מתמטיקה בדידה תרגול מס' 13
|
|
- Ῥέα Κητώ Βλαστός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות. הערה 1. מעתה ואילך, אם לא נאמר אחרת, גרף משמעו גרף לא מכוון ופשוט. דרגות בגרפים: הגדרה 1.3 בגרף G, עבור צומת v, הדרגה של v היא מספר הצמתים ש v סמוך אליהם. באופן פורמלי d (v) = {u V {u, v} E} d (v) = E v V משפט 1.4 בכל גרף E G = V, מתקיים: הגדרה 1.5 יהא E G = V, גרף. הגרף המשלים לו הוא Ē Ḡ = V, כך ש Ē = P (V ) \E תרגיל 1.1 כמה גרפים E, n},...,, 1 } קיימים, כאשר? E = m. בכמה גרפים E, n},...,, 1 } אין קודקודים מבודדים (כלומר, כאלו שדרגתם?(0 ( n זוגות צמתים, וכל קשת מתאימה לזוג צמתים. מכאן, שמספר 1. כל קשת מחברת בין שני צמתים. ישנם האפשרויות הוא: (( n ) m. נפתור ע"י הכלה והדחה. 1
2 (א) ה"עולם" שלנו: כל הגרפים הפשוטים שאינם מכוונים על n צמתים (נסמן קבוצה זו ב U). לכל ( n הקשתות האפשריות יש אפשרות להופיע או לא להופיע. לכן: אחת מתוך U = (n (ב) לכל i n 1 נגדיר את A i להיות כל הגרפים הפשוטים שאינם מכוונים על n צמתים כך שצומת מס' i מבודד. ) ( קשתות אפשריות. לכן: n 1 i. עבור הגרפים שב,Ai ישנן A i = (n 1 ) A i1... A ik = (n k ) :1 i 1 <... < i k n באופן דומה, עבור.ii n n. מנוסחת ההכלה וההדחה: Āi ( ) Ā i = (n n ( n 1 ) n + (n 1 )... + ( 1) n (n n ) = n ( ) ( 1) i n (n i ) i i=0 (ג) אנו מחפשים את תרגיל הוכח כי מספר הגרפים על הקודקודים {n V =,1},..., בהם אין צמתים מבודדים שווה למספר הגרפים בהם אין צמתים שדרגתם 1 n. תהא A קבוצת הגרפים בהם אין צמתים מבודדים ו B קבוצת הגרפים בהם אין צמתים שדרגתם 1 n. נראה שקיימת f A B פונקצית הפיכה, מה שיוכיח ש B. A = נגדיר את f כך: יהא Ḡ ) f = λg A.Ḡ הגרף המשלים של G). מתקיים כי f (G) = Ḡ B כי אם אין צמתים מבודדים, לכל v V ב G מתקיים ש 1 v.deg לכן, ב.(n בגרף המלא כל הדרגות הן 1 (כי deg v n,v V לכל Ḡ את העובדה ש f היא פונקצית שקילות קל להסיק מכך שקיימת פו' g B A שהיא ההופכית של g f. מוגדרת כך: g. = λg B.Ḡ מכיוון שהמשלים של המשלים של גרף G נותן את G נובע שלכל G A f g(g) = G G B ולכל g f(g) = G איזומורפיזמים הגדרה.1 יהיו 1 G 1 = V 1, E ו G = V, E שני גרפים. נאמר שהם איזומורפיים אם קיימת פונקציות שקילות ϕ V 1 V כך ש: u, v V 1. {u, v} E 1 {ϕ (u), ϕ (v)} E
3 תרגיל 3 הוכח ששני הגרפים הבאים אינם איזומורפים: G 1 =< {1,, 3, 4, 5}, {{1, }, {, 3}, {3, 1}, {1, 4}, {3, 5}} > G =< {a, b, c, d, e}, {{a, b}, {a, c}, {a, d}, {d, e}, {a, e}} > נוכיח טענת עזר: טענה. עבור שני גרפים איזומורפיים G, 1, G אם ב G 1 יש קודקוד שדרגתו k, אז גם ב G יש קודקוד שדרגתו k. הוכחה: נסמן > i G i =< V i, E עבור = 1,.i תהי f V 1 V איזומורפיזם בין הגרפים. יהי x V 1 קודוקוד שדרגתו.k נוכיח ש,f(x) V הוא קודקוד שדרגתו.k יהיו v 1,..., v k השכנים של x ב.G 1 בגלל ש f איזומורפיזם נסיק ש ) k f(v 1,(..., f(v הם k שכנים שונים של.f(x) לכן דרגתו לפחות k. אם היה לו שכן נוסף, נסמנו,y אז f 1 (y) V 1 הוא שכן של,x ששונה מ, v 1,..., v k בסתירה לכך שדרגתו של x היא.k מהטענה נובע ש G 1 לא איזומורפי ל G. תרגיל לבית: טענה.3 עבור שני גרפים איזומורפיים G, 1, G אם ב G 1 יש בדיוק l קודקודים שדרגתם k, אז גם ב G יש בדיוק l קודקודים שדרגתם k. 3 טיולים הגדרה 3.1 בגרף E,G = V, רשימה סדורה של צמתים k v 0, v 1,..., v נקראת "טיול" אם לכל i 0.k אורך הטיול הוא.{v i, v i+1 } E,k 1 הגדרות נוספות: "מסלול" הוא טיול העובר בכל קשת לכל היותר פעם אחת. "מסלול פשוט" הוא מסלול העובר בכל צומת לכל היותר פעם אחת. "מעגל" הוא מסלול שמתחיל ומסתיים באותו צומת, כלומר v. 0 = v k הגדרה 3. יהי E G =,V גרף לא מכוון. נאמר שקודקודים,u v קשורים, אם קיים טיול בין u ל v. נאמר שגרף הוא קשיר אם כל שני צמתים בו קשורים. הגדרה 3.3 יחס הקשירות הוא יחס שקילות. מהווים חלוקה של צמתי V. למחלקות הקשירות נקרא "רכיבי קשירות", ומכאן נסיק שהם תרגיל 5 נתון גרף (לא מכוון ופשוט) E G =,V כך שדרגת כל צומת בו היא לפחות d, ו V. d d הוכיחו כי ב G מעגל בגודל 4. 3
4 נניח בשלילה שקיים גרף כזה ללא מעגלים בגודל 4. יהא v V צומת ב G עם שכנים } d Γ = {u 1,..., u (יכולים להיות יותר מ d כמובן). לכל שני צמתים x, y Γ אין שכן משותף u V כי אחרת יווצר מעגל v v, x, u, y, באורך.4 לכל צומת x Γ קיים לכל היותר y Γ יחיד כך ש.{x, y} E אחרת, אם קיימים y 1, y Γ כאלו כך ש y 1 y הרי שקיבלנו מעגל v v, y 1, x, y, באורך.4 לכן, לכל i d 1 יש קשת אחת } i,v} u וקשת אחת לכל היותר לצומת אחר ב Γ. לכן, קיימות לפחות d קשתות מ u i ל w ij V (שונים) עבור d j.1 V {v} Γ {w ij 1 i d, 1 j d } = 1 + d + d (d = d d + 1 קיבלנו, אם כך, כי: בסתירה להנחה. 4 עצים ויערות הגדרה 4.1 גרף G ייקרא עץ אם הוא קשיר וחסר מעגלים. הגדרה 4. גרף ייקרא יער אם הוא חסר מעגלים. משפט 4.3 התנאים הבאים שקולים, עבור גרף G לא מכוון:.1 G עץ.. G קשיר ובכל תת גרף שלו יש צומת שדרגתו 0 או 1.. E = V קשיר ו 1 G.3 4. G קשיר מינימלי (דהיינו, אם נסלק קשת נקבל גרף לא קשיר). 5. בין כל שני צמתים של G יש מסלול (פשוט) יחיד.. E = V חסר מעגלים ו 1 G.6 7. G חסר מעגלים מקסימלי. תרגיל 6 הוכיחו כי אם > E G =< V, קשיר, ו 1 V E = אז G עץ. ראשית נוכיח את הטענה הבאה: טענה 4.4 אם בגרף G קיים מסלול/הילוך בין קודקוד v לקודקוד w, אז קיים גם מסלול פשוט מ v ל w. 4
5 הוכחה: נקח מסלול מ v ל w ב G מאורך מינימלי:,v = v 0, v 1,... v k 1 v k = w ונוכיח שזה מסלול פשוט. אחרת, קיימים 1 k i < j,0 כך ש.v i = v j אבל אז v = v 0, v 1,... v i v j+1... v k = w גם מסלול מ v ל w מאורך קטן יותר, סתירה. עלינו להוכיח ש G לא מכיל מעגל. נסמן > E V, = n, G >=,V נוכיח את הטענה באינדוקציה על n. עבור n. ונוכיח ל n, הטענה טריוויאלית. נניח נכונות ל 1 n = 1 ע"פ משפט מהכיתה, סכום הדרגות של הקודקודים הוא n E. = מכאן שיש קודקוד עם דרגה קטנה מ. מכיוון שהגרף קשיר נסיק שיש קודקוד, נסמנו v, שדרגתו היא 1.נתבונן בתת גרף G המתקבל מ G ע"י הסרת הקודקוד v, והקשת שיוצאת ממנו. ב G יש 1 n קודקודים, ו nקשתות. כמו כן G קשיר כי: לכל קוקודים,u v ב G, קיים הילוך ב G שמקשר בינהם, ולכן קיים גם מסלול (פשוט) שמקשר בינהם. המסלול לא יכול לעבור דרך v ולכן מסלול זה הוא גם מסלול ב G. מהנחת האינדוקציה נסיק ש G הוא עץ, ולכן חסר מעגלים. נניח בשלילה שיש ב G מעגל. מכיוון שמעגל הוא מסלול, מעגל זה לא יכול לעבור דרך, v ולכן זהו גם מעגל ב.G סתירה. תרגיל 6 נתונים שני עצים 1 T 1 = V, E ו.T = V, E הוכיחו כי בגרף G = V, E 1 E ישנו צומת שדרגתו לכל היותר 3. E 1 E E 1 + E = V 1 + V 1 = V d (v) = E 1 E v V 4 V 4 מכיוון ש T 1 ו T עצים, מתקיים כי: מכאן, שסכום הדרגות ב G מקיים: נניח כעת בשלילה כי לכל d (v) 4,v V ב.G אזי: d (v) 4 V v V בסתירה. מכאן, שישנו צומת שדרגתו לכל היותר 3. תרגיל 7 ביער 50 רכיבי קשירות ו 00 קודקודים. כמה קשתות יש ביער? יהא E G =,V הגרף הנתון. כל רכיב קשירות הוא עץ. עבור רכיב הקשירות ה i (50 C i i 1), נסמן ב n i ו m i את מספר הצמתים והקשתות שבו, בהתאמה. מתקיים: 50 n i = ( 50 n i = m i + 1 ) m i + 1 = ( 50 ) m i + 50 ולכן: 5
6 ומכאן: E = ( 50 ) n i 50 = = צביעות תרגיל נתון גרף G עם דרגה מקסימלית 10. הוכיחו ש G הינו 11 צביע. נוכיח באינדוקציה על מספר הקודקודים n. עבור = 1 n ברור. נניח שהטענה נכונה לכל גרף בעל n קודקודים, ונוכיחה לגרף בעל + 1 n קודקודים. יהי G גרף בעל + 1 n קודקודים. נבחר קודקוד מסויים בגרף v, V ונשמיט אותו יחד עם כל הקשתות שיוצאות ממנו. מקבלים גרף G עם n קודקודים ודרגה מקסימלית 10. ע"פ הנחת האינדוקציה הוא 11 צביע. מכיוון שהקודקוד v (שהושמט) נמצא בשכנות ללכל היותר 10 קודקודים אחרים, נוכל לצבוע אותו בצבע ששונה מכל שכניו, וכך מקבלים צביעה חוקית עם 11 צבעים לגרף המקורי G. 6 משפט קיילי משפט 6.1 מספר העצים על קבוצת הצמתים n},... {1, הוא n.n רעיון ההוכחה: פונקצית שקילות מעץ למחרוזת מאורך n מעל n},....{1, יצירת מחרוזת מעץ: בכל שלב נמחק את העלה הנמוך ביותר בגרף ונוסיף את שכנו למחרוזת. יצירת עץ ממחרוזת: קבע לכל v את (v) d להיות מספר ההופעות של v במחרוזת + 1. בשלב i (מ 1 עד,(n יהא j הנמוך ביותר בעל = 1 (j).d בנה קשת } i {j, a כאשר a i הוא התו ה i י במחרוזת. עדכן 0 (j) d ו 1 ) i.d (a i ) d (a תרגיל 8 לבסוף, הוסף קשת בין שני הצמתים הנותרים בעלי דרגה 1..1 בכמה עצים על n}?d (4) = i,{1,...,. בכמה עצים על n},...,{1, הצמתים 1,, 3 הם עלים?.3 בכמה עצים על n},...,{1, הצמתים 1,, 3 הם העלים היחידים?.4 בכמה עצים על n},... {1, יש 3 n עלים בדיוק?.5 בכמה עצים על n},...,{1, הצמתים 1, קשורים בקשת? 6. בכמה גרפים על {5,...,1} יש לפחות מעגל אחד? 6
7 .1 שאלה שקולה: בכמה מחרוזות באורך n מעל n},... {1, הספרה 4 מופיעה i 1 פעמים? התשובה:. ( ) n i 1 (n 1) (n (i 1). שאלה שקולה: בכמה מחרוזות באורך n מעל n},... {1, לא מופיעים המספרים.1,, 3 התשובה:.(n 3) n.3 שאלה שקולה: בכמה מחרוזות באורך n מעל n},... {1, לא מופיעים המספרים,1,, 3 וכן מופיעים כל האחרים? נפתור ע"י הכלה והפרדה. נסמן: U כל המחרוזות באורך n מעל n},... {1, בהן לא מופיעים המספרים.1,, 3 A i (עבור i n (4 כל המחרוזות באורך n מעל n},... {1, בהן לא מופיעים המספרים,1,, 3 וגם לא מופיע i. n. ע"פ נוסחת ההכלה וההפרדה: אנו מחפשים את 4=i Āi n i=4 n 3 Ā i = U ( 1) j+1 j=1 ( n 4 j ) (n 3 j) n = n 3 ( n 4 ( 1) j j j=0 ) (n 3 j) n 4. שאלה שקולה: בכמה מחרוזות באורך n מופיעים בדיוק 3 איברים. נקבע את שלושת האיברים ולאחר מכן נפתור ע"י הכלה והדחה, כאשר U הוא אוסף כל המחרוזות מעל 3 איברים ו A i עבור 3 i 1 הוא קבוצת המחרוזות בהן i לא מופיע. לכן: ( ) n (3 n 3 n + 3 ) 3 ( n הוא מספר האפשרויות לבחור את האיברים שיופיעו והביטוי השני הוא הכלה והדחה. 3) כאשר 5. נסמן ב x מספר עצים זה. x הוא גם מספר העצים שבו הצמתים,i j קשורים, לכל i j (ע"י פונקצית שקילות בצמתים). נסתכל על הסכום: x 1 i<j n 1 i<j n כל עץ על n צמתים נספר בסכום זה 1 n פעמים. מכאן x = (n 1) n n 1 i<j n x = ( ) n x ומצד שני, ולכן x = (n 1) nn (n 1) nn ( n ) = = n n 3 n (n 1) ישיר ע"ס קוד פריפר: שאלה שקולה: כמה סדרות באורך n יש מעל {n,...,,1} יש מהצורה: (א) #... # ב # אין 1 ים. (ב) #... 1#?...? ב?יכול להיות כל דבר, ב # אין 1 ים. (ג) #... 1# ב # אין ים. (ד) #... 1#?...? ב?יכול להיות כל דבר, ב # אין ים. 7
8 א+ב נותנים 3 n n (לוקחים סדרה כלשהי באורך n ודוחפים אחרי ה 1 הימני ביותר). כנ"ל ג'+ד'. סה"כ : n 3 n. נחלק למקרים זרים, לפי מספר רכיבי כלומר, כמה יערות יש מעל {5,...,1}. 6. נחפש את המשלים. הקשירות: (א) רכיב קשירות אחד 3 5 אפשרויות. ( 5 אפשרויות, או שברכיב (ב) שני רכיבי קשירות או שברכיב אחד יש צומת אחד ובשני 4, ואז 1 4 (1 ( 5 אפשרויות (כי שני צמתים מגדירים עץ יחיד). אחד יש צמתים ובשני,3 ואז 1 31 ( 5 אפשרויות (ג) שלושה רכיבי קשירות או שבשני רכיבים יש צומת אחד ובשלישי 3, ואז ( 5 4 1)( או שבשני רכיבים יש שני צמתים וברכיב שלישי אחד, ואז ( 5 אפשרויות. (ד) ארבעה רכיבי קשירות בשלושה רכיבים יש צומת אחד וברביעי, ואז (ה) חמישה רכיבי קשירות אפשרות אחת. לסיכום: מספר הגרפים הוא )( ) ( ) ) (5 ( ( ) ( 5 1 8
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם
תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא
מתמטיקה בדידה תרגול מס' 5
מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור
logn) = nlog. log(2n
תכנוןוניתוחאלגוריתמים סיכוםהתרגולים n log O( g( n)) = Ω( g( n)) = θ ( g( n)) = תרגול.3.04 סיבוכיות { f ( n) c> 0, n0 > 0 n> n0 0 f ( n) c g( n) } { f ( n) c> 0, n0 > 0 n> n0 0 c g( n) f ( n) } { f ( n)
דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים
מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת
הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e
תרגיל 13 משפטי רול ולגראנז הערות
Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
אלגוריתמים בתורת הגרפים חלק ראשון
גירסה 1. 11.11.22 אלגוריתמים בתורת הגרפים חלק ראשון מסמך זה הינו הראשון בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר). ברצוני להודות תודה מיוחדת
brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק
יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות
x a x n D f (iii) x n a ,Cauchy
גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת
מודלים חישוביים תרגולמס 5
מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך
אלגברה ליניארית (1) - תרגיל 6
אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,
פרק 8: עצים. .(Tree) במשפטים הגדרה: גרף ללא מעגלים נקרא יער. דוגמה 8.1: תרגילים: הקודקודים 2 ו- 6 בדוגמה הוא ).
מבוא לפרק: : עצים.(ree) עצים הם גרפים חסרי מעגלים. כך, כיוון פרק זה הוא מעין הפוך לשני הפרקים הקודמים. עץ יסומן לרב על ידי במשפטים 8.1-8.3 נפתח חלק מתכונותיו, ובהמשך נדון בהיבטים שונים של "עץ פורש" של
אלגוריתמים בתורת הגרפים חלק שני
גירסה 1.00 5.12.2002 אלגוריתמים בתורת הגרפים חלק שני מסמך זה הינו השני בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר). ברצוני להודות תודה מיוחדת
c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )
הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה
' 2 סמ ליגרת ןורתפ םיפרגה תרותב םימתירוגלא דדצ 1 : הלאש ןורתפ רבסה תורעה
אלגוריתמים בתורת הגרפים פתרון תרגיל מס' 2 לשאלות והערות נא לפנות לאילן גרונאו (shrilan@cs.technion.ac.il) א) ב) ג) גרף דו-צדדי (bipartite) הינו גרף (E )G V, אשר קיימת חלוקה של צמתיו לשתי קבוצות U,W e =
מתמטיקה בדידה תרגול מס' 12
מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע
גרפים אלגוריתמים בתורת הגרפים הרצאה 1 גיא פלג 15 במרץ 2012 הגדרה: מגן דוגמאות: זוגות לא סדורים כיוון שבקבוצה סדר לא חשוב.
אלגוריתמים בתורת הגרפים הרצאה 1 גיא פלג 15 במרץ 2012 אתר הקורס.clickit3 מרצה : בני מוניץ הציון: מבחן סופי: 80% שיעורי בית 20% ואפשרות לבוחן אמצע 20% מגן גרפים הגדרה: תהי V קבוצה סופית לא ריקה. ותהי E קבוצה
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת
טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.
1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח
תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t.
תכנון אלגוריתמים 2016 עבודה 1 פתרון שאלה 1 נזכר כי בגרף (E G, =,V) עבור שני קודקודים d(u, (v,u, v הוא אורך מסלול קצר ביותר מ u ל v. אם אין מסלול מ u ל.d(u, v) =,v נתונות שתי בעיות. בעיה א' מופע: גרף מכוון
. {e M: x e} מתקיים = 1 x X Y
שימושי זרימה פרק 7.5-13 ב- Kleinberg/Tardos שידוך בגרף דו-צדדי עיבוד תמונות 1 בעיית השידוך באתר שידוכים רשומים m נשים ו- n גברים. תוכנת האתר מאתרת זוגות מתאימים. בהינתן האוסף של ההתאמות האפשריות, יש לשדך
אלגוריתמים / תרגיל #1
1 אריאל סטולרמן אלגוריתמים / תרגיל #1 קבוצה 02 (1) טענה: אם בגרף לא מכוון וקשיר יש 2 צמתים מדרגה אי זוגית ושאר הצמתים מדרגה זוגית, זהו תנאי הכרחי ומספיק לקיום מסלול אויילר בגרף. הערות: הוכחה: התוספת כי
אלגברה מודרנית פתרון שיעורי בית 6
אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:
תורת הקבוצות תרגיל בית 2 פתרונות
תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית
{ : Halts on every input}
אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.
רשימת משפטים והגדרות
רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת
סדרות - תרגילים הכנה לבגרות 5 יח"ל
סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר
מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1
1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n
תורישק :תורישקה תייעבב בוש ןייענ?t- t ל s- s מ לולסמ שי םאה 2
סריקה לעומק רכיבים אי-פריקים רכיבים קשירים היטב מיון טופולוגי פרק 3 ב- Kleinberg/Tardos פרק 3.3-5 ב- al Cormen et קשירות נעיין שוב בבעיית הקשירות: ל- t? האם יש מסלול מ- s קשירות נעיין שוב בבעיית הקשירות:
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
תרגול מס' 1 3 בנובמבר 2012
תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר
פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.
פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך
חשבון אינפיניטסימלי 1
חשבון אינפיניטסימלי 1 יובל קפלן סיכום הרצאות פרופ צליל סלע בקורס "חשבון אינפיניטסימלי 1" (80131) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו.
כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS
כלליים שיטות חיפוש בבגרפים שיטה 1: חיפוש לרוחב S (readth irst Search) זמן: ) Θ( V + הרעיון: שימוש בתור.O שיטה 2: חיפוש לעומק S (epth irst Search) Θ( V + ) יהי =(V,) גרף כלשהו, V הוא צומת התחלת החיפוש.
קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.
א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.
הגדרה: מצבים k -בני-הפרדה
פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון
מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015)
מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מרצה: פרופ' בני שור מתרגלים: אורית מוסקוביץ' וגל רותם 28.1.2015 הנחיות: 1. מומלץ לקרוא את כל ההנחיות והשאלות בתחילת המבחן, לפני כתיבת התשובות. 2. משך
מבני נתונים ואלגוריתמים תרגול #8-9
מבני נתונים ואלגוריתמים תרגול #89 מציאת מסלולים קצרים הבעיה: נתון גרף ממשוקל רוצים למצוא את המסלול הקצר בין זוג קודקודים עיקרון הרלקסציה של קשת: בדיקה האם ניתן לשפר מסלול מ s ל v ע"י מעבר דרך קודקוד u:?
רשימת בעיות בסיבוכיות
ב) ב) רשימת בעיות בסיבוכיות כל בעיה מופיעה במחלקה הגדולה ביותר שידוע בוודאות שהיא נמצאת בה, אלא אם כן מצוין אחרת. כמובן שבעיות ב- L נמצאות גם ב- וב- SACE למשל, אבל אם תכתבו את זה כתשובה במבחן לא תקבלו
בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד
בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד סמסטר: א' מועד: א' תאריך: יום ה' 0100004 שעה: 04:00 משך הבחינה: שלוש שעות חומר עזר: אין בבחינה שני פרקים בפרק הראשון 8 שאלות אמריקאיות ולכל אחת מהן מוצעות
תורת הגרפים - סימונים
תורת הגרפים - סימונים.n = V,m = E בהינתן גרף,G = V,E נסמן: בתוך סימוני ה O,o,Ω,ω,Θ נרשה לעצמנו אף להיפטר מהערך המוחלט.. E V,O V + E כלומר, O V + E נכתוב במקום אם כי בכל מקרה אחר נכתוב או קשת של גרף לא
תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס "תורת הקבוצות" (80200) באוניברסיטה העברית,
תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס "תורת הקבוצות" (80200) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו. סודר באמצעות L
מבחן מועד ב' בהצלחה! אנא קיראו היטב את ההוראות שלהלן: ודאו כי כל עמודי הבחינה נמצאים בידכם.
7.8.2017 מבחן מועד ב' תאריך הבחינה: שמות המרצים: מר בועז ארד פרופ' עמוס ביימל מר יהונתן כהן דר' עדן כלמטץ' גב' מיכל שמש אנא קיראו היטב את ההוראות שלהלן: שם הקורס: תכנון אלגוריתמים מספר הקורס: 202-1-2041
תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME
הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי
חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה.
חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. מרצה: למברג דן תוכן העניינים 3 מספרים ממשיים 1 3.................................. סימונים 1. 1 3..................................
(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;
מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =
פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז
פתרון תרגיל בית 6 מבוא לתורת החבורות 88-211 סמסטר א תשע ז הוראות בהגשת הפתרון יש לרשום שם מלא, מספר ת ז ומספר קבוצת תרגול. תאריך הגשת התרגיל הוא בתרגול בשבוע המתחיל בתאריך ג טבת ה תשע ז, 1.1.2017. שאלות
מתמטיקה בדידה תרגול מס' 2
מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.
מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות
מינימיזציה של DFA L. הוא אוטמומט מינימלי עבור L של שפה רגולרית A ראינו בסוף הסעיף הקודם שהאוטומט הקנוני קיים A DFA בכך הוכחנו שלכל שפה רגולרית קיים אוטומט מינמלי המזהה אותה. זה אומר שלכל נקרא A A לאוטומט
i שאלות 8,9 בתרגיל 2 ( A, F) אלגברת יצירה Α היא זוג כאשר i F = { f קבוצה של פונקציות {I קבוצה לא ריקה ו A A n i n i מקומית מ ל. A נרשה גם פונקציות 0 f i היא פונקציה n i טבעי כך ש כך שלכל i קיים B נוצר
הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות
אלגוריתמים חמדניים אלגוריתם חמדן, הוא כזה שבכל צעד עושה את הבחירה הטובה ביותר האפשרית, ולא מתחרט בהמשך גישה זו נראית פשטנית מדי, וכמובן שלא תמיד היא נכונה, אך במקרים רבים היא מוצאת פתרון אופטימאלי בתרגול
תורת הגרפים על פי הרצאות מאת פרופ' אהוד פרידגוט 11 ביולי 2010
תורת הגרפים על פי הרצאות מאת פרופ' אהוד פרידגוט 11 ביולי 2010 רשם: שיר פלד, באמצעות L Y X גרסה 161 תיקונים יתקבלו בברכה במהלך ההפסקות או בכתובת מייל shirpeled@cs במבחן: להוכיח משפט אחד מתוך שניים ולפתור
אוטומטים- תרגול 8 שפות חסרות הקשר
אוטומטים- תרגול 8 שפות חסרות הקשר דקדוק חסר הקשר דקדוק חסר הקשר הנו רביעיה > S
פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.
בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית
פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 20 חודשי הולדת. לכל ילד 12 אפשרויות,לכן. לכן -
פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 0 חודשי הולדת לכל ילד אפשרויות,לכן לכן - 0 A 0 מספר קומבינציות שלא מכילות את חודש תשרי הוא A) המאורע המשלים ל- B הוא "אף תלמיד לא נולד באחד מהחודשים אב/אלול",
אלגברה ליניארית 1 א' פתרון 2
אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק
= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(
א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π
תרגול פעולות מומצאות 3
תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
אלגברה לינארית (1) - פתרון תרגיל 11
אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6
אינפי - 1 תרגול בינואר 2012
אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim
אלגברה לינארית 1 יובל קפלן
אלגברה לינארית 1 יובל קפלן מחברת סיכום הרצאות ד"ר אלי בגנו בקורס "אלגברה לינארית 1" (80134) באוניברסיטה העברית, 7 2006 תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן אין המרצה אחראי לכל טעות שנפלה בו סודר
, נתונה קבוצה של זוגות מותרים של צבעים בפרק זה נתמקד בשני מקרים מיוחדים של בעית צביעתו של גרף עם אילוצים
צביעה עם אילוצים תקצירים נבחרים 4 בפרק זה אנו מביאים הרחבות של בעיית הצביעה של קודקודים ומציגים גרסאות שונות שלה עם אילוצי צביעה של הקודקודים ושל הצלעות באופן כללי נניח שנתון גרף לכל צלע = ( E) ( u ) C
co ארזים 3 במרץ 2016
אלגברה לינארית 2 א co ארזים 3 במרץ 2016 ניזכר שהגדרנו ווקטורים וערכים עצמיים של מטריצות, והראינו כי זהו מקרה פרטי של ההגדרות עבור טרנספורמציות. לכן כל המשפטים והמסקנות שהוכחנו לגבי טרנספורמציות תקפים גם
מבנים אלגבריים II 27 במרץ 2012
מבנים אלגבריים 80446 II אור דגמי, or@digmi.org 27 במרץ 2012 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ אלכס לובוצקי בשנת לימודים 2012 1 תוכן עניינים 1 שדות 3 1.1 תזכורת מהעבר....................................................
קומבינטוריקה על פי הרצאות מאת פרופ' גיל קלעי 19 ביולי = 2 n k. k= ( 1) n n + 1
1 קומבינטוריקה על פי הרצאות מאת פרופ' גיל קלעי 19 ביולי 010 רשם: שיר פלד, באמצעות LYX גרסה 1.6.1 תיקונים יתקבלו בברכה במהלך ההפסקות או בכתובת מייל shirpeled@cs 1 שיעור 1 1.1 מבוא נעסוק בבעיות קיצוניות
מבני נתונים אדמיניסטרציה ד"ר אלכס סמורודניצקי, רוס 210, שני 5:30 4:15. ציון:
מבני נתונים בס"ד, ט' אדר א' תשע"א: שעור 1 אדמיניסטרציה ד"ר אלכס סמורודניצקי, רוס 210, שני 5:30 4:15. ציון: בחינת מגן 20%. תרגילים: 14 13, מורידים את האחד הכי גרוע. 10% מהציון. אתר: www.cs.huji.ac.il/~dast
משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ
משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת
תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות
תורת המספרים סיכום הגדרות טענות ומשפטים אביב 017 1 פירוק לגורמים ראשוניים 1.1 הגדרות חוג A C נקראת חוג אם: היא מכילה את 0 ואת 1 סגורה תחת חיבור, חיסור, וכפל הפיך A חוג. a A נקרא הפיך אם 0,a.a 1 A קבוצת
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
מבני נתונים ואלגוריתמים תרגול #11
מבני נתונים ואלגוריתמים תרגול # התאמת מחרוזות סימונים והגדרות: P[,,m] כך Σ * טקסט T )מערך של תווים( באורך T[,,n] n ותבנית P באורך m ש.m n התווים של P ו T נלקחים מאלפבית סופי Σ. לדוגמא: {a,b,,z},{,}=σ.
תורת הקבוצות מושגי יסוד בתורת הקבוצות קבוצה אוסף של אלמנטים הנקראים אברי הקבוצה. אין חשיבות לסדר האיברים בקבוצה. אין חשיבות לחזרות.
תורת הקבוצות מושגי יסוד בתורת הקבוצות קבוצה אוסף של אלמנטים הנקראים אברי הקבוצה. אין חשיבות לסדר האיברים בקבוצה. אין חשיבות לחזרות. A = 1,4,7,17,20 B = 1, a, b, c 2 נאמר ש x שייך ל A ונסמן x A אם x הוא
אלגברה ליניארית 1 א' פתרון 11
אלגברה ליניארית 1 א' פתרון 11.1 K α : F איזומורפיזם של שדות. א. טענה 1 :.α(0 F ) = 0 K עלינו להוכיח כי לכל,b K מתקיים.b + α(0 F ) = α(0 F ) + b = b עבור b K (כיוון ש α חח"ע ועל), קיים ויחיד x F כך ש.α(x)
תוכן עניינים I בעיות מיון 2 1 סימון אסימפטוטי... 2 II מבני נתונים 20 8 מבני נתונים מופשטים משפט האב גרפים... 37
תוכן עניינים I בעיות מיון 2 1 סימון אסימפטוטי................................................ 2 2 מיון בועות. Bubble Sort............................................ 2 3 מיון מיזוג. Merge Sort............................................
תרגול מס' 6 פתרון מערכת משוואות ליניארית
אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
לוגיקה ותורת הקבוצות אביבתשס ז מבחןסופי מועדב בהצלחה!
הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב 24/10/2007 מרצה: פרופ אורנה גרימברג מתרגלים: גבי סקלוסוב,קרן צנזור,רותם אושמן,אורלי יהלום לוגיקה ותורת הקבוצות 234293 אביבתשס ז מבחןסופי מועדב הנחיות: משךהבחינה:
סיכום לינארית 1 28 בינואר 2010 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך.
סיכום לינארית 28 בינואר 2 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך הערות יתקבלו בברכה nogarotman@gmailcom תוכן עניינים 3 מבוא והגדרות בסיסיות 6 שדות 7 המציין של
מודלים חישוביים פתרון תרגיל 5
מודלים חישוביים פתרון תרגיל 5 כתוב אוטומט דטרמיניסטי לשפות הבאות מעל הא"ב.Σ={,} א. *Σ. q, ב. q, ג. {ε}, q, q ד. } = 3 {w w mod, q, q,, ה. ''} {w w does not contin the sustring q 4 q 3 q q כתוב אוטומט דטרמיניסטי
לוגיקה למדעי המחשב תרגולים
לוגיקה למדעי המחשב תרגולים ניצן פומרנץ 17 ביוני 2015 אתר הקורס: במודל בשבוע הראשון התרגילים ייועלו גם ל www.cs.tau.ac.il/~shpilka/teaching לירון כהן: liron.cohen@math.tau.ac.il (לא לשלוח שאלות על החומר
אלגוריתמים 1, סמסטר אביב 2017
BFS, DFS, Topological Sort תרגיל בית 1 מוסכמות והנחות להלן רשימת הנחות ומוסכמות אשר תקפות לכל השאלות, אלא אם כן נכתב אחרת במפורש בגוף השאלה. עליכם להוכיח נכונות ולנתח סיבוכיות עבור כל אלגוריתם מוצע. במידה
1 סכום ישר של תת מרחבים
אלמה רופיסה :הצירטמ לש ןדרו'ג תרוצ O O O O O O ןאבצ זעוב סכום ישר של תת מרחבים פרק זה כולל טענות אלמנטריות, שהוכחתן מושארת לקורא כתרגיל הגדרה: יהיו V מרחב וקטורי, U,, U k V תת מרחבים הסכום W U + U 2 +
c ארזים 15 במרץ 2017
הסתברות למתמטיקאים c ארזים 15 במרץ 2017 הקורס הוא המשך של מבוא להסתברות שם דיברנו על מרחבים לכל היותר בני מניה. למשל, סדרת הטלות מטבע בלתי תלויות היא דבר שאי אפשר לממש במרחב בן מניה נסמן את התוצאה של ההטלה
מתרגלת: שירה גילת סמסטר א 2017 תשע"ז
חוברת תרגולים בקורס "תורת גלואה" 88 311 21 בפברואר 2017 מתרגלת: שירה גילת סמסטר א 2017 תשע"ז ערך: איתי רוזנבאום 1 תורת גלואה תרגול ראשון חזרה מחוגים F שדה F. חוג הפולינומים עם מקדמים ב F [λ] זהו חוג אוקלידי,