NON-LINEAR OPTICS AND QUANTUM OPTICS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "NON-LINEAR OPTICS AND QUANTUM OPTICS"

Transcript

1 NON-LINEAR OPTICS AND QUANTUM OPTICS Non classical states squeezed states (degenerate parametric down conversion and second harmonics generation) entangled states (non-degenerate parametric down conversion ) conditional states Non-linear beam splitter (sum frequency generation)

2 Classical BIBLIOGRAPHY Y.R. Shen The principles of nonlinear optics John Wiley & Sons (New Yor, 984) M. Schubert, B. Wilhelmi Nonlinear optics and quantum electronics John Wiley & Sons (New Yor, 986) V.G. Dmitriev, G.G. Gurzadyan, D.N. Niogosyan Handboo of nonlinear optical crystal Springer- Verlag (Berlin Heidelberg, 990) P.N. Butcher, D. Cotter The elements of nonlinear optics Cambridge University Press (Cambridge, 990) B.E.A. Saleh, M.C. Klein Fundamentals of photonics John Wiley & Sons (New Yor, 99) A.C. Newell, J.V. Moloney Nonlinear optics Addison-Wesley (Redwood City, 99) D.L. Mills Nonlinear optics Springer-Verlag (Berlin Heidelberg, 99) Handboo of Photonics Editor-in-Chief M.C. Gupta - CRC Press (Boca Raton New Yor, 997) R.W. Boyd Nonlinear optics Academic Press (San Diego, 99) G.S. He, S.H. Liu Physics of nonlinear optics World Scientific (Singapore, 999) Quantum L. Mandel and E. Wolf Optical coherence and quantum optics Cambridge University Press (Cambridge, 995) R. Loudon The quantum theory of light (third edition) Oxford University Press (Oxford, 000) U. Leonhardt Measuring the quantum state of light Cambridge University Press (Cambridge, 997)

3 MAXWELL EQUATIONS IN DIELECTRIC MEDIA E P E = µ 0 c0 t t D B H= ; E= t t D= 0 ; B= 0 D= ε E+ P ; B= µ H 0 0 for homogeneous and isotropic media we can derive a wave equation if the medium is wealy nonlinear, we can write: P= εχe+ de + 4 χ E +... = εχe+ P and thus: () 0 0 NL where c 0 is the propagation velocity in vacuum E P = c t t NL E µ 0 where c is the propagation velocity in the medium Second-order nonlinear optics P NL = de Third-order nonlinear optics P NL = 4χ E ()

4 Second-order nonlinear optics COUPLED-WAVE THEORY OF THREE-WAVE MIXING E PNL E = µ 0 with P NL() t = de () t c t t Er iω qt iωqt iωqt (, t) = E ( ) e + E ( ) e = E ( ) e with ω = ω ; E = E r r r * * q q q q q q q q=,, q=±, ±, ± = i( q r) t PNL ( r, t) d Eq( r) Er( r ) e ω + ω NL = d ( ω + ω ) qr, =±, ±, ± If we suppose that the three waves interacting in the medium, have distinct frequencies ω, ω and ω, and one frequency is the sum or the difference of the other two, (frequency matching condition ω = ω + ω ) we get three equations: ω + = c ω + = c ω + = µ ω + ω c * µ 0 ( ω ω ) iωt Ee d EEe * µ 0 ( ω ω ) iωt Ee d EEe ( ) iωt Ee d EEe 0 ( ω ω ) i ( ω ω ) i ( ω + ω ) i t t t P t qr, =±, ±, ± q r q r i( ωq+ ωr) E E e Nondegenerate three-wave mixing ( * ) E( r) = µ 0dωE( r) E( r) ( * ) E( r) = µ 0dωE( r) E ( r) ( ) E( r) µ 0dωE( r) E( r) = Degenerate three-wave mixing ω = ω ( * ) E( r) = µ 0dωE( r) E ( r) ( ) E( r) µ 0dωE( r) E( r) + + = t

5 COLLINEAR THREE-WAVE MIXING: PLANE-WAVE SOLUTION ( r) = ( ) = η ω ( ) E E z a z e i z q q q q q q iz ( q ωqt) * iz ( q ωqt) t = q q aq z e aq( z) e + (, ) η ω ( ) Er q=,, η 0 η q = = nq ε µ 0 0 n q Eq ( z) ( ) = = ω ( ) φ ( z) Iq z q aq z η q q I ( z) q = = ω q a q ( ) z photon flux density [ph/(s m )] We suppose that the envelope a q (z) is slowly varying with z and use the slowly varying envelope approximation (SVEA) ( ) q q( ) i z q + = da dz da dz da dz a z e = iga a e * = iga a e * = iga a e i z i z i z dz SVEA daq i where da a q q q q dz g d iqz daq + a q q e iq e dz ωωω = η 0 nnn = i z q coupling coefficient detuning

6 PARAMETRIC APPROXIMATION undepleted reference field a (z) = a (0) : da dz da dz = * i z z a( 0) a( 0 ) z a( z) = e a( 0cos ) + + i sin + + i z z a( 0) a( 0 ) + z a( z) = e a( 0cos ) + i sin + + undepleted pump a (z) = a (0) : da dz da dz = iga = = iga a iga * iga a ( 0) * ( 0) ( 0) ( 0) a e a e * e e i z i z i z i z ga ga ( ) 0 = ( ) 0 = * da = i ae dz da = i ae dz da * = i ae dz da * = i ae dz i z i z i z * i z z a( 0) a( 0 ) z a( z) = e a( 0cosh ) + i sinh * i z z a( 0) a( 0 ) z a( z) = e a( 0cosh ) i sinh + i z

7 UNDEPLETED REFERENCE FIELD up-conversion: a (0) 0 ; a (z) = a (0) ; a (0) = 0 z z a z = a + + i + e a( 0) i z z a( z) = i sin e + + i ( ) ( 0) cos sin + z Photon-flux densities Phases z φ( z) = φ( 0) cos z φ( z) = φ( 0) sin + + z Λ ( z) = Λ ( 0) + arctan tan + z + π Λ ( z) = Λ ( 0) +Λ( 0 ) + z

8 fl up-conversion in phase matching : z φ( z) = φ( 0cos ) z φ( z) = φ( 0sin ) The efficiency of up-conversion is: ( z) ( 0) Λ = Λ π Λ ( z) =Λ ( 0) +Λ ( 0) I ( z) ( ) K = = I z sin 0

9 fl up-conversion with phase mismatch : K sin I ( z) z + I ( 0) 4 z + = = z the effect of the the phase mismatch is the reduction of the conversion efficiency: For wea coupling z sinc z K z sin I ( z) z I ( 0) 4 z = = π π π π z

10 UNDEPLETED REFERENCE FIELD down-conversion: a (0) = 0 ; a (z) = a (0) ; a (0) 0 ( 0) * a z i z a( z) = i sin e + + z z a z a i e i ( ) = ( 0) cos + sin + + z Photon-flux densities Phases z φ( z) = φ( 0) sin + + z φ( z) = φ( 0) cos π Λ ( z) = Λ ( 0) Λ ( 0 ) z z Λ ( z) = Λ( 0) arctan tan + + z +

11 UNDEPLETED PUMP a (0) 0 (signal) ; a (0) = 0 (idler) ; a (z) = a (0) (pump) z z a z = a + i e * a( 0) i z z a( z) = i sinh e i ( ) ( 0) cosh sinh z Photon-flux densities Phases z φ( z) = φ( 0) + sinh z φ( z) = φ( 0) sinh z Λ ( z) = Λ ( 0) + arctan tanh z π Λ ( z) = Λ( 0) Λ( 0 ) z

12 UNDEPLETED PUMP fl parametric amplification in phase matching >, = 0: z φ( z) = φ( 0cosh ) Λ ( z) = Λ( 0) π z φ( z) = φ( 0sinh ) Λ ( z) =Λ ( 0) Λ ( 0) I ( z) z The efficiency of parametric amplification is: K = = cosh I 0 ( ) fl parametric amplification out of phase matching á, 0 : z ( ) ( 0 ) z e φ z φ + e 4 The signal amplification is: ( ) ( 0) I ( ) z I z I z z e Γ= = e =Γ = 0e 0 4

13 UNDEPLETED PUMP < z tan z φ( z) = φ( 0) sin ; ( z) ( 0) arctan + z Λ = Λ + z π φ( z) = φ( 0) sin ; Λ ( z) =Λ( 0) Λ( 0 ) z fl parametric generation of superfluorescence Ü : φ z ( z) φ( 0) + sin The signal amplification is: z z sin sin I( z) I( 0) z z Γ= sin 0 I ( 0) = = =Γ 4 z z

14 PHASE MATCHING The efficiency of the parametric processes is maximum in condition of phase matching fl nonlinear materials in which the phase mismatch can be modified. FREQUENCY MATCHING ω = ω + ω PHASE MATCHING = + collinear ( ) = ( ) + ( ) ω n ω ω n ω ω n ω θ θ θ θ non collinear ω n( ω) cos θ = ω n( ω) cos θ+ ω n( ω) cosθ ω n( ω) sin θ = ω n( ω) sin θ+ ω n( ω) sinθ OPTICALLY ANISOTROPIC CRYSTALS as the nonlinear media UNIAXIAL and BIAXIAL crystals

15 UNIAXIAL CRYSTALS Characterized by the presence of a special direction called optical-axis (Z-axis). The plane containing the Z-axis and the wave vector is called the principal plane. X Z α The refractive indices of the ordinary (n o ) and extraordinary (n e ) beams in the plane normal to the Z-axis are called the principal values. Y n e > n o positive crystal n o > n e negative crystal The light beam whose polarization is normal to the principal plane is called ordinary beam (o-beam) The light beam whose polarization is parallel to the principal plane is called extraordinary beam (e-beam) E 90 E Z E 90 E Z The refractive index n o of the o-beam does not depend on the propagation direction Note that in general n o = n o (ω) ; n e = n e (ω) and they are given by dispersion relations such as Sellmeier relations The refractive index n extr of the e-beam depends on the propagation direction being a function of the angle θ between the Z axis and the vector : n cos θ sin θ extr = + no ne

16 PM I : ω Æo, ω Æ o, ω Æ e ω = ω+ ω ω n( ω, α) cos θ = ω n( ω) cos θ+ ω n( ω) cosθ ω n( ω, α) sin θ = ω n( ω) sin θ+ ω n( ω) sinθ n( ω) = no( ω) n( ω) = no( ω) cos α sin α n( ω, α) = + no ( ω) ne ( ω) PM II PHASE-MATCHING CONDITIONS uniaxial crystals d = d α ϕ eff cos cos Optimization for PM II: crystal cut at ϕ = 0 PM I d = d sinα d cosα sin ϕ eff 5 Optimization for PM I: crystal cut at ϕ = 90 PM II : ω Æo, ω Æ e, ω Æ e ω = ω+ ω ω n( ω, α) cos θ = ω n( ω) cos θ+ ω n( ω, θ, α) cosθ ω n( ω, α) sin θ = ω n( ω) sin θ+ ω n( ω, θ, α) sinθ n( ω) = no( ω) cos ( α θ) sin ( α θ) n( ω, θ, α) = + no ( ω) ne ( ω) cos α sin α n( ω, α) = + no ( ω) ne ( ω)

17 Many possible phase-matched interactions depending on the angles between the fields, on the wavelength and on the tuning angle θ θ θ θ

18 5 (deg) ( θ θ ) ( θ θ ) Internal phase-matching angles in BBO I for λ = 0.49 µm (deg) α = α (deg) λ ( µ m) External phase-matching angles (deg) α = 4, θ cut = 4 (deg) α = 4, θ cut = λ ( µ m) -0 λ ( µ m)

19 NON COLLINEAR TYPE I INTERACTION SCHEME y x X 0 E E ϑ Fields Y optical axis ϑ xˆ η0 ω E( r, t) = { a( r) exp i( t) cc..} n r ω + xˆ η0 ω E( r, t) = a( r) exp i( ωt) cc.. n r + wˆ η0 ω E( r, t) = a( r) exp i( ωt) + cc.. n r ϑ E α { } { } Z z Parameters g = d +, +, eff Phase mismatch = d = d cosα + d + d = d sinα d sinα cosα ωωωη 0 g = g+ + g ( ω) ( ω) ( ω, α) n n n ( cosα sinα) g = d + d ωωωη 0 n( ω) n( ω) n( ω, α) ( r) = ( r) + ( r) g a g a g a eff + y z ( ˆ ) ( ˆ ) wˆ = yˆ g + z g g + g = yˆ g + z g g + + +

20 MAXWELL EQUATIONS For non-collinear type I interaction out of phase matching undepleted pump a (r) = a (0): ˆ a r = ig a r a r exp i r ˆ a r = igeff a r a r exp i r ˆ g a r = i a r a r exp i r geff * ( ) eff ( ) ( ) ( ) * ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ˆ i ˆ ˆ ˆ ˆ * ia a( r) = a( 0) coshq r + sinhq r + a ( 0) sinh Q exp i Q ˆ ˆ r Q r ˆ i ˆ ˆ ˆ ia ˆ a ( r) = a ( 0) cosh Q r + sinh Q r + a ( 0) sinh Q r exp i r * Q ˆ ˆ Q in phase matching = 0 and ˆ ˆ ˆ ˆ ˆ ˆ = ˆ = A g a ( ) = 0 eff A ( ) ( ) ˆ * iλ + π / A ( ) ˆ a r = 0cosh 0 sinh PM a r ˆ ˆ + a e r ˆ ˆ A * / ( ) ( 0cosh ) ˆ iλ + π A a a a ( 0) e sinh ˆ r = + PM r ˆ ˆ r ˆ ˆ 4 A Q= ( ˆ ˆ )( ˆ ˆ )

21 QUANTUM DESCRIPTION OF THE PROCESSES Three-wave mixing ω < ω < ω H= κ ( aaa ˆ ˆ ˆ + aaa ˆ ˆ ˆ ) = exp τ ( ˆˆˆ + ˆˆˆ) { } U i aa a a a a quantum Hamiltonian Evolution operator The Heisenberg equations of motion derived by the quantum Hamiltonian correspond to the classical Maxwell equations daˆ = a ˆ, H = iκ a ˆ a ˆ dt i daˆ ˆ, ˆ = a H = iκ a a ˆ dt i daˆ = a ˆ, H = iκ aa ˆ ˆ dt i Note that the coupling coefficient depends on all the parameters of the interaction, possibly including the phase mismatch By mapping time evolution into spatial evolution, we obtain that quantum equations are formally equivalent to classic equations, for operators instead of field-amplitudes

22 SPONTANEOUS DOWN CONVERSION If we now consider the Hamiltonian for undepleted pump field, that can be analytically solved, we get H = κ( * aa ˆˆ ˆˆ + aa ) { } ( τ ) = exp τ ( * ˆˆ + ˆˆ ) U S i i aa a a daˆ dt daˆ dt = = iκaˆ iκ aˆ * iφ iφ * ( 0cosh ) [ κ ] ( 0) sinh[ κ ] µ ( 0) ν ( 0) * iφ iφ * ( ) [ κ ] + ( ) [ κ ] = µ ( ) + ν ( ) aˆ = aˆ t + aˆ e t = aˆ + e aˆ aˆ= aˆ 0 cosh t aˆ 0 e sinh t aˆ 0 e aˆ 0 µ ν = which is the two-mode squeezing transformation originating the twin-beam twb = n= 0 n ψ ξ ξ n n ξ = i ν e φ µ where we can identify κ t A ˆ r ˆ ˆ

23 Experimental system to generate spontaneous down conversion: TWA = travelling-wave optical parametric amplifier Laser Nd:YLF L 49 nm BBO Laser Nd:YLF laser mode-loced, amplified λ F = 047 nm, λ SH = 5 nm, λ TH = 49 nm Pulse time duration nm, Energy per pulse 60 µj, rep-rate 500 Hz Crystal β-bab O 4 (BBO) Cut for type I (ooe) interaction θ cut =.8 Dimensions 0 0 mm

24

25

26 Experiment Simulation

27 STATISTICAL PROPERTIES The state of a quantum system is fully described by the statistical operator ρ ρ can be represented on different bases, such as - on the number states (Foc states) - on the coherent states -P representation where P(α) is real and normalized ρ = = π nm, = 0 n n ρ m m ρ α α ρ β β d αd β P = ρ P( α) α α d α ( α) d α = but it is not positive in all cases, so that it cannot be interpreted as a probability distribution in classical sense. Moreover P(α) sometimes does not exist.

28 The P-representation exists if and only if the Fourier transform of the normally-ordered characteristic function,, exists { a a} * * * η η ηα η α χ ( η) ρ ( α) α = N tr e e e P d if the P-representation exists * * P( ) = e ( ) d π ηα ηα α χ N η η Alternatively we can use the simmetric characteristic function { a a ρ } * χη ( ) tr e η η * * W( ) = e ( ) d π ηα ηα α χη η If the P-representation exists, we have χ ( ) N η and define the Wigner function α α' W( α) = e P( α) d α' π

29 PARAMETRIC DOWN CONVERSION Statistical properties of one of the fields produced/amplified by the TWA ) Initial state for fields and is a pure coherent state α0, α0 ρ = α0, α0 α0, α0 ( ) ( ) aˆ () t = aˆ 0 µ + aˆ 0ν * * χ N ( η) = exp η ν + ηα η α α being the mean value of α α P( α) = exp πν ν α α( t) W ( α) = exp + + ν π ( ν ) Photon number distribution ( ) p n n ( ν ) α L n n+ ( ν ) ( ) α = exp ( + ν ) + ν + ν â

30 ) Initial state for fields and is the vacuum state α0 α0 = 0, = 0 α P( α) = exp πν ν α W ( α) = exp π ( + ν ) + ν Photon number distribution ( ) p n = n ( ν ) ( + ν ) n+

31 The Wigner function can be reconstructed by optical tomography that maes use of the data from homodyne detection complete information about the quantum state all the elements of the density matrix The photon number distribution can be obtained from the Wigner function, but it can also be measured separately, without maing use of homodyne detection partial information about the quantum state only the diagonal elements of the density matrix

32 There are many different features of classical and quantum states that can be used for characterizing them: - with respect to the Wigner function: Gaussian or non gaussian-states tomographic reconstruction of the Wigner function - with respect to the photon number distribution: Poissonian, sub-poissonian and super-poissonian states direct measurement of the Fano factor F σ = n ( n)

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

Contents 1. Introduction Theoretical Background Theoretical Analysis of Nonlinear Interactions... 35

Contents 1. Introduction Theoretical Background Theoretical Analysis of Nonlinear Interactions... 35 Contents 1. Introduction...1 1.1 Nonlinear Optics and Nonlinear-Optic Instruments...1 1.2 Waveguide and Integrated Optics...2 1.3. Historical Perspectives on Waveguide NLO Devices...3 1.4. Future Prospects...6

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Solar Neutrinos: Fluxes

Solar Neutrinos: Fluxes Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

4.4 Superposition of Linear Plane Progressive Waves

4.4 Superposition of Linear Plane Progressive Waves .0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

Optical Feedback Cooling in Optomechanical Systems

Optical Feedback Cooling in Optomechanical Systems Optical Feedback Cooling in Optomechanical Systems A brief introduction to input-output formalism C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum Stochastic differential

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Constitutive Relations in Chiral Media

Constitutive Relations in Chiral Media Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

The Relationship Between Flux Density and Brightness Temperature

The Relationship Between Flux Density and Brightness Temperature The Relationship Between Flux Density and Brightness Temperature Jeff Mangum (NRAO) June 3, 015 Contents 1 The Answer 1 Introduction 1 3 Elliptical Gaussian Source 3 Uniform Disk Source 5 1 The Answer

Διαβάστε περισσότερα