ΑΣΚΗΣΗ 5 ΦΩΤΟΒΟΛΤΑΙΚΟ ΚΥΤΤΑΡΟ
|
|
- Μυρίνη Αλεξιάδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΑΣΚΗΣΗ 5 ΦΩΤΟΒΟΛΤΑΙΚΟ ΚΥΤΤΑΡΟ ΑΣΚΗΣΗ Σκοπός Σε αυτήν την άσκηση μελετάται η λειτουργία του φωτοβολταϊκού κυττάρου ως πηγή ηλεκτρισμού. Συγκεκριμένα μελετάται η σχέση του ρεύματος με την τάση του κυττάρου (χαρακτηριστική καμπύλη) και από αυτήν προσδιορίζεται η ηλεκτρική ισχύς του. Προσδιορίζονται οι βέλτιστες συνθήκες για τη λειτουργία ενός πάνελ φωτοβολταϊκών σε ένα κύκλωμα με γνωστό φορτίο ώστε αυτό να βρίσκεται σε λειτουργία μέγιστη ισχύος MPPT (maximum power point tracking). Επίσης συγκρίνεται η απόδοση ενός φωτοβολταϊκού κυττάρου σε διαφορετικές συνθήκες φωτισμού. ΛΕΞΕΙΣ-ΚΛΕΙΔΙΑ φωτοβολταϊκό φαινόμενο, ημιαγωγός, επαφή p-n, δίοδος, φωτοβολταϊκά κύτταρα, ηλιακή ενέργεια, σειριακή και παράλληλη σύνδεση 2 Εισαγωγή Η ηλιακή ενέργεια μαζί με την αιολική ενέργεια και την υδρο-ηλεκτρική ενέργεια αποτελούν τις ανανεώσιμες (ή "πράσινες") πηγές ενέργειας οι οποίες είναι αφενός αειφόρες (θα διαρκούν για πάντα) και αφετέρου φιλικές προς το περιβάλλον αφού δεν συνοδεύονται από ρίπους CO 2 ή ραδιενεργά απόβλητα με τα γνωστά προβλήματα που αυτά δημιουργούν στο περιβάλλον. Σχήμα 5.1: Το πρότυπο φωτοβολταϊκό μας πάρκο στη ταράτσα του κτιρίου Χημικών Μηχανικών Η ηλιακή ενέργεια συλλέγεται από τον άνθρωπο μέσω δυο διαφορετικών τεχνικών (Σχήμα 5.1), των ηλιακών συλλεκτών (ή ηλιακών θερμοσιφώνων) οι οποίοι την μετατρέπουν σε θερμότητα και των φωτοβολταϊκών που τη μετατρέπουν σε ηλεκτρισμό. Στην δεύτερη περίπτωση χρησιμοποιούνται ως υλικά οι λεγόμενοι "ημιαγωγοί" οι οποίοι απαρτίζονται κυρίως από τα χημικά στοιχεία που εμφανίζονται στο 4 4 πλαίσιο του Σχήματος 2, με το πιο σημαντικό το πυρίτιο. Γιατί όμως αυτά τα υλικά έχουν ιδιαίτερη τεχνολογική σπουδαιότητα; 3 Θεωρία Όπως φαίνεται στο Σχήμα 5.2, μέσα στα υλικά υπάρχουν ενεργειακές ζώνες που είναι η γενίκευση των ενεργειακών σταθμών στα άτομα. Όπως και στα άτομα όπου οι χαμηλές στάθμες είναι κατειλημμένες από ηλεκτρόνια ενώ οι υψηλές είναι κενές, έτσι και στα υλικά, οι χαμηλές ζώνες είναι 1
2 γενικά κατειλημμένες ενώ οι υψηλές άδειες. Η υψηλότερη κατειλημμένη ζώνη ονομάζεται "ζώνη σθένους" και σε μέσα σε αυτή τα ηλεκτρόνια γενικά δεν μπορούν να μετακινηθούν εύκολα επειδή δεν υπάρχουν ελεύθερες γειτονικές στάθμες όπου αυτά να μπορούν να μεταπηδήσουν. Αντιθέτως, η χαμηλότερη κενή ζώνη ονομάζεται "ζώνη αγωγιμότητας" και εκεί υπάρχει πλήθος διαθέσιμων ενεργειακών σταθμών. Όσον αφορά την ενεργειακή απόσταση αυτών των δυο ζωνών (σθένους και αγωγιμότητας), γνωστή και ως "ενεργειακό χάσμα" E g, υπάρχουν οι εξής περιπτώσεις υλικών: Σχήμα 5.2: Περιοδικός πίνακας στοιχείων. Στο πλαίσιο φαίνονται τα στοιχεία που συνθέτουν κυρίως τους ημιαγωγούς. Σχήμα 5.3: Ζώνες σθένους και αγωγιμότητας για τις τρεις βασικές κατηγορίες υλικών: Μέταλλα, Ημιαγωγοί και Μονωτές. 2
3 Μονωτές, Σχήμα 5.3δ: Το E g είναι σχετικά μεγάλο και έτσι απαιτούνται μεγάλες ηλεκτρικές τάσεις ώστε να αναγκάσουν τα ηλεκτρόνια να μεταπηδήσουν από την στάθμη σθένους στην στάθμη αγωγιμότητας. Έτσι για συνήθεις τάσεις των μερικών Volt, δεν παρατηρείται ρεύμα στους μονωτές επειδή τα ηλεκτρόνια παραμένουν παγιδευμένα στην στάθμη σθένους. Αγωγοί (μέταλλα), Σχήμα 5.3α και β: Στην άκρως αντίθετη περίπτωση, η ζώνη σθένους είτε επικαλύπτεται με τη ζώνη αγωγιμότητας είτε τυγχάνει η ζώνη σθένους να είναι μερικώς κατειλημμένη οπότε οι δυο ζώνες συμπίπτουν. Ως αποτέλεσμα αυτής της ιδιαιτερότητας, τα ηλεκτρόνια βρίσκουν πολύ εύκολα γειτονικές στάθμες όταν διεγείρονται ακόμα και με πολύ μικρές τάσεις με αποτέλεσμα την εύκολη μετακίνηση τους δια μέσου του υλικού και έτσι την εμφάνιση του ηλεκτρικού ρεύματος. Ο νόμος του Ohm είναι αυτός που περιγράφει την σχέση ρεύματος τάσης σε αυτή την περίπτωση. Ημιαγωγοί, Σχήμα 5.3γ: Το E g είναι σχετικά μικρό και έτσι με συμβατές ηλεκτρικές τάσεις αλλά και με θερμική διέγερση ή οπτική διέγερση τα ηλεκτρόνια μεταπηδούν από την στάθμη σθένους στην στάθμη αγωγιμότητας. Λόγω της θερμικής διέγερσης, πάντα υπάρχει ένα μικρό ποσοστό ηλεκτρονίων που έχει ήδη μεταπηδήσει, όπως φαίνεται και στο σχήμα. Τα ηλεκτρόνια αυτά μπορούν να μετακινηθούν ελεύθερα στην ζώνη αγωγιμότητας όπως και στην περίπτωση των αγωγών. Τα κενά που αφήνουν πίσω τους τα ηλεκτρόνια στην στάθμη σθένους ονομάζονται "οπές" και συμβάλλουν και αυτές στην δημιουργία ηλεκτρικού ρεύματος όπως είδαμε στην Φυσική ΙΙ (δείτε Σχήμα 7.4 στις σημειώσεις του κ. Κουζούδη) αφού η μετακίνηση μιας οπής προς τα δεξιά ισοδυναμεί με την μετακίνηση ενός ηλεκτρονίου προς τα αριστερά. Εφόσον η οπή δημιουργήθηκε λόγω της απουσίας ενός ηλεκτρονίου, τότε αυτή έχει φορτίο ίσο και αντίθετο με αυτό του ηλεκτρονίου δηλαδή θετικό. Ιδιαίτερο τεχνολογικό ενδιαφέρον παρουσιάζει η περίπτωση όπου η διέγερση των ηλεκτρονίων είναι οπτική, δηλαδή προέρχεται από την πρόσπτωση φωτονίων (φως) τα οποία απορροφούνται από τα ηλεκτρόνια με αποτέλεσμα να ανεβαίνουν σε υψηλότερες ενεργειακές στάθμες. Στα μεν μέταλλα η διέγερση των ηλεκτρονίων έχει ως αποτέλεσμα την εμφάνιση δυο φαινομένων. Σε χαμηλές σχετικά ενέργειες φωτονίων, η απορρόφησή τους οδηγεί σε μεγαλύτερη κινητικότητα των ηλεκτρονίων η οποία τελικώς ανάγεται σε τοπική θερμότητα και η οποία χρησιμοποιείται τεχνολογικώς στην περίπτωση των ηλιακών συλλεκτών για τη θέρμανση του νερού (ηλιακοί συλλέκτες). Στην περίπτωση των φωτονίων με ενέργειες ίσες ή μεγαλύτερες από το έργο εξόδου του μετάλλου, η απορρόφησή τους οδηγεί στη πλήρη εξαγωγή των ηλεκτρονίων από το υλικό, ένα φαινόμενο γνωστό ως το "φωτοηλεκτρικό" φαινόμενο. Στους δε ημιαγωγούς, ένα προσπίπτον φωτόνιο δημιουργεί ένα ζεύγος ηλεκτρονίου-οπής, δηλαδή το φωτόνιο απορροφάται από ένα ηλεκτρόνιο στην ζώνη σθένους του Σχήματος 2.γ, διεγείρεται στην ζώνη αγωγιμότητας και έτσι προκύπτει πίσω στην ζώνη σθένους μια οπή. Το αντίστοιχο φαινόμενο είναι γνωστό ως το "φωτο- βολταϊκό " φαινόμενο. Σε αυτή την περίπτωση η ενέργεια Ε του φωτονίου πρέπει να είναι ίση ή μεγαλύτερη από το ενεργειακό χάσμα E g του ημιαγωγού. Επειδή η ενέργεια ενός φωτονίου E = hc/λ είναι αντιστρόφως ανάλογη του μήκους κύματος λ, όπου h η σταθερά του Plank, συμπεραίνουμε ότι δεν μπορούμε να προκαλέσουμε το φωτοβολταϊκό φαινόμενο με όλες τις φωτεινές ακτινοβολίες αλλά μόνο με ορισμένα μήκη κύματος (χρώματα). 3
4 Η χρησιμότητα των φωτοβολταϊκών έγκειται στο γεγονός ότι τα επιπλέον ζεύγη ηλεκτρονίων οπών που δημιουργούνται, μπορούν να διοχετευτούν σε εξωτερικό κύκλωμα με σκοπό τη δημιουργία ηλεκτρικού ρεύματος δηλαδή την παραγωγή ηλεκτρικής ενέργειας. Παρόλο που υπάρχουν αρκετά ημιαγώγιμα υλικά με τη μορφή απλού χημικού στοιχείου όπως το πυρίτιο ή το γερμάνιο, ή και απλές χημικές ενώσεις με συνδυασμό κυρίως των στοιχείων που προαναφέρθηκαν στο Σχήμα 1, κατά 98% στην τεχνολογία των φωτοβολταϊκών χρησιμοποιείται το πυρίτιο το οποίο στην κρυσταλλική του μορφή το κάθε άτομο σχηματίζει 4 ομοιοπολικούς δεσμούς με αντίστοιχα τέσσερα γειτονικά του άτομα. Ως ημιαγωγός, το πυρίτιο έχει σχετικά χαμηλή πυκνότητα ελεύθερων ηλεκτρονίων (όπως και οι περισσότεροι ημιαγωγοί). Με μικρή όμως πρόσμιξη % πεντασθενούς φωσφόρου, η πυκνότητα αυτή αυξάνει επειδή μόνο τα 4 από τα 5 ηλεκτρόνια σθένους του φωσφόρου μπορούν να σχηματίσουν ομοιοπολικούς δεσμούς με τα τέσσερα γειτονικά πυρίτια και έτσι το επιπλέον ηλεκτρόνιο περιφέρεται ελεύθερα στο πλέγμα. Ο ημιαγωγός σε αυτή τη περίπτωση ονομάζεται τύπος n. Παρομοίως, με μικρή πρόσμιξη τρισθενούς αλουμινίου, αυξάνεται αντίστοιχα η πυκνότητα των οπών επειδή στις περιοχές όπου υπάρχουν άτομα αλουμινίου, μόνο τα 3 από τα 4 γειτονικά τους άτομα πυριτίου μπορούν να σχηματίσουν ομοιοπολικό δεσμό μαζί τους. Με αυτό τον τρόπο, το αδέσμευτο πυρίτιο τείνει να έλκει γειτονικά ελεύθερα ηλεκτρόνια για να πραγματοποιήσει τον ανεκπλήρωτο ομοιοπολικό δεσμό, δρώντας έτσι ως μια οπή. Ο ημιαγωγός σε αυτή τη περίπτωση ονομάζεται τύπος p. Σχήμα 5.4: To φωτοβολταϊκό κύτταρο Οι ηλεκτρονικές δίοδοι είναι διατάξεις δυο στρωμάτων, ενός τύπου n και ενός τύπου p, τοποθετημένα μαζί σαν ένα υλικό (στην ουσία είναι το ίδιο λεπτό υλικό στο οποίο έχουν προστεθεί με θερμική διάχυση μικρές ποσότητες φωσφόρου από την μια μεριά και αλουμινίου από την άλλη. Για αυτό το λόγο λέγονται και δίοδοι np. Χωρίς να θέλουμε να μπούμε σε λεπτομέρειες επάνω στην θεωρία των ημιαγωγών (ο ενδιαφερόμενος αναγνώστης μπορεί να ανατρέξει στη σχετική βιβλιογραφία, π.χ. στο μάθημα Υλικών), η "χαρακτηριστική I V" μιας τέτοιας διόδου, δηλαδή η 4
5 σχέση μεταξύ του ρεύματος Ι που τη διαρρέει και της τάσης V στα άκρα της, δίνεται από την παρακάτω εξίσωση: Ι = Ι ο (e qv/kt (1) 1) όπου q = C είναι το φορτίο του ηλεκτρονίου (κατά απόλυτη τιμή), k = η σταθερά του Boltzmann σε μονάδες S. I., T η θερμοκρασία σε Kelvin και Ι 0 ένα χαρακτηριστικό ρεύμα που εξαρτάται από το υλικό. Συγκρίνετε την παραπάνω εξίσωση με την αντίστοιχη εξίσωση I = V/R στους αγωγούς που είναι στην ουσία ο απλός νόμος του Ohm. Όταν επιπλέον η δίοδος βομβαρδισθεί με φως, όπως στο Σχήμα 3, τότε όπως είδαμε το φως παράγει και επιπλέον ζεύγη ηλεκτρονίων-οπών (οπότε και η δίοδος ονομάζεται φωτοδίοδος όταν είναι μικρή 1 2 mm και φωτοβολταϊκό κύτταρο (Σχήμα 5.4) όταν είναι πολύ μεγαλύτερη 5 10 cm) και έτσι δημιουργείται και το λεγόμενο "φωτορεύμα" Ι φ το οποίο όμως είναι αντίθετο σε φορά με το ρεύμα της διόδου οπότε και πρέπει να αφαιρεθεί από αυτό. Επειδή όμως στις φωτοδιόδους μας ενδιαφέρει περισσότερο το φωτορεύμα παρά το ρεύμα της διόδου, το γράφουμε ως θετικό και αφαιρούμε από αυτό το ρεύμα της διόδου, δηλαδή για το ρεύμα Ι μιας φωτοδιόδου ισχύει η εξής εξίσωση Ι = Ι φ Ι ο (e qv/kt 1) (2) η οποία είναι και η αντίστοιχη "χαρακτηριστική I V". Το φωτορεύμα Ι φ δεν εξαρτάται από την εφαρμοζόμενη τάση V στα άκρα της φωτοδιόδου αλλά μόνο από την ένταση και το μήκος κύματος του προσπίπτοντος φωτός. Μια τυπική γραφική παράσταση της παραπάνω σχέσης φαίνεται στο Σχήμα 5.4. Από δω και στο εξής θα χρησιμοποιούμε τον όρο "φωτοβολταϊκό κύτταρο" γιατί τέτοια θα χρησιμοποιήσουμε στο εργαστήριο. Το πυρίτιο στα φωτοβολταϊκά απαντάται στις εξής τρεις μορφές, με αυξανόμενη σειρά κόστους (παραγωγής) και μειωμένη σειρά απόδοσης: το άμορφο, το πολυκρυσταλλικό και το μονο-κρυσταλλικό πυρίτιο Από το Σχήμα 5.5 βλέπουμε ότι το κύτταρο για χαμηλές τιμές της τάσης V προσεγγίζει την γραφική παράσταση μιας ιδανικής πηγής ρεύματος, που στην ουσία είναι μια οριζόντια ευθεία γραμμή αφού παρέχει σταθερό ρεύμα ανεξάρτητο από το V. Για την μέτρηση της χαρακτηριστικής του κυττάρου, χρησιμοποιείται το κύκλωμα του Σχήματος 5.6. Θεωρώντας ότι φως σταθερής έντασης προσπίπτει σε αυτό οπότε και το I φ είναι σταθερό, τότε μεταβάλλοντας την τιμή R της μεταβλητής αντίστασης, αλλάζει το ρεύμα Ι του κυττάρου και άρα μπορούμε να πάρουμε διάφορα ζεύγη Ι, V της χαρακτηριστικής της καταγράφοντας ταυτόχρονα το αμπερόμετρο και το βολτόμετρο. Στο Σχήμα 5.5 ιδιαίτερο ενδιαφέρον παρουσιάζουν δυο χαρακτηριστικά μεγέθη του κυττάρου, το "ρεύμα βραχυκυκλώματος" Ι SC και η "τάση ανοικτού κυκλώματος" V OC οι οποίες είναι οι τιμές του αμπερόμετρου και το βολτόμετρου που διαβάζουμε αντίστοιχα όταν R = 0 και R, δηλαδή με βραχυκύκλωμα και με ανοικτά άκρα. 5
6 Σχήμα 5.5: Χαρακτηριστική I V του φωτοβολταϊκού-κυττάρου όπου φαίνονται δυο χαρακτηριστικά του μεγέθη, το "ρεύμα βραχυκυκλώματος" Ι SC και η "τάση ανοικτού κυκλώματος" V OC Στα φωτοβολταϊκά συστήματα μας ενδιαφέρει η ισχύς P (έργο ανά μονάδα χρόνου) που μπορούν να παράγουν. Σε οποιοδήποτε ηλεκτρικό στοιχείο το οποίο βρίσκεται υπό τάση V και διαρρέεται από ρεύμα I, η ισχύς ισούται με P = VI (3) Μπορούμε να υπολογίσουμε αυτό το γινόμενο σε όλα τα ζεύγη Ι, V του Σχήματος 5.5 Βλέπουμε ότι στα δυο ακραία σημεία η ισχύς είναι ίση με μηδέν αφού V = 0 στο Ι = Ι SC και Ι = 0 στο V = V OC. Στα ενδιάμεσα σημεία τόσο το V όσο και το Ι είναι θετικά και άρα η ισχύς P είναι παντού θετική. Η μέγιστη τιμή της είναι σε κάποιο σημείο Β εκεί που αρχίζει η πτώση της καμπύλης όπου χονδρικά τόσο το Ι όσο και το V έχουν σχετικά υψηλές τιμές. Μια τυπική γραφική παράσταση της ισχύος για ένα φωτοβολταϊκό κύτταρο πυριτίου φαίνεται στο Σχήμα 5.7 όπου αντιπαρατίθεται μαζί με την χαρακτηριστική I V. Σχήμα 5.6: Ηλεκτρικό κύκλωμα συνεχούς ρεύματος 6
7 Σχήμα 5.7α: Τυπική γραφική παράσταση της ισχύος (άξονας στα δεξιά) που αντιστοιχεί στην χαρακτηριστική καμπύλη I V (άξονας στα αριστερά) για ένα φωτοβολταϊκό κύτταρο πυριτίου. Σχήμα 5.7β: Ο λόγος των εμβαδών των δυο ορθογωνίων είναι ίσος με το "λόγο πλήρωσης" FF (δείτε Εξίσωση (5) παρακάτω) Οι τιμές V OC, I SC καθώς και οι συντεταγμένες V m, I m του σημείου μέγιστης ισχύος στο Σχήμα 5.7β είναι χαρακτηριστικές παράμετροι του κάθε φωτοβολταϊκού κυττάρου και δίνονται από τον κατασκευαστή. Για παράδειγμα το Σχήμα 5.7α εικονίζει την χαρακτηριστική μιας κυψέλης πολυκρυσταλλικού πυριτίου διαστάσεων cm 2 όπου ο κατασκευαστής δίνει I SC = 28 mα, V OC 7
8 1.6 V, Ι m 24 mα και V m = 1.25 V. Ένα τέτοιο κύτταρο προσπαθούμε συνήθως να το λειτουργούμε στο σημείο της μέγιστης ισχύος επιλέγοντας κατάλληλη αντίσταση στο εξωτερικό κύκλωμα. Επομένως το κύτταρο αυτό λειτουργεί ως μια πηγή τάσης 1.25 V και έντασης 24 ma μέσα στο κύκλωμα. Βέβαια σε πολλές εφαρμογές απαιτούνται υψηλότερες τάσεις, π.χ. μια μπαταρία κινητού με αναγραφόμενη τάση 3.7 V απαιτεί μια πηγή με τάση ελαφρά μεγαλύτερη τάση από 3.7 V. Σε αυτή τη περίπτωση τα φωτοβολταϊκά κύτταρα τοποθετούνται σε σειρά το ένα με το άλλο, όπως οι συμβατικές μπαταρίες σε μικροσυσκευές, ώστε η τάση τους να αθροίζεται όπως στο Σχήμα 8α. Στο συγκεκριμένο παράδειγμα θα έπρεπε να τοποθετήσουμε 3 κύτταρα 1.25 V = 3.75 V η οποία είναι μια επαρκής τάση για τη φόρτιση της μπαταρίας. Σε άλλες περιπτώσεις, απαιτούνται μεγάλα ρεύματα οπότε τα κύτταρα τοποθετούνται παράλληλα όπως στο Σχήμα 5.8β. Μια κατασκευή με πολλά κύτταρα συνδεδεμένα μεταξύ του επάνω σε πλαίσιο αλουμινίου και προστατευτικό γυαλί από επάνω, ονομάζεται φωτοβολταϊκό πάνελ. Η πιο σημαντική παράμετρος του φωτοβολταϊκού κυττάρου είναι η απόδοσή του η, η ικανότητά του δηλαδή να μετατρέπει τη φωτεινή ενέργεια σε ηλεκτρική ενέργεια. Ορίζεται από τον λόγο η = P/P φ (4) όπου Ρ είναι η παραγόμενη ισχύς του κυττάρου όπως ορίστηκε παραπάνω στο μέγιστο σημείο και Ρ φ είναι η προσπίπτουσα ισχύς της φωτεινής ακτινοβολίας. Όταν πρόκειται για το φως του ήλιου, οπότε και τα κύτταρα ονομάζονται ηλιακά κύτταρα, μπορούμε να χρησιμοποιούμε για τους υπολογισμούς της απόδοσης την μέση τιμή της έντασης της ηλιακής ακτινοβολίας η οποία κατά τις ηλιόλουστες ημέρες παίρνει την τιμή 1000 W/m 2. α) Σύνδεση σε σειρά β) Σύνδεση παράλληλα Σχήμα 5.8: Τα φωτοβολταϊκά κύτταρα σε σύνδεση σε σειρά και παράλληλα Τέλος μια άλλη σημαντική παράμετρος του φωτοβολταϊκού είναι ο "λόγος πλήρωσης" FF ο οποίος είναι ένα μέτρο σύγκρισης του κυττάρου με μια ιδανική πηγή ρεύματος και ισούται με FF = I mv m I SC V OC (5) 8
9 όπου I m και V m είναι το ρεύμα και η τάση αντίστοιχα στο σημείο μέγιστης ισχύος στην καμπύλη του Σχήματος 5.7α. Στην ουσία αυτός ο αριθμός είναι ο λόγος των εμβαδών των δυο ορθογωνίων του Σχήματος 5.7β και όσο πλησιέστερος είναι στη μονάδα, τόσο περισσότερο το κύτταρο συμπεριφέρεται ως μια ιδανική πηγή ρεύματος το οποίο είναι επιθυμητό. 4 Πειραματική διαδικασία Τα πειραματικά όργανα που θα χρησιμοποιήστε είναι τα εξής: Πάνελ τριών κυττάρων, λυχνία φωτός, βολτόμετρο, αμπερόμετρο και κυτίο μεταβλητής αντίστασης. Τοποθετήστε την λυχνία περίπου 30 cm από τη συστοιχία των τριών κυττάρων, θέστε την σε λειτουργία και προσανατολίστε την ώστε το μεγαλύτερο μέρος του φωτός της λυχνίας να προσπίπτει επάνω στα κύτταρα. Προσοχή: Στο υπόλοιπο της άσκησης, να παραμείνει σταθερή η σχετική θέση λυχνίας κυττάρων (σταθερή ένταση ακτινοβολίας). 4.1 Μέτρηση της τάσης ανοικτού κυκλώματος V OC : Συνδέστε το βολτόμετρο με ένα από τα τρία φωτοβολταϊκά κύτταρα. Χρησιμοποιήστε ως βολτόμετρο το αναλογικό πολύμετρο που εικονίζεται στο Σχήμα 5.9 και τοποθετήστε τα καλώδια εκεί που δείχνουν τα βέλη. Περιστρέφουμε τον επιλογέα ώστε να δείχνει στα 30 V - συνεχές ( ) και εστιάζουμε στην κλίμακα του οργάνου (κάτω από την βελόνα μέτρησης) με αριθμούς 0 30 και την ένδειξη για συνεχή ρεύματα ( ). Θέτοντας τη λυχνία σε λειτουργία, προσέξτε ότι η βελόνα του βολτομέτρου εκτρέπεται από το 0 και καταγράψτε στον Πίνακα Μετρήσεων 1 την τιμή που δείχνει η βελόνα. Επαναλάβετε τη μέτρηση και για τις τρεις κυψέλες αλλά και σε σειρά και παράλληλα και καταγράψτε τις τιμές σας στον Πίνακα 1. Πίνακας 1: Τάση ανοικτού κυκλώματος, V OC /V Κυψέλη 1 Κυψέλη 2 Κυψέλη 3 Σε σειρά Παράλληλα 4.2 Μέτρηση του ρεύματος βραχυκυκλώματος I SC : Συνδέστε το αμπερόμετρο με το πρώτο φωτοβολταϊκό κύτταρο του προηγούμενου βήματος. Χρησιμοποιήστε ως αμπερόμετρο το αναλογικό πολύμετρο που εικονίζεται στο Σχήμα 5.10 και τοποθετήστε τα καλώδια εκεί που δείχνουν τα βέλη. Βεβαιωθείτε ότι ο μικρός επιλογέας (πάνω αριστερά) δείχνει στα συνεχή ρεύματα ( ) όπως φαίνεται και περιστρέψτε τον μεγάλο επιλογέα ώστε να δείχνει στην κλίμακα των 0.1 A. Εστιάστε στην κλίμακα κάτω από τη βελόνα με αριθμούς αντιστοιχίζοντας το μέγιστο στο 100 mα. Θέτοντας τη λυχνία σε λειτουργία, προσέξτε ότι η βελόνα του αμπερομέτρου εκτρέπεται από το 0 και καταγράψτε στον πίνακα μετρήσεων την τιμή που δείχνει η βελόνα. Επαναλάβετε τη μέτρηση και για τις τρεις κυψέλες αλλά και σε σειρά και παράλληλα και καταγράψτε τις τιμές σας στον Πίνακα Μετρήσεων 2. 9
10 Σχήμα 5.9: Το βολτόμετρο, Μέτρηση της τάσης Σχήμα 5.10: Το αμπερόμετρο, Μέτρηση του ρεύματος Πίνακας 2: Ρεύμα βραχυκυκλώματος, I SC /ma Κυψέλη 1 Κυψέλη 2 Κυψέλη 3 Σε σειρά Παράλληλα Στην περίπτωση των τριών κυψελών εν παραλλήλω, προσπαθήστε να επιτύχετε το μέγιστο ρεύμα βραχυκυκλώματος, μεταβάλλοντας την γεωμετρία του συστήματός σας, χωρίς να μεταβάλλετε την δικής σας αρχική απόσταση της λυχνίας από τη μεσαία κυψέλη. Σχεδιάστε ένα πρόχειρο διάγραμμα με την βέλτιστη γεωμετρία σας. Σημείωση: Η μέγιστη τιμή του ρεύματός που θα επιτύχετε, θα κρατηθεί σε αρχείο για την κάθε ομάδα και στο τέλος του εξαμήνου θα ανακοινωθεί η νικήτρια ομάδα με το καλύτερο αποτέλεσμα! 4.3 Μέτρηση χαρακτηριστικής του φωτοβολταϊκού Επιλέξτε μια από τις τρεις κυψέλες και προσδιορίστε το εμβαδό της φωτοβολταϊκής επιφάνειάς της. Ακολούθως πραγματοποιήστε τη σύνδεση που φαίνεται στο Σχήμα 5.6. Για αντίσταση χρησιμοποιήστε το κυτίο μεταβλητής αντίστασης που φαίνεται στο Σχήμα Θυμηθείτε ότι: Το αμπερόμετρο συνδέεται πάντα σε σειρά στο κύκλωμα. Το βολτόμετρο, συνδέεται πάντα παράλληλα στα σημεία που θέλουμε να μετρήσουμε τη διαφορά δυναμικού. 10
11 Σχήμα 5.11: Το κυτίο μεταβλητής αντίστασης, R Η χαρακτηριστική I V πρέπει να σχεδιαστεί σε χιλιοστομετρικό χαρτί στο εργαστήριο. Τα πρώτα σημεία που πρέπει να μετρήσετε και να τοποθετήσετε στη γραφική παράσταση είναι τα (I SC, 0) και (0, V OC ) με μηδενική αντίσταση και με άπειρη αντίσταση αντίστοιχα (τη μεγαλύτερη που μπορείτε να επιλέξετε στο κυτίο). Επειδή τα σημεία αυτά είναι τα ακραία (δείτε το Σχήματα 5.5 ή 5.7), θα σας βοηθήσουν να επιλέξετε και κατάλληλες κλίμακες στο χαρτί ώστε να μεγιστοποιηθεί η γραφική σας παράσταση. Για να λάβουμε ενδιάμεσες τιμές στη γραφική παράσταση, πρέπει να μεταβάλλουμε την αντίσταση R, δηλαδή πρέπει να επιλέξουμε διαφορετικές τιμές στο κυτίο των αντιστάσεων (Σχήμα 5.11). Μεγάλη σημασία έχει, να λάβουμε τις περισσότερες τιμές γύρω από το σημείο μέγιστης ισχύος στο Σχήμα 5.7α. Για να γίνει αυτό, ξεκινήστε από το σημείο (I SC, 0) και μεταβάλλετε το R μέχρι το ρεύμα σας να αρχίσει να πέφτει ελαφρά. Πάρτε μια μέτρηση και επαναλάβετε. Όταν το ρεύμα πέσει περίπου 30 % χαμηλότερα από το I SC, τότε έχετε απομακρυνθεί αρκετά από το σημείο μέγιστης ισχύος και χρειάζεστε μόνο 5-6 ακόμα μετρήσεις μέχρι το σημείο (0, V OC ). Καταγράψτε τα ζεύγη τιμών στον Πίνακα 3. Σημείωση: Στο βολτόμετρο και το αμπερόμετρο, επιλέγουμε πάντοτε την καλύτερη δυνατή κλίμακα ώστε ούτε οι μετρήσεις μας να βγαίνουν εκτός του μεγίστου, αλλά ούτε και οι ενδείξεις να είναι κοντά στο μηδέν (οπότε και έχουν μικρή ακρίβεια). Για την κάθε κλίμακα που έχετε χρησιμοποιήσει, πρέπει να καταγράψετε και την αντίστοιχη ακρίβεια του οργάνου. Πίνακας 3: Η καμπύλη I/V R/Ω Ι/mΑ V/V Αφού τελειώσατε με τις μετρήσεις και θέσετε τη λυχνία εκτός λειτουργίας, μετρήστε τις διαστάσεις ενός από τα κύτταρα, χρησιμοποιώντας ένα χάρακα. Προσοχή: Να μη χαραχθεί η επιφάνεια του κυττάρου με κάποιο αιχμηρό αντικείμενο. 5 Εργαστηριακή Αναφορά Στο κομμάτι της θεωρίας απαντήστε μόνο τις παρακάτω ερωτήσεις: (1) Εξηγείστε τις έννοιες μονωτές, αγωγοί και ημιαγωγοί. 11
12 (2) Εξηγείστε το "φωτο-ηλεκτρικό" και το "φωτο- βολταϊκό " φαινόμενο. (3) Αναφερόμενοι σε μια τυπική χαρακτηριστική καμπύλη I V ενός φωτοβολταϊκού κύτταρου όπως αυτή στο Σχήμα 5.7, εξηγήστε πως μπορεί να προσδιοριστεί το ρεύμα βραχυκυκλώματος, Ι SC, η τάση ανοικτού κυκλώματος, V OC, η ισχύς P, οι συντεταγμένες V m, I m του σημείου μέγιστης ισχύος, και το λόγο πλήρωσης FF. (4) Δώστε την γνωστή εξίσωση για την ισχύ P σε ένα ηλεκτρικό κύκλωμα. Εφαρμόστε την εξίσωση της μετάδοσης σφάλματος για την ισχύ P ώστε να υπολογίσετε θεωρητικά το σφάλμα της συναρτήσει των σφαλμάτων των μεταβλητών της. Ζητούνται τα ακόλουθα στο κεφάλαιο «αποτελέσματα»: (1) Επάνω στην γραφική παράσταση I V που καταγράψατε στο εργαστήριο, φέρτε μια συνεχή καμπύλη που να περνάει όσο το δυνατό εγγύτερα από τα σημεία σας. Σημειώστε τις σημαντικές παραμέτρους επάνω στη γραφική σας παράσταση. (2) Κατασκευάστε τη γραφική παράσταση P V της ισχύος (σε νέο διάγραμμα) συναρτήσει της τάσης για το κύτταρο που καταγράψατε τη χαρακτηριστική της. Βρείτε το σημείο της μέγιστης ισχύος και σημειώστε το και στις δυο γραφικές παραστάσεις (ισχύος και χαρακτηριστική). (3) Από τις παραπάνω δυο γραφικές παραστάσεις και με την βοήθεια του Σχήματος 5.7β, υπολογίσετε τον "λόγο πλήρωσης" FF σύμφωνα με την Εξ. (5). (4) Εάν υποθέταμε ότι οι τιμές που καταγράψατε με το φως της λυχνίας, είναι παρόμοιες με αυτές που θα καταγράφατε με τη χρήση της ηλιακής ακτινοβολίας, να υπολογίστε την απόδοση ητου φωτοβολταϊκού σας χρησιμοποιώντας τη μέση τιμή της έντασης της ηλιακής ακτινοβολίας. (5) Σχολιάστε εάν το η που βρήκατε στο προηγούμενο βήμα είναι αναμενόμενο. Σημειώστε ότι η καλύτερες θεωρητικές τιμές για την απόδοση κυμαίνονται μεταξύ 25 και 28%. Προτείνετε τρόπους βελτίωσης αυτής της απόδοσης. (6) Εάν ήταν να χρησιμοποιήσετε το κύτταρο σας ως πηγή συνδέοντάς την σε ένα φόρτο και είχατε την δυνατότητα να ρυθμίσετε την αντίσταση του φόρτου, τι αντίσταση θα επιλέγατε; (7) Αναφέρατε τα απόλυτα σφάλματα και τυχόν συστηματικά σφάλματα (σε αριθμούς και μονάδες) που εμφανίζονται στις μετρήσεις σας. 6 Βιβλιογραφία [1] R. A. Serway, Physics for Scientists and Engineers, Volume 2, Saunders College Publishing, [2] H. D. Young, Πανεπιστημιακή Φυσική Τόμος Α, Κεφ. 32, εκδόσεις Παπαζήση, Αθήνα, [3] Σημειώσεις Δ. Κουζούδη στο eclass του Πανεπιστημίου Πατρών 12
Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ
Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ 1. ΓΕΝΙΚΑ Τα ηλιακά στοιχεία χρησιμοποιούνται για τη μετατροπή του φωτός (που αποτελεί μία μορφή ηλεκτρομαγνητικής ενέργειας) σε ηλεκτρική ενέργεια. Κατασκευάζονται από
ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ
ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ 1 Σκοπός Στην άσκηση αυτή μελετάται η συμπεριφορά ενός κυκλώματος RLC σε σειρά κατά την εφαρμογή εναλλασσόμενου ρεύματος. Συγκεκριμένα μελετάται η μεταβολή
ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος
ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 1. Σκοπός Το φωτοβολταϊκό στοιχείο είναι μία διάταξη ημιαγωγών η οποία μετατρέπει την φωτεινή ενέργεια που προσπίπτει σε αυτήν σε ηλεκτρική.. Όταν αυτή φωτιστεί με φωτόνια κατάλληλης συχνότητας
ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ
ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ 1 Σκοπός Στην άσκηση αυτή μελετάται η συμπεριφορά ενός κυκλώματος RLC σε σειρά κατά την εφαρμογή εναλλασσόμενου ρεύματος. Συγκεκριμένα μελετάται η μεταβολή
ΑΣΚΗΣΗ 15 Μελέτη φωτοδιόδου (φωτοανιχνευτή) και διόδου εκπομπής φωτός LED
ΑΣΚΗΣΗ 15 Μελέτη φωτοδιόδου (φωτοανιχνευτή) και διόδου εκπομπής φωτός LED Απαραίτητα όργανα και υλικά 15.1 Απαραίτητα όργανα και υλικά 1. LED, Φωτοδίοδοι (φωτοανιχνευτές). 2. Τροφοδοτικό με δύο εξόδους.
ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ
ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΕΦΑΛΑΙΟ 2ο ΗΜΙΑΓΩΓΟΙ Αγωγοί, Μονωτές, Ημιαγωγοί Κατηγοριοποίηση υλικών βάσει των ηλεκτρικών τους ιδιοτήτων: Αγωγοί (αφήνουν το ρεύμα να περάσει) Μονωτές (δεν αφήνουν το ρεύμα να
Φωτοδίοδος. 1.Σκοπός της άσκησης. 2.Θεωρητικό μέρος
Φωτοδίοδος 1.Σκοπός της άσκησης Ο σκοπός της άσκησης είναι να μελετήσουμε την συμπεριφορά μιας φωτιζόμενης επαφής p-n (φωτοδίοδος) όταν αυτή είναι ορθά και ανάστροφα πολωμένη και να χαράξουμε την χαρακτηριστική
ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO Σάββατο 7 Δεκεμβρίου Εξέταση στη Φυσική
ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΥΠΕΥΘΥΝΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΚΕΝΤΡΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - «ΠΑΝΕΚΦE» 1ο και 2ο ΕΚΦΕ Ηρακλείου ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO 2014 Σάββατο 7 Δεκεμβρίου
ΠΕΙΡΑΜΑ 8 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΗΛΙΑΚΟΥ ΦΩΤΟΚΥΤΤΑΡΟΥ
ΠΕΙΡΑΜΑ 8 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΗΛΙΑΚΟΥ ΦΩΤΟΚΥΤΤΑΡΟΥ 1. ΣΚΟΠΟΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η εξοικείωση με το μηχανισμό λειτουργίας και τις ιδιότητες των ημιαγωγικών ηλιακών φωτοκυττάρων. Οι επιμέρους σκοποί
Δ1. Δ2. Δ3. Δ4. Λύση Δ1. Δ2. Δ3. Δ4.
1) Δύο αντιστάτες με αντιστάσεις R 1 = 2 Ω, R 2 = 4 Ω, είναι μεταξύ τους συνδεδεμένοι σε σειρά, ενώ ένας τρίτος αντιστάτης R 3 = 3 Ω είναι συνδεδεμένος παράλληλα με το σύστημα των δύο αντιστατών R 1, R
4. Παρατηρείστε το ίχνος ενός ηλεκτρονίου (click here to select an electron
Τα ηλεκτρόνια στα Μέταλλα Α. Χωρίς ηλεκτρικό πεδίο: 1. Τι είδους κίνηση κάνουν τα ηλεκτρόνια; Τα ηλεκτρόνια συγκρούονται μεταξύ τους; 2. Πόσα ηλεκτρόνια περνάνε προς τα δεξιά και πόσα προς τας αριστερά
ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ. Σάββατο 28 ΙΑΝΟΥΑΡΙΟΥ 2017
ΠΑΝΕΚΦΕ European Union Science Olympiad 15 η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2017 ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Σάββατο 28 ΙΑΝΟΥΑΡΙΟΥ 2017 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ) (Διάρκεια
Πειραματικός σχεδιασμός της χαρακτηριστικής καμπύλης παθητικής διπολικής συσκευής ηλεκτρικού κυκλώματος. Σκοπός και κεντρική ιδέα της άσκησης
Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης, Δρ Φυσικής Πειραματικός σχεδιασμός της χαρακτηριστικής καμπύλης παθητικής διπολικής συσκευής ηλεκτρικού κυκλώματος Σκοπός και κεντρική ιδέα της άσκησης
1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ
1 ο Γενικό Λύκειο Ηρακλείου Αττικής Σχ έτος 2011-2012 Εργαστήριο Φυσικής Υπεύθυνος : χ τζόκας 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ Η γραφική παράσταση
Ξεκινώντας από την εξίσωση Poisson για το δυναμικό V στο στατικό ηλεκτρικό πεδίο:
1 2. Διοδος p-n 2.1 Επαφή p-n Στο σχήμα 2.1 εικονίζονται δύο μέρη ενός ημιαγωγού με διαφορετικού τύπου αγωγιμότητες. Αριστερά ο ημιαγωγός είναι p-τύπου και δεξια n-τύπου. Και τα δύο μέρη είναι ηλεκτρικά
ΑΣΚΗΣΗ 6 ΦΟΡΤΙΣΗ ΕΚΦΟΡΤΙΣΗ ΠΥΚΝΩΤΗ
ΑΣΚΗΣΗ 6 ΦΟΡΤΙΣΗ ΕΚΦΟΡΤΙΣΗ ΠΥΚΝΩΤΗ 1 Σκοπός Στην άσκηση αυτή μελετάται η φόρτιση/εκφόρτιση ενός πυκνωτή μέσω αντίστασης στην περίπτωση συνεχούς πηγής (σταθερής τάσης). Συγκεκριμένα, μετράται το ρεύμα συναρτήσει
Αρχές φωτοβολταϊκών διατάξεων
Τι είναι ένα ηλιακό κύτταρο Αρχές φωτοβολταϊκών διατάξεων Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Επαφή pn +,
2. Ο νόμος του Ohm. Σύμφωνα με το νόμο του Ohm, η τάση V στα άκρα ενός αγωγού με αντίσταση R που τον διαρρέει ρεύμα I δίνεται από τη σχέση: I R R I
2. Ο νόμος του Ohm 1. ΘΕΩΡΙΑ Σύμφωνα με το νόμο του Ohm, η τάση στα άκρα ενός αγωγού με αντίσταση R που τον διαρρέει ρεύμα δίνεται από τη σχέση: R Ισοδύναμα ο νόμος του Ohm μπορεί να διατυπωθεί και ως:
ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ
ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2Η ΕΝΟΤΗΤΑ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι ; Ηλεκτρικό ρεύμα ονομάζεται η προσανατολισμένη κίνηση των ηλεκτρονίων ή γενικότερα των φορτισμένων σωματιδίων Που μπορεί να
Άσκηση 3 Η ΔΙΟΔΟΣ ΩΣ ΗΜΙΑΓΩΓΟΣ
Άσκηση 3 Η ΔΙΟΔΟΣ ΩΣ ΗΜΙΑΓΩΓΟΣ Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike Greece 3.0. Ονοματεπώνυμο: Μητρόπουλος Σπύρος Α.Ε.Μ.: 3215 Εξάμηνο: Β' Σκοπός της εργαστηριακής
Οι ηµιαγωγοι αποτελουν την πλεον χρησιµη κατηγορια υλικων απο ολα τα στερεα για εφαρµογες στα ηλεκτρονικα.
Οι ηµιαγωγοι αποτελουν την πλεον χρησιµη κατηγορια υλικων απο ολα τα στερεα για εφαρµογες στα ηλεκτρονικα. Οι ηµιαγωγοι εχουν ηλεκτρικη ειδικη αντισταση (ή ηλεκτρικη αγωγιµοτητα) που κυµαινεται µεταξυ
ΑΣΚΗΣΗ 4 ΠΕΡΙΘΛΑΣΗ ΑΠΟ ΑΠΛΗ ΣΧΙΣΜΗ
ΑΣΚΗΣΗ 4 ΠΕΡΙΘΛΑΣΗ ΑΠΟ ΑΠΛΗ ΣΧΙΣΜΗ 1 Σκοπός Στην άσκηση αυτή μελετάται η περίθλαση δέσμης φωτός ενός laser He-Ne από απλή σχισμή. Στο πρώτο μέρος της άσκησης προσδιορίζεται το πλάτος της σχισμής από την
αγωγοί ηµιαγωγοί µονωτές Σχήµα 1
Η2 Μελέτη ηµιαγωγών 1. Σκοπός Στην περιοχή της επαφής δυο ηµιαγωγών τύπου p και n δηµιουργούνται ορισµένα φαινόµενα τα οποία είναι υπεύθυνα για τη συµπεριφορά της επαφής pn ή κρυσταλλοδιόδου, όπως ονοµάζεται,
11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013
11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Σάββατο 8 ΕΚΕΜΒΡΙΟΥ 2012 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ) (Διάρκεια εξέτασης 60 min) Μαθητές: Σχολική Μονάδα
ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου
Απαραίτητα όργανα και υλικά ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου 7. Απαραίτητα όργανα και υλικά. Τροφοδοτικό DC.. Πολύμετρα (αμπερόμετρο, βολτόμετρο).. Πλακέτα για την
ΗΛΕΚΤΡΟΝΙΚΑ Ι ΚΕΦΑΛΑΙΟ 1 Ο :ΗΜΙΑΓΩΓΟΙ
ΗΛΕΚΤΡΟΝΙΚΑ Ι ΚΕΦΑΛΑΙΟ 1 Ο :ΗΜΙΑΓΩΓΟΙ 1 1. ΗΛΕΚΤΡΙΚΗ ΔΟΜΗ. ΕΝΔΟΓΕΝΕΙΣ ΗΜΙΑΓΩΓΟΙ Δομή του ατόμου Σήμερα γνωρίζουμε ότι η ύλη αποτελείται από ενώσεις ατόμων, δημιουργώντας τις πολυάριθμες χημικές ενώσεις
ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής
ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής Αγωγοί- μονωτές- ημιαγωγοί Μέταλλα: Μία ζώνη μερικώς γεμάτη ή μία ζώνη επικαλύπτει την άλλη Τα ηλεκτρόνια μπορούν
1.1 Ηλεκτρονικές ιδιότητες των στερεών. Μονωτές και αγωγοί
1. Εισαγωγή 1.1 Ηλεκτρονικές ιδιότητες των στερεών. Μονωτές και αγωγοί Από την Ατομική Φυσική είναι γνωστό ότι οι επιτρεπόμενες ενεργειακές τιμές των ηλεκτρονίων είναι κβαντισμένες, όπως στο σχήμα 1. Σε
ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ
ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ ΑΣΚΗΣΗ 3-2016 1 Σκοπός Σε αυτή την άσκηση ο φοιτητής χειρίζεται βασικά οπτικά όργανα όπως είναι οι λεπτοί φακοί. Στο πρώτο μέρος υπολογίζεται η εστιακή απόσταση
Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία.
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 9144 Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία. Συνεργάτες: Ιντζέογλου
ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ
ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ ΑΣΚΗΣΗ 3-2017 1 Σκοπός Σε αυτή την άσκηση ο φοιτητής χειρίζεται βασικά οπτικά όργανα όπως είναι οι λεπτοί φακοί. Στο πρώτο μέρος υπολογίζεται η εστιακή απόσταση
Φύλλο εργασίας Το φωτοβολταϊκό στοιχείο
Φύλλο εργασίας Το φωτοβολταϊκό στοιχείο Στοιχεία ομάδας: Ονοματεπώνυμο Α.Μ. Ημερομηνία: Τμήμα: Απαραίτητες Θεωρητικές Γνώσεις: Το φωτοβολταϊκό στοιχείο είναι μία διάταξη που μετατρέπει τη φωτεινή ενέργεια
Εργαστηριακή Άσκηση στη Φυσική Γενικής Παιδείας Β' Λυκείου Ο ΝΟΜΟΣ ΤΟΥ OHM ΓΙΑ ΑΝΤΙΣΤΑΤΗ
A A N A B P Y T A 1 0 Εργαστηριακή Άσκηση στη Φυσική Γενικής Παιδείας Β' Λυκείου Ο ΝΟΜΟΣ ΤΟΥ OHM ΓΙΑ ΑΝΤΙΣΤΑΤΗ ΟΜΑΔΑ: 1.... Ο σκοπός.... 3... 4... Η αντίσταση ενός αντιστάτη ορίζεται ως: V I, όπου V είναι
ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής
ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής Αγωγοί- μονωτές- ημιαγωγοί Μέταλλα: Μία ζώνη μερικώς γεμάτη ή μία ζώνη επικαλύπτει την άλλη Τα ηλεκτρόνια μπορούν
Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων
Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 3 Νόμος του Ohm, Κυκλώματα σε Σειρά και Παράλληλα Λευκωσία, 2010 Εργαστήριο 3 Νόμος
ΑΣΚΗΣΗ 1 ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ ΚΑΙ Η/Υ Ι. Σκοπός της άσκησης η μελέτη βασικών ηλεκτρονικών εξαρτημάτων των Η/Υ και η εισαγωγή στην μικροηλεκτρονική.
ΑΣΚΗΣΗ 1 ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ ΚΑΙ Η/Υ Ι Σκοπός της άσκησης η μελέτη βασικών ηλεκτρονικών εξαρτημάτων των Η/Υ και η εισαγωγή στην μικροηλεκτρονική. Ερωτήσεις-Πειραματικό Μέρος 1. Τι γνωρίζετε για τους ημιαγωγούς.
ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ : Γ ΤΜΗΜΑ :. ΗΜΕΡΟΜΗΝΙΑ: / / ΟΝΟΜΑΤΕΠΩΝΥΜΟ :..ΒΑΘΜΟΣ :
ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ : Γ ΤΜΗΜΑ :. ΗΜΕΡΟΜΗΝΙΑ: / / ΟΝΟΜΑΤΕΠΩΝΥΜΟ :..ΒΑΘΜΟΣ : ΔΙΑΓΩΝΙΣΜΑ Α ΤΡΙΜΗΝΟΥ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΣΤΑ ΑΚΟΛΟΥΘΑ ΤΕΣΣΕΡΑ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο : Στις παρακάτω προτάσεις να συμπληρώσετε τα κενά με
ΑΣΚΗΣΗ 5. Ερωτήσεις προετοιμασίας (Να απαντηθούν στην εργαστηριακή αναφορά)
ΑΣΚΗΣΗ 5 Ερωτήσεις προετοιμασίας (Να απαντηθούν στην εργαστηριακή αναφορά) 1. Χαρακτηρίστε τα παρακάτω φάσματα α) συνεχές β) γραμμικό γ) μετατοπισμένο λόγω Doppler δ) απορρόφησης ε) μη αναλυμένο δ) άλλο
12. Εάν ένα κομμάτι ημιαγωγού τύπου n και ένα κομμάτι ΟΧΙ
Πρόβλημα 1 Απαντήστε στις ερωτήσεις Σωστό 1. Οι ημιαγωγοί δεν είναι καλοί αγωγοί ούτε καλοί μονωτές. * ΝΑΙ 2. Το ιόν είναι ένα άτομο που έχει χάσει ή έχει προσλάβει ένα ΝΑΙ ή περισσότερα ηλεκτρόνια. 3.
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Διδάσκων : Δημήτρης Τσιπιανίτης Γεώργιος Μανδέλλος
ηλεκτρικό ρεύμα ampere
Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα είναι ο ρυθμός με τον οποίο διέρχεται ηλεκτρικό φορτίο από μια περιοχή του χώρου. Η μονάδα μέτρησης του ηλεκτρικού ρεύματος στο σύστημα SI είναι το ampere (A). 1 A =
Ανάστροφη πόλωση της επαφής p n
Ανάστροφη πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Επαφή p n Ανάστροφη πόλωση Πολώνουμε
Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Μάθημα/Τάξη: Φυσική Γενικής Β Λυκείου Κεφάλαιο: Ηλεκτρικό ρεύμα - Φως Ονοματεπώνυμο Μαθητή: Ημερομηνία: 26-02-2018 Επιδιωκόμενος Στόχος: 80/100 Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ Α. Θεωρητικό Μέρος MM205 ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΗΛΕΚΤΡΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ Εργαστήριο 1 ο Όργανα μέτρησης ηλεκτρικών μεγεθών Μετρήσεις στο συνεχές ρεύμα
ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ
ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κεφάλαιο 2 - Ηλεκτρικό Ρεύμα Επιμέλεια: Αγκανάκης Παναγιώτης, Φυσικός https://physicscourses.wordpress.com/ Με ποιες θεμελιώδεις έννοιες συνδέεται το ηλεκτρικό ρεύμα; Το
ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ
ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Διάλεξη 1: Ημιαγωγοί Δίοδος pn Δρ. Δ. ΛΑΜΠΑΚΗΣ 1 Ταλαντωτές. Πολυδονητές. Γεννήτριες συναρτήσεων. PLL. Πολλαπλασιαστές. Κυκλώματα μετατροπής και επεξεργασίας σημάτων. Εφαρμογές με
Ανάστροφη πόλωση της επαφής p n
Ανάστροφη πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Επαφή p n Ανάστροφη πόλωση Πολώνουμε
Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ (ΜΕΡΟΣ Α) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00. Αίθουσα: Υδραυλική
Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ (ΜΕΡΟΣ Α) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00 Αίθουσα: Υδραυλική Διδάσκων: Δρ. Εμμανουήλ Σουλιώτης, Φυσικός Επικοινωνία: msouliot@hotmail.gr
ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ
ΚΥΚΛΩΜΑΤΑ AC-DC ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ Βασικά στοιχεία κυκλωμάτων Ένα ηλεκτρονικό κύκλωμα αποτελείται από: Πηγή ενέργειας (τάσης ή ρεύματος) Αγωγούς Μονωτές
ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής
ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής Αγωγοί- μονωτές- ημιαγωγοί Μέταλλα: Μία ζώνη μερικώς γεμάτη ή μία ζώνη επικαλύπτει την άλλη Τα ηλεκτρόνια μπορούν
Πανεπιστήμιο Θεσσαλίας
Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Εργαστηριακές Ασκήσεις Εργαστήριο 2 Νόμος του Ohm, Συνδέσεις αντιστάσεων σε σειρά Φ. Πλέσσας Βόλος 2015
Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ
Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ Για να κατανοήσουµε τη λειτουργία και το ρόλο των διόδων µέσα σε ένα κύκλωµα, θα πρέπει πρώτα να µελετήσουµε τους ηµιαγωγούς, υλικά που περιέχουν
ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ
ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ 1. Δυο ακίνητα σημειακά φορτία Q 1=10μC και Q 2=40μC απέχουν μεταξύ τους απόσταση r=3m.να βρείτε: A) το μέτρο της δύναμης που ασκεί το ένα φορτίο
Επαφές μετάλλου ημιαγωγού
Δίοδος Schottky Επαφές μετάλλου ημιαγωγού Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Τι είναι Ημιαγωγός Κατασκευάζεται με εξάχνωση μετάλλου το οποίο μεταφέρεται στην επιφάνεια
ΜΕΛΕΤΗ ΤΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗΣ ΚΑΜΠΥΛΗΣ ΗΛΕΚΤΡΙΚΗΣ ΠΗΓΗΣ
1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΛΕΤΗ ΤΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗΣ ΚΑΜΠΥΛΗΣ ΗΛΕΚΤΡΙΚΗΣ ΠΗΓΗΣ Α. ΣΤΟΧΟΙ Η εξοικείωση στη συναρμολόγηση ηλεκτρικών κυκλωμάτων. Η εξοικείωση με τη σύνδεση και τη χρήση
ΝΟΜΟΣ ΤΟΥ OHM ( σε αντιστάτη και λαμπτήρα )
1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΝΟΜΟΣ ΤΟΥ OHM ( σε αντιστάτη και λαμπτήρα ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης απλών πειραματικών κυκλωμάτων του ηλεκτρικού ρεύματος. Η εξοικείωση με το
Q 40 th International Physics Olympiad, Merida, Mexico, July 2009
ΠΕΙΡΑΜΑΤΙΚΟ ΠΡΟΒΛΗΜΑ No. 2 ΔΕΙΚΤΗΣ ΔΙΑΘΛΑΣΗΣ ΚΡΥΣΤΑΛΛΟΥ (MCA) Σκοπός αυτού του πειράματος είναι ο υπολογισμός του δείκτη διάθλασης ενός κρυσταλλικού υλικού (mica). ΟΡΓΑΝΑ ΚΑΙ ΥΛΙΚΑ Επιπρόσθετα από τα υλικά
Κεφάλαιο 22: Νόμος του Joule
Κεφάλαιο 22: Νόμος του Joule Σύνοψη Πειραματική επαλήθευση του νόμου του Joule. Προαπαιτούμενη γνώση Κεφάλαιο 1. Στοιχειώδεις γνώσεις κυκλωμάτων συνεχούς ρεύματος. 22.1 Ενέργεια και ισχύς συνεχούς ρεύματος
Κεφάλαιο 3 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ημιαγωγοί - ίοδος Επαφής 2
ΗΛΕΚΤΡΟΝΙΚΗ Πανεπιστήμιο Ιωαννίνων Ημιαγωγοί Δίοδος Επαφής Κεφάλαιο 3 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας SI Techology ad Comuter Architecture ab ΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση 1. Φράγμα δυναμικού.
Εξάρτηση της ηλεκτρικής αντίστασης από το μήκος κυλινδρικού αγωγού Μέτρηση ειδικής ηλεκτρικής αντίστασης αγωγών ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
Ε.Κ.Φ.Ε. Αγίων Αναργύρων Προκριματικός Διαγωνισμός για τη 15 η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2017 Εξέταση στη Φυσική Σάββατο 10/12/2016 Ονοματεπώνυμα μελών ομάδας 1).... 2).... 3).... Σχολείο:...
Πειραματική διάταξη μελέτης, της. χαρακτηριστικής καμπύλης διπόλου
Πειραματική διάταξη μελέτης, της χαρακτηριστικής καμπύλης διπόλου Επισημάνσεις από τη θεωρία. 1 Ηλεκτρικό δίπολο ονομάζουμε κάθε ηλεκτρική συσκευή που έχει δύο πόλους (άκρα) και όταν συνδεθεί σε ηλεκτρικό
ΑΣΚΗΣΗ 206 ΑΠΛΟΠΟΙΗΣΗ ΚΥΚΛΩΜΑΤΩΝ - ΜΕΤΑΦΟΡΑ ΜΕΓΙΣΤΗΣ ΙΣΧΥΟΣ
ΑΣΚΗΣΗ 06 ΑΠΛΟΠΟΙΗΣΗ ΚΥΚΛΩΜΑΤΩΝ - ΜΕΤΑΦΟΡΑ ΜΕΓΙΣΤΗΣ ΙΣΧΥΟΣ Αντικείμενο της άσκησης αυτής είναι α) η απλοποίηση κυκλωμάτων βάσει του θεωρήματος Thevenin περί ισοδύναμης πηγής με πειραματική εφαρμογή του
Μετρήσεις σε ράβδους γραφίτη.
13 η ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΚΦΕ ΧΑΛΑΝΔΡΙΟΥ Τοπικός διαγωνισμός στη ΦΥΣΙΚΗ 13 Δεκεμβρίου2014 Σχολείο: Ονόματα μαθητών:1) 2) 3) Μετρήσεις σε ράβδους γραφίτη. Για να γράψουμε χρησιμοποιούμε τα μολύβια,
Εργαστήριο Φυσικής II Ηλεκτρομαγνητισμός Άσκηση 1: Βασικές μετρήσεις συνεχούς ρεύματος και όργανα μετρήσεων
Άσκηση : Βασικές μετρήσεις συνεχούς ρεύματος και όργανα μετρήσεων Σκοπός της άσκησης: Ο σκοπός της άσκησης είναι η εξοικείωση με τα βασικά όργανα μετρήσεων συνεχούς ρεύματος, και οι τρόποι χρήσης τους
ΓΓ/Μ ΣΥΣΤΗΜΑ ΠΑΙΔΕΙΑΣ ΟΡΟΣΗΜΟ. Τεύχος 2ο: Ηλεκτρικό ρεύμα
ΓΓ/Μ1 05-06 ΣΥΣΤΗΜΑ ΠΑΙΔΕΙΑΣ ΟΡΟΣΗΜΟ Τεύχος 2ο: Ηλεκτρικό ρεύμα ΕΚΔΟΤΙΚΕΣ ΤΟΜΕΣ ΟΡΟΣΗΜΟ ΠΕΡΙΟΔΙΚΗ ΕΚΔΟΣΗ ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ ΚΑΙ ΤΟ ΛΥΚΕΙΟ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Φυσική για την Γ' Τάξη του Γυμνασίου 1. Το ηλεκτρικό
ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ
ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι αυτό που προϋποθέτει την ύπαρξη μιας συνεχούς προσανατολισμένης ροής ηλεκτρονίων; Με την επίδραση διαφοράς δυναμικού ασκείται δύναμη στα ελεύθερα ηλεκτρόνια του μεταλλικού
Το αμπερόμετρο αποτελείται από ένα γαλβανόμετρο στο οποίο συνδέεται παράλληλα μια αντίσταση R
Άσκηση : Βασικές μετρήσεις συνεχούς ρεύματος και όργανα μετρήσεων Σκοπός της άσκησης: (Το πολύ 5 γραμμές συνοπτικά τι διεξήχθη στο πείραμα και γιατί) Ο σκοπός της άσκησης είναι η εξοικείωση με τα βασικά
- 1 - ΜΕΛΕΣΗ ΦΑΡΑΚΣΗΡΙΣΙΚΗ ΚΑΜΠΤΛΗ: Ηλεκτρικής πηγής, ωμικού καταναλωτή και διόδων πυριτίου και γερμανίου, με τη ΛΑ- LoggerProGR.
- 1 - ΜΕΛΕΣΗ ΦΑΡΑΚΣΗΡΙΣΙΚΗ ΚΑΜΠΤΛΗ: Ηλεκτρικής πηγής, ωμικού καταναλωτή και διόδων πυριτίου και γερμανίου, με τη ΛΑ- LoggerProGR. τόχοι: o o o o η εξοικείωση με το ΣΣΛ-Α LabPro και το λογισμικό LoggerproGr
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ MM505 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Εργαστήριο ο - Θεωρητικό Μέρος Βασικές ηλεκτρικές μετρήσεις σε συνεχές και εναλλασσόμενο
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΑΝΤΙΣΤΑΣΗ ΑΝΤΙΣΤΑΤΗ - ΝΟΜΟΣ ΤΟΥ OHM ΑΝΤΙΣΤΑΣΗ ΛΑΜΠΤΗΡΑ
ΜΙΝΟΠΕΤΡΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΦΥΣΙΚΟΣ - Ρ/Η ΚΑΘΗΓΗΤΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ου ΥΠΕΥΘΥΝΟΣ ΣΕΦΕ 2 ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΡΑΜΑΤΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΑΝΤΙΣΤΑΣΗ ΑΝΤΙΣΤΑΤΗ - ΝΟΜΟΣ ΤΟΥ OHM
ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων
Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης
2. Ηλεκτρικό ρεύμα. Δίνεται το παρακάτω κύκλωμα, όπου η ηλεκτρική πηγή έχει στους πόλους της τάση V=40V.
2.. 2.1.Κανόνες Kirchhoff Δίνεται το παρακάτω κύκλωμα, όπου η ηλεκτρική πηγή έχει στους πόλους της τάση =40. Η ένδειξη του αμπερομέτρου Α 1 είναι 5 Α, ενώ του Α 3 =2 Α. Εξάλλου η τάση στα άκρα του λαμπτήρα
Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ
Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ Σχολείο: Ονόματα των μαθητών: 1) 2)...... 3) 1 Πειραματικός προσδιορισμός
2ο Γενικό Λύκειο Λευκάδας Άγγελος Σικελιανός 24 Μαΐου Λευκάδα 24 Μαΐου 2016 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2016 ΤΑΞΗ Β
Λευκάδα 24 Μαΐου 2016 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2016 ΤΑΞΗ Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ A Οδηγία: Στις ερωτσεις Α1-Α4 να γράψετε στο απαντητικό σας φύλλο
7.a. Οι δεσμοί στα στερεά
ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 7-1 Κεφάλαιο 7. Στερεά Εδάφια: 7.a. Οι δεσμοί στα στερεά 7.b. Η θεωρία των ενεργειακών ζωνών 7.c. Νόθευση ημιαγωγών και εφαρμογές 7.d. Υπεραγωγοί 7.a. Οι δεσμοί στα στερεά Με
ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την:
Σκοπός της Άσκησης: ΑΣΚΗΣΗ η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: α. Κατασκευή μετασχηματιστών. β. Αρχή λειτουργίας μετασχηματιστών.
α. Η ένδειξη 220 V σημαίνει ότι, για να λειτουργήσει κανονικά ο λαμπτήρας, πρέπει η τάση στα άκρα του να είναι 220 V.
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 7. Έχουμε ένα λαμπτήρα με τις ενδείξεις 100 W και 220 V. α. Ποια η σημασία αυτών των στοιχείων; β. Να βρεθεί η αντίσταση του λαμπτήρα. γ. Να βρεθεί η ενέργεια που απορροφά ο λαμπτήρας,
ηλεκτρικό ρεύµα ampere
Ηλεκτρικό ρεύµα Το ηλεκτρικό ρεύµα είναι ο ρυθµός µε τον οποίο διέρχεται ηλεκτρικό φορτίο από µια περιοχή του χώρου. Η µονάδα µέτρησης του ηλεκτρικού ρεύµατος στο σύστηµα SI είναι το ampere (A). 1 A =
Άσκηση 3. Δίοδοι. Στόχος. Εισαγωγή 1. Ημιαγωγοί ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΝΙΚΑ Ι (ΕΡ)
ΤΕΙ ΔΥΤΙΗΣ ΕΛΛΔΣ ΤΜΗΜ ΗΛΕΤΡΟΛΟΓΩΝ ΜΗΧΝΙΩΝ Τ.Ε. ΗΛΕΤΡΟΝΙ Ι (ΕΡ) Άσκηση 3 Δίοδοι Στόχος Ο στόχος της εργαστηριακής άσκησης είναι η γνωριμία των φοιτητών με την δίοδο. Γίνεται μελέτη της χαρακτηριστικής της
Περιεχόμενο της άσκησης
Προαπαιτούμενες γνώσεις Ημιαγωγοί Θεωρία ζωνών Ενδογενής αγωγιμότητα Ζώνη σθένους Ζώνη αγωγιμότητας Προτεινόμενη βιβλιογραφία 1) Π.Βαρώτσος Κ.Αλεξόπουλος «Φυσική Στερεάς Κατάστασης» 2) C.Kittl, «Εισαγωγή
ΗΜΙΑΓΩΓΟΙ. Σπύρος Νικολαΐδης Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής
ΗΜΙΑΓΩΓΟΙ Σπύρος Νικολαΐδης Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Ηλεκτρονικοί φλοιοί των ατόμων Σθένος και ομοιοπολικοί δεσμοί Η πρώτη ύλη με την οποία κατασκευάζονται τα περισσότερα ηλεκτρονικά
2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος
2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος Όπως είναι γνωστό από την καθημερινή εμπειρία τα περισσότερα σώματα που χρησιμοποιούνται στις ηλεκτρικές ηλεκτρονικές
Φυσική ΘΕΜΑ 1 ΘΕΜΑ 2 ΘΕΜΑ 3
Φυσική ΘΕΜΑ 1 1) Υπάρχουν δύο διαφορετικά είδη φορτίου που ονομάστηκαν θετικό και αρνητικό ηλεκτρικό φορτίο αντίστοιχα. Τα σώματα που έχουν θετικό φορτίο λέμε ότι είναι θετικά φορτισμένα (π.χ. μια γυάλινη
1. ΕΝΤΑΣΗ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ Ένταση ηλεκτρικού ρεύματος δίνεται από την σχέση Ι = Με την βοήθεια την σχέσης αυτής
ΜΕΘΟΔΟΛΟΓΙΑ ΚΕΦΑΛΑΙΟ 2 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ 1. ΕΝΤΑΣΗ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ Ένταση ηλεκτρικού ρεύματος δίνεται από την σχέση Ι = Με την βοήθεια την σχέσης αυτής Υπολογισμός ηλεκτρικού φορτίου σε αγωγό ή κύκλωμα
ΜΑΘΗΜΑ 1ο : ΗΜΙΑΓΩΓΟΙ
ΜΑΘΗΜΑ 1ο : ΗΜΙΑΓΩΓΟΙ ΣΤΟΧΟΙ ΠΕΡΙΓΡΑΦΗ ΟΜΗΣ ΚΡΥΣΤΑΛΛΟΥ ΠΥΡΙΤΙΟΥ ΙΑΚΡΙΣΗ ΥΟ ΤΥΠΩΝ ΦΟΡΕΩΝ ΜΕ ΒΑΣΗ ΤΟΝ ΤΥΠΟ ΠΡΟΣΜΙΞΕΩΝ ΠΟΥ ΚΑΘΟΡΙΖΕΙ ΤΟ ΦΟΡΕΑ ΠΛΕΙΟΝΟΤΗΤΑΣ MsC in Telecommunications 1 ΑΓΩΓΟΙ Στοιβάδα σθένους
Παράρτημα. Πραγματοποίηση μέτρησης τάσης, ρεύματος, ωμικής αντίστασης με χρήση του εργαστηριακού εξοπλισμού Άσκηση εξοικείωσης
Παράρτημα Πραγματοποίηση μέτρησης τάσης, ρεύματος, ωμικής αντίστασης με χρήση του εργαστηριακού εξοπλισμού Άσκηση εξοικείωσης Σκοπός του παραρτήματος είναι η εξοικείωση των φοιτητών με τη χρήση και τη
Άσκηση 3 Η φωτο-εκπέµπουσα δίοδος (Light Emitting Diode)
Άσκηση 3 Η φωτο-εκπέµπουσα δίοδος (Light Emitting Diode) Εισαγωγή Στην προηγούµενη εργαστηριακή άσκηση µελετήσαµε την δίοδο ανόρθωσης ένα στοιχείο που σχεδιάστηκε για να λειτουργεί ως µονόδροµος αγωγός.
Κεφάλαιο 6: Δυναμικός Ηλεκτρισμός
Κεφάλαιο 6: Δυναμικός Ηλεκτρισμός Ηλεκτρική Αγωγιμότητα ονομάζουμε την ευκολία με την οποία το ηλεκτρικό ρεύμα περνά μέσα από τα διάφορα σώματα. Τα στερεά σώματα παρουσιάζουν διαφορετική ηλεκτρική αγωγιμότητα.
Επισημάνσεις από τη θεωρία
13 η ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΚΦΕ Ν.ΙΩΝΙΑΣ Τοπικός διαγωνισμός στη Φυσική 13 Δεκεμβρίου2014 α. β. γ. Ονοματεπώνυμο μαθητών Επισημάνσεις από τη θεωρία Σχολείο Ηλεκτρικό δίπολο ονομάζουμε κάθε ηλεκτρική
ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: 1 ΣΚΟΠΟΣ 1 2 ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ 1 3 ΕΞΟΠΛΙΣΜΟΣ 7 4 ΕΞΑΡΤΗΜΑΤΑ 7
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΗΜΕΡΟΜΗΝΙΑ: ΤΡΙΩΡΟ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: Περιεχόμενα 1 ΣΚΟΠΟΣ 1 2 ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ 1 2.1 ΑΝΤΙΣΤΑΣΕΙΣ ΣΕ ΣΕΙΡΑ 1 2.2 ΣΥΝΟΛΙΚΗ
Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ
Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ Σχολείο: Ονόματα των μαθητών: 1) 2)...... 3) 1 Πειραματικός προσδιορισμός
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Διδάσκων : Δημήτρης Τσιπιανίτης Γεώργιος Μανδέλλος
Δίοδοι Ορισμός της διόδου - αρχή λειτουργίας Η δίοδος είναι μια διάταξη από ημιαγώγιμο υλικό το οποίο επιτρέπει την διέλευση ροής ρεύματος μόνο από
Δίοδοι Ορισμός της διόδου - αρχή λειτουργίας Η δίοδος είναι μια διάταξη από ημιαγώγιμο υλικό το οποίο επιτρέπει την διέλευση ροής ρεύματος μόνο από την μία κατεύθυνση, ανάλογα με την πόλωσή της. Κατασκευάζεται
ΝΟΜΟΣ ΤΟΥ OHM ( αντιστάτης και λαμπτήρας )
1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΝΟΜΟΣ ΤΟΥ OHM ( αντιστάτης και λαμπτήρας ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης απλών πειραματικών κυκλωμάτων του ηλεκτρικού ρεύματος. Η εξοικείωση με το τροφοδοτικό
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Σ. ΜΑΝΕΣΗ Δ. ΤΣΙΠΙΑΝΙΤΗ Β. ΚΟΥΤΣΟΝΙΚΟΥ Χ.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΜΕΤΡΗΣΕΙΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6: ΠΑΡΑΛΛΗΛΗ
ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ
ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Θεωρία ελαχίστων τετραγώνων (β ) Μη-γραμμικός αντιστάτης Μαρία Κατσικίνη E-mal: katsk@auth.gr Web: users.auth.gr/katsk Προσδιορισμός της νομοτέλειας Πείραμα για τη μελέτη ενός
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Σκοπός : 1. Γνωριμία με το τρανζίστορ. Μελέτη πόλωσης του τρανζίστορ και ευθεία φορτίου. 2. Μελέτη τρανζίστορ σε λειτουργία
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ. Ον/νυμο: Τμήμα: Ημ/νια:
ΕΚΦΕ ΟΜΟΝΟΙΑΣ ekfe-omonoias.att.sch.gr ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ Ον/νυμο: Τμήμα: Ημ/νια: ΤΑΞΗ Α' Λυκείου Μάθημα: ΦΥΣΙΚΗ Εργαστηριακή άσκηση: 1. ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΑΝΤΙΣΤΑΤΗ 2. ΕΝΕΡΓΕΙΑΚΗ ΜΕΛΕΤΗ ΑΠΛΟΥ ΗΛΕΚΤΡΙΚΟΥ
ΚΕΦΑΛΑΙΟ 3.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ. Ερωτήσεις πολλαπλής επιλογής
ΚΕΦΛΙΟ 3.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜ Ερωτήσεις πολλαπλής επιλογής 1.. Οδηγία: Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής αρκεί να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δεξιά