρυθµού µεταβολής της στροφορµής του..

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΕΡΓΟ ΙΣΧΥΣ

ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΕΡΓΟ ΙΣΧΥΣ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΕΡΓΟ ΙΣΧΥΣ 1. Πάνω σε ένα οριζόντιο επίπεδο κυλάνε, χωρίς να ολισθαίνουν με την ίδια ταχύτητα ένας λεπτός δακτύλιος και ένας δίσκος της ίδιας μάζας και της ίδιας ακτίνας. Αν η κινητική

Διαβάστε περισσότερα

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 8 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ (1) Στεφάνου Μ. Φυσικός

ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ (1) Στεφάνου Μ. Φυσικός ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ (1) 1. Ένας τροχός ακτίνας R=0,3 m μπορεί να περιστρέφεται γύρω από σταθερό άξονα ο οποίος διέρχεται από το κέντρο του. Τη χρονική στιγμή t=0 ο τροχός έχει γωνιακή ταχύτητα ω ο = 10 rad/s

Διαβάστε περισσότερα

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 14/4/2019

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 14/4/2019 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 14/4/2019 ΘΕΜΑ A Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

τ= Fl τ= Fd (κανόνας δεξιού χεριού)

τ= Fl τ= Fd (κανόνας δεξιού χεριού) ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΤΑΞΗΣ Κινήσεις στερεών σωμάτων Στη μεταφορική κίνηση κάθε στιγμή όλα τα σημεία του σώματος έχουν την ίδια ταχύτητα. Στη στροφική κίνηση το σώμα αλλάζει προσανατολισμό. Στη στροφική

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων μέχρι σήμερα ανά κεφάλαιο ΜΗΧΑΝΙΚΟ ΣΤΕΡΕΟ ΚΙΝΗΜΑΤΙΚΗ ΠΕΡΙΣΤΡΟΦΗΣ. Ερωτήσεις τύπου Σωστό / Λάθος και συμπλήρωσης κενού

Όλα τα θέματα των πανελληνίων μέχρι σήμερα ανά κεφάλαιο ΜΗΧΑΝΙΚΟ ΣΤΕΡΕΟ ΚΙΝΗΜΑΤΙΚΗ ΠΕΡΙΣΤΡΟΦΗΣ. Ερωτήσεις τύπου Σωστό / Λάθος και συμπλήρωσης κενού ΜΗΧΑΝΙΚΟ ΣΤΕΡΕΟ ΚΙΝΗΜΑΤΙΚΗ ΠΕΡΙΣΤΡΟΦΗΣ Ερωτήσεις τύπου Σωστό / Λάθος και συμπλήρωσης κενού 1. Στη µεταφορική κίνηση ενός σώµατος κάθε χρονική στιγµή όλα τα σηµεία του έχουν την ίδια ταχύτητα. 2. Όταν ένα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέματα Εξετάσεων

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέματα Εξετάσεων Μηχανική στερεού. Θέματα εξετάσεων. 1 ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέματα Εξετάσεων ΣΤΕΡΕΟ. Θέματα Εξετάσεων 1) Αν το αλγεβρικό άθροισμα των ροπών που δρουν πάνω σ' ένα στερεό σώμα, το οποίο περιστρέφεται γύρω από

Διαβάστε περισσότερα

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ 1. Στο σώμα του σχήματος έχει βάρος Β = 20Ν είναι ακίνητο και του ασκούνται οι δυνάμεις F 1 = 5Ν, F 2 = 10Ν, F 3 = 15Ν και F 4 = 10Ν. Αν το σώμα μετακινηθεί οριζόντια προς

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 08 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ημερομηνία: Σάββατο 4 Απριλίου 08 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ημιτελείς προτάσεις Α Α4

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 24 Φλεβάρη 2018 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 Στις παρακάτω ερωτήσεις 1 έως 3 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. (Θέμα Δ) Άσκηση 2. (Κύλιση χωρίς ολίσθηση, σχέση υ cm και ω, σχέση α cm και a γων )

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. (Θέμα Δ) Άσκηση 2. (Κύλιση χωρίς ολίσθηση, σχέση υ cm και ω, σχέση α cm και a γων ) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Γωνιακή ταχύτητα, γωνιακή επιτάχυνση, σύνθετη κίνηση, κέντρο μάζας) Δύο δίσκοι οριζόντιοι Δ 1 και Δ εκτελούν περιστροφική κίνηση γύρω από κατακόρυφο άξονα που περνά από το

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ-A ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλάντωση Doppler Ρευστά -Στερεό Ονοματεπώνυμο Μαθητή: Ημερομηνία: 04-03-2019 Επιδιωκόμενος Στόχος: 80/100 Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΕΞΙ (16) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον

Διαβάστε περισσότερα

Δυναμική στερεού. Ομάδα Δ

Δυναμική στερεού. Ομάδα Δ Δυναμική στερεού. Ομάδα Δ 3.3.41. Ανεμιστήρες. Κατασκευαστής ανεμιστήρων έδωσε 4 σχεδιαστές την εντολή να σχεδιάσουν ανεμιστήρες με βάση έναν κύλινδρο μάζας Μ ακτίνας R και ροπής αδράνειας ως προς το κέντρο

Διαβάστε περισσότερα

ΜΟΝΑΔΕΣ 5. A4. Σώμα περιστρέφεται γύρω από σταθερό άξονα έχοντας στροφορμή μέτρου L. Τη χρονική στιγμή t=0 ασκούμε στο σώμα ροπή δύναμης μέτρου τ

ΜΟΝΑΔΕΣ 5. A4. Σώμα περιστρέφεται γύρω από σταθερό άξονα έχοντας στροφορμή μέτρου L. Τη χρονική στιγμή t=0 ασκούμε στο σώμα ροπή δύναμης μέτρου τ ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΑΒΒΑΤΟ 31 ΜΑΡΤΙΟΥ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4 να γράψετε στο

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΜΑ Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ Ο.Π. ΘΕΜΑ Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΓΕΛ / 04 / 09 ΦΥΣΙΚΗ Ο.Π ΘΕΜΑ Α Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α. Σώμα εκτελεί απλή αρμονική ταλάντωση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ-ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ- ΚΕΦΑΛΑΙΟ 4 ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ-ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ- ΚΕΦΑΛΑΙΟ 4 ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΘΕΜΑ 1ο 5. Να γράψετε στο τετράδιό σας τη λέξη που

Διαβάστε περισσότερα

ΚΡΟΥΣΕΙΣ. γ) Δ 64 J δ) 64%]

ΚΡΟΥΣΕΙΣ. γ) Δ 64 J δ) 64%] 1. Μικρή σφαίρα Σ1, μάζας 2 kg που κινείται πάνω σε λείο επίπεδο με ταχύτητα 10 m/s συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Σ2 μάζας 8 kg. Να υπολογίσετε: α) τις ταχύτητες των σωμάτων μετά

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέµατα Εξετάσεων

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέµατα Εξετάσεων ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέµατα Εξετάσεων ΣΤΕΡΕΟ. Θέµατα Εξετάσεων 2 1) Αν το αλγεβρικό άθροισµα των ροπών που δρουν πάνω σ' ένα στερεό σώµα, το οποίο περιστρέφεται γύρω από σταθερό άξονα, είναι µηδέν, τότε α.

Διαβάστε περισσότερα

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4 1. F 2 F 3 F 1 F 4 Στο σώμα του παραπάνω σχήματος βάρους Β = 20Ν ασκούνται οι δυνάμεις F 1 = 5Ν, F 2 = 10Ν, F 3 = 15Ν και F 4 = 10Ν. Αν το σώμα μετακινηθεί οριζόντια προς τα δεξιά κατά 2m να υπολογισθεί

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή Αδράνειας) Γ ΛΥΚΕΙΟΥ. Α)Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση.

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή Αδράνειας) Γ ΛΥΚΕΙΟΥ. Α)Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση. ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή δράνειας) Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 Ο : )Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση. 1. Για ένα ζεύγος δυνάμεων Η ροπή του, εξαρτάται

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ. =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1. =8m /s συγκρούεται κεντρικά

ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ. =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1. =8m /s συγκρούεται κεντρικά ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ 1. Σφαίρα μάζας m 1 =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1 =8m /s συγκρούεται κεντρικά και ελαστικά με άλλη σφαίρα μάζας =3 kg που κινείται προς τα αριστερά με ταχύτητα

Διαβάστε περισσότερα

Σύνθετα θέματα στερεού

Σύνθετα θέματα στερεού Σύνθετα θέματα στερεού 3.1. οκός τροχός σφαιρίδιο Κατασκευάζουµε ένα τροχό ενώνοντας τις βάσεις δύο οµογενών κυλίνδρων, έτσι ώστε να αποκτήσουν κοινό άξονα όπως δείχνει το σχήµα. Ο µεγάλος κύλινδρος έχει

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΚΙΝΗΣΕΙΣ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΕΡΩΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4ο: ΚΙΝΗΣΕΙΣ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΕΡΩΤΗΣΕΙΣ Α ΕΡΩΤΗΣΕΙΣ Ερώτηση 1 Σε ένα ρολόι θέλουμε το άκρο του ωροδείκτη και το άκρο του λεπτοδείκτη να έχουν την ίδια ταχύτητα λόγω περιστροφής (γραμμική ταχύτητα). Αν συμβολίσουμε με το μήκος του ωροδείκτη και

Διαβάστε περισσότερα