אלגוריתמים 1, סמסטר אביב 2017
|
|
- Λητώ Φραγκούδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 BFS, DFS, Topological Sort תרגיל בית 1 מוסכמות והנחות להלן רשימת הנחות ומוסכמות אשר תקפות לכל השאלות, אלא אם כן נכתב אחרת במפורש בגוף השאלה. עליכם להוכיח נכונות ולנתח סיבוכיות עבור כל אלגוריתם מוצע. במידה ואין דרישת סיבוכיות מפורשת, הנכם נדרשים לספק אלגוריתם בעל הסיבוכיות הטובה ביותר שתוכלו. כל גרף הוא סופי ופשוט )חסר קשתות מקבילות ולולאות עצמיות(. אנו מעודדים אתכם להגיע לסדנאות או לשעות הקבלה על מנת לשאול שאלות על התרגיל ולקבל תשובה אינטראקטיבית. עם זאת, ניתן גם לשלוח שאלות למייל,algotechnion@gmail.com ואנו נעלה תשובות ל- FAQ שיפתח באתר. שיטת עבודה מומלצת: לאחר מחשבה על האלגוריתם, חשבו אילו טענות עליכם לנסח על מנת להוכיח את נכונות האלגוריתם. שימו לב: את העבודות יש להגיש לתא הקורס בקומה 1 ובנוסף יש להגיש באופן אלקטרוני דרך אתר הקורס. אם עבודתכם נעשתה בכתב יד, יש לסרוק את העבודה ולהגיש את קובץ ה- PDF המתקבל. יש להגיש את המטלות בזוגות. הגשות מבולגנות או לא קריאות לא תיבדקנה. כל גיליון שיעורי בית ייבדק בשיטה מדגמית. משמע, אנו נבדוק שאלה אחת או שתיים לבחירתינו בצורה יסודית )50 נק'(, ויתר השאלות תיבדקנה בקצרה )50 נק'(. שינויים שנוספו לאחר פרסום הגיליון מסומנים בצהו החדשים יותר בירוק.
2 שאלת חימום מטרת השאלה היא לעזור לכם להבין טוב יותר את החומר לפני שאתם מתחילים לפתור את המטלה. זו שאלת חובה, אבל התשובות אליה צריכות להיות תמציתיות! בשני הסעיפים הבאים נתון גרף מכוון( E G, =,V) וצומת s. V הציעו אלגוריתם הרץ בסיבוכיות זמן (E,O(V + ומחשב את גרף המסלולים הקצרים ביותר מ- s, שמכיל את כל המסלולים הקצרים ביותר שמתחילים ב- s, ורק את המסלולים האלה. לדוגמה, להלן גרף G 0 וגרף המסלולים הקצרים ביותר מ- s, המסומן ב- G: 0 G 0 G 0 s a c s a c e b d e b d בסעיף זה אין צורך בהוכחת נכונות. הוכיחו: גרף מסלולים קצרים ביותר הוא בהכרח חסר מעגלים מכוונים.)DAG( בשני הסעיפים הבאים נתון גרף מכוון (E G =,V) וחסר מעגלים.)DAG( ג. הפריכו: בהכרח קיימת הרצת DFS על DAG( G כלשהו( בה כל הקשתות מסווגת כקשתות עץ או קשתות קדמיות בלבד. ניתן להפריך ע"י דוגמה. ד. הוכיחו כי אם {f(v)} v V הם זמני הנסיגה המתקבלים מהרצת DFS על G, אז לכל קשת בגרף (u, v) E מתקיים f(v).f(u) > משמע, זמני הנסיגה של,DFS המסודרים בסדר יורד, מכתיבים מיון טופולוגי. מומלץ לפתור את סעיף זה רק לאחר שלמדתם את תירגול 3, ולהשתמש בטענות המוצגות בו.
3 שאלה 1 נתון גרף מכוון (E G, =,V) צומת s V וצביעה של הקשתות לירוק או לצהו הצבעים נתונים על ידי הפונקציה {Y :c. E,G} נגדיר מסלול מחזורי מתחלף להיות מסלול שאין בו שתי קשתות סמוכות בצבע זהה. או באופן פורמאלי יותר, כל מסלול v 1 v 2 v k ב- G שמקיים:. i {1,2,, k 2}: c((v i, v i+1 )) c((v i+1, v i+2 )) הציעו אלגוריתם המוצא את אורכי המסלולים המחזוריים-מתחלפים הקצרים ביותר מ- s לכל צמתי הגרף )פונקציה d). c s : V R אם לא קיים מסלול לצומת כלשהו,u V יש להחזיר עבורו = (u).d c s סיבוכיות זמן נדרשת: (E.O(V + כעת נעבוד עם הגדרה מכלילה יותר: מסלול מחזורי: כל מסלול v 1 v 2 v k ב- G. i {1,2,, k 3}: c((v i, v i+1 )) = c((v i+2, v i+3 )) שמקיים: הציעו אלגוריתם המוצא את אורכי המסלולים המחזוריים הקצרים ביותר מ- s לכל צמתי הגרף. זכרו, בהעדר דרישת סיבוכיות הנכם נדרשים לספק אלגוריתם בעל הסיבוכיות הטובה ביותר שתוכלו. שאלה 2 נתונים גרף לא מכוון (E G, =,V) צומת s V ופונקציית משקל על הקשתות.w: E R נגדיר משקל של מסלול p, כסכום משקלי הקשתות שעליו: w(e). w(p) = e p בכל אחד מהסעיפים הבאים, הציעו אלגוריתם המחשב לכל v V את המשקל המינימלי של מסלול מ- s ל- v )ביחס לפונקציית המשקל באותו סעיף(. לכל צומת, נסמן את המשקל הזה ב-( v ) d. w s על האלגוריתמים לרוץ בסיבוכיות זמן (E.O(V +.w 1 : E {1,2}.w 2 : E {0,1} )בסעיף זה יש להוכיח נכונות.(
4 שאלה 3 נתונים גרף מכוון E) G = (V, חסר מעגלים מכוונים )DAG( וצומת.s V בסעיף זה נתונה גם פונקציית משקל על הקשתות :w. E R הציעו אלגוריתם המחשב לכל v, V את המשקל המקסימלי של מסלול מ- s ל- v )משקל של מסלול מוגדר כמו בשאלה הקודמת(. לכל צומת, נסמן את המשקל הזה ב-( v ) d. w s אם צומת v אינו ישיג מ- s, יש לקבוע עבורו = (v) d. w s על האלגוריתם לרוץ בסיבוכיות זמן (E.O(V + רמז: הגרף חסר מעגלים מכוונים, ולכן לכל v V מספיק לקבוע את הערך (v) d w s רק פעם אחת, ללא צורך בעדכונים. כך למשל ניתן לקבוע בוודאות ש- 0 = (s).d w s הכוונה נוספת: לדוגמה, התבוננו בגרף הבא: ניתן להגדיר את הגרף פורמאלית ע"י: V = [n], n N E = {(v i,v j ) i, j [n]: i < j} פונקציית משקל.w(e) = α כלשהי. למשל פונקציה קבועה w: E R חישבו: מדוע אלגוריתם שעובר על הגרף בסדר BFS מ- s לא יעבוד? מדוע אלגוריתם שעובר על הגרף בסדר DFS מ- s לא יעבוד? מומלץ שתבדקו את פעולת האלגוריתם שלכם )גם( על גרף זה. כמו כן, לוודא שהאלגוריתם שלכם עומד בסיבוכיות הנדרשת גם על גרף כזה. כדאי בסעיף זה נתון גם צומת t. V השתמשו בסעיף א' כדי להחזיר את המסלול הארוך ביותר בין s ל- t הנתון G )אורך של מסלול הוא מספר הקשתות שעליו(. שימו לב: אתם מתבקשים להחזיר את המסלול עצמו, ולא את אורכו. ניתן להשתמש בסעיף א' גם אם לא הצלחתם לפתור אותו. בגרף
5 שאלה 4 יהא גרף מכוון( E,G = (V, ויהיו u, v, w V שלושה צמתים בגרף. הוכיחו כי קיים מסלול פשוט מ- u ל- v העובר דרך w, אם ורק אם קיימת הרצת DFS המתחילה ב- u, וזמני הגילוי והנסיגה שלה מקיימים:.d(u) < d(w) < d(v) < f(v) < f(w) < f(u) רמז: ההוכחה לא אמורה להיות ארוכה מאוד. בהצלחה!
מבחן מועד ב' בהצלחה! אנא קיראו היטב את ההוראות שלהלן: ודאו כי כל עמודי הבחינה נמצאים בידכם.
7.8.2017 מבחן מועד ב' תאריך הבחינה: שמות המרצים: מר בועז ארד פרופ' עמוס ביימל מר יהונתן כהן דר' עדן כלמטץ' גב' מיכל שמש אנא קיראו היטב את ההוראות שלהלן: שם הקורס: תכנון אלגוריתמים מספר הקורס: 202-1-2041
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
תורת הגרפים - סימונים
תורת הגרפים - סימונים.n = V,m = E בהינתן גרף,G = V,E נסמן: בתוך סימוני ה O,o,Ω,ω,Θ נרשה לעצמנו אף להיפטר מהערך המוחלט.. E V,O V + E כלומר, O V + E נכתוב במקום אם כי בכל מקרה אחר נכתוב או קשת של גרף לא
מתמטיקה בדידה תרגול מס' 13
מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p
תרגיל 13 משפטי רול ולגראנז הערות
Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
מבני נתונים ואלגוריתמים תרגול #8-9
מבני נתונים ואלגוריתמים תרגול #89 מציאת מסלולים קצרים הבעיה: נתון גרף ממשוקל רוצים למצוא את המסלול הקצר בין זוג קודקודים עיקרון הרלקסציה של קשת: בדיקה האם ניתן לשפר מסלול מ s ל v ע"י מעבר דרך קודקוד u:?
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
אלגוריתמים בתורת הגרפים חלק ראשון
גירסה 1. 11.11.22 אלגוריתמים בתורת הגרפים חלק ראשון מסמך זה הינו הראשון בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר). ברצוני להודות תודה מיוחדת
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e
שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם
תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא
' 2 סמ ליגרת ןורתפ םיפרגה תרותב םימתירוגלא דדצ 1 : הלאש ןורתפ רבסה תורעה
אלגוריתמים בתורת הגרפים פתרון תרגיל מס' 2 לשאלות והערות נא לפנות לאילן גרונאו (shrilan@cs.technion.ac.il) א) ב) ג) גרף דו-צדדי (bipartite) הינו גרף (E )G V, אשר קיימת חלוקה של צמתיו לשתי קבוצות U,W e =
3-9 - a < x < a, a < x < a
1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר
תרגול פעולות מומצאות 3
תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה
בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד
בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד סמסטר: א' מועד: א' תאריך: יום ה' 0100004 שעה: 04:00 משך הבחינה: שלוש שעות חומר עזר: אין בבחינה שני פרקים בפרק הראשון 8 שאלות אמריקאיות ולכל אחת מהן מוצעות
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
מתמטיקה בדידה תרגול מס' 5
מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון
משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ
משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת
תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t.
תכנון אלגוריתמים 2016 עבודה 1 פתרון שאלה 1 נזכר כי בגרף (E G, =,V) עבור שני קודקודים d(u, (v,u, v הוא אורך מסלול קצר ביותר מ u ל v. אם אין מסלול מ u ל.d(u, v) =,v נתונות שתי בעיות. בעיה א' מופע: גרף מכוון
( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת
הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (
אלגוריתמים / תרגיל #1
1 אריאל סטולרמן אלגוריתמים / תרגיל #1 קבוצה 02 (1) טענה: אם בגרף לא מכוון וקשיר יש 2 צמתים מדרגה אי זוגית ושאר הצמתים מדרגה זוגית, זהו תנאי הכרחי ומספיק לקיום מסלול אויילר בגרף. הערות: הוכחה: התוספת כי
חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.
חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.
מבני נתונים מבחן מועד ב' סמסטר חורף תשס"ו
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון - מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצים: רן אל-יניב, נאדר בשותי מבני נתונים 234218-1 מבחן מועד ב' סמסטר חורף תשס"ו
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE סמסטר אביב תשס"ו מס' סטודנט:
TECHNION ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מבני נתונים 234218 1 מבחן מועד ב ' סמסטר אביב תשס"ו מרצה: אהוד ריבלין מתרגלים: איתן
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(
א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π
מבני נתונים מבחן מועד א' סמסטר חורף תשס"ו
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון - מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצים: רן אל-יניב, נאדר בשותי מבני נתונים 234218-1 מבחן מועד א' סמסטר חורף תשס"ו
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
רשימת בעיות בסיבוכיות
ב) ב) רשימת בעיות בסיבוכיות כל בעיה מופיעה במחלקה הגדולה ביותר שידוע בוודאות שהיא נמצאת בה, אלא אם כן מצוין אחרת. כמובן שבעיות ב- L נמצאות גם ב- וב- SACE למשל, אבל אם תכתבו את זה כתשובה במבחן לא תקבלו
{ : Halts on every input}
אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.
דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)
logn) = nlog. log(2n
תכנוןוניתוחאלגוריתמים סיכוםהתרגולים n log O( g( n)) = Ω( g( n)) = θ ( g( n)) = תרגול.3.04 סיבוכיות { f ( n) c> 0, n0 > 0 n> n0 0 f ( n) c g( n) } { f ( n) c> 0, n0 > 0 n> n0 0 c g( n) f ( n) } { f ( n)
. {e M: x e} מתקיים = 1 x X Y
שימושי זרימה פרק 7.5-13 ב- Kleinberg/Tardos שידוך בגרף דו-צדדי עיבוד תמונות 1 בעיית השידוך באתר שידוכים רשומים m נשים ו- n גברים. תוכנת האתר מאתרת זוגות מתאימים. בהינתן האוסף של ההתאמות האפשריות, יש לשדך
פרק 8: עצים. .(Tree) במשפטים הגדרה: גרף ללא מעגלים נקרא יער. דוגמה 8.1: תרגילים: הקודקודים 2 ו- 6 בדוגמה הוא ).
מבוא לפרק: : עצים.(ree) עצים הם גרפים חסרי מעגלים. כך, כיוון פרק זה הוא מעין הפוך לשני הפרקים הקודמים. עץ יסומן לרב על ידי במשפטים 8.1-8.3 נפתח חלק מתכונותיו, ובהמשך נדון בהיבטים שונים של "עץ פורש" של
אלגברה ליניארית (1) - תרגיל 6
אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,
תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME
הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי
פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז
פתרון תרגיל בית 6 מבוא לתורת החבורות 88-211 סמסטר א תשע ז הוראות בהגשת הפתרון יש לרשום שם מלא, מספר ת ז ומספר קבוצת תרגול. תאריך הגשת התרגיל הוא בתרגול בשבוע המתחיל בתאריך ג טבת ה תשע ז, 1.1.2017. שאלות
גרפים אלגוריתמים בתורת הגרפים הרצאה 1 גיא פלג 15 במרץ 2012 הגדרה: מגן דוגמאות: זוגות לא סדורים כיוון שבקבוצה סדר לא חשוב.
אלגוריתמים בתורת הגרפים הרצאה 1 גיא פלג 15 במרץ 2012 אתר הקורס.clickit3 מרצה : בני מוניץ הציון: מבחן סופי: 80% שיעורי בית 20% ואפשרות לבוחן אמצע 20% מגן גרפים הגדרה: תהי V קבוצה סופית לא ריקה. ותהי E קבוצה
תורישק :תורישקה תייעבב בוש ןייענ?t- t ל s- s מ לולסמ שי םאה 2
סריקה לעומק רכיבים אי-פריקים רכיבים קשירים היטב מיון טופולוגי פרק 3 ב- Kleinberg/Tardos פרק 3.3-5 ב- al Cormen et קשירות נעיין שוב בבעיית הקשירות: ל- t? האם יש מסלול מ- s קשירות נעיין שוב בבעיית הקשירות:
כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS
כלליים שיטות חיפוש בבגרפים שיטה 1: חיפוש לרוחב S (readth irst Search) זמן: ) Θ( V + הרעיון: שימוש בתור.O שיטה 2: חיפוש לעומק S (epth irst Search) Θ( V + ) יהי =(V,) גרף כלשהו, V הוא צומת התחלת החיפוש.
מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015)
מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מרצה: פרופ' בני שור מתרגלים: אורית מוסקוביץ' וגל רותם 28.1.2015 הנחיות: 1. מומלץ לקרוא את כל ההנחיות והשאלות בתחילת המבחן, לפני כתיבת התשובות. 2. משך
אלגוריתמים בתורת הגרפים חלק שני
גירסה 1.00 5.12.2002 אלגוריתמים בתורת הגרפים חלק שני מסמך זה הינו השני בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר). ברצוני להודות תודה מיוחדת
סיכום- בעיות מינימוםמקסימום - שאלון 806
סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
סדרות - תרגילים הכנה לבגרות 5 יח"ל
סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר
שאלה 1 V AB פתרון AB 30 R3 20 R
תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim
אוסף שאלות מס. 3 פתרונות
אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,
אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה:
2 תרגול אוטומט סופי דטרמיניסטי אוטומטים ושפות פורמליות בר אילן תשעז 2017 עקיבא קליינרמן הגדרה אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה: (,, 0,, ) כאשר: א= "ב שפת הקלט = קבוצה סופית לא ריקה של מצבים מצב
קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.
א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.
קיום ויחידות פתרונות למשוואות דיפרנציאליות
קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית
תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי
אלגברה ליניארית 1 א' פתרון 2
אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
מבני נתונים (234218) 1
מבני נתונים (234218) 1 חומר עזר לבחינה 13 בספטמבר 2016 שימו לב: מותר לצטט טענות המופיעות בדף זה ללא הוכחה. כל טענה אחרת, שאינה מופיעה באופן מפורש, יש לנמק באופן מלא. נימוקים מהצורה "בדומה לטענה שבחומר
s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=
את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -
c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )
הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
מושגים: קשיר. o בעל 1 קשתות בדיוק.
1 גרפים / חזרה כללית: סיכומים למבחן בקורס אלגוריתמים סמסטר א' 2008-9 (פרופ' מיכה שריר) מושגים: גרף: גרף,, V קבוצת קודקודים, קבוצת קשתות. מכוון: הקשתות הן זוגות סדורים, לא מכוון: הקשתות הן קבוצה בת שני
אלגוריתמים בתורת הגרפים חלק רביעי
גירסה 00 232003 אלגוריתמים בתורת הגרפים חלק רביעי מסמך זה הינו הרביעי בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר) ברצוני להודות תודה מיוחדת
אלגברה ליניארית 1 א' פתרון 7
אלגברה ליניארית 1 א' פתרון 7 2 1 1 1 0 1 1 0 1 0 2 1 1 0 1 0 2 1 2 1 1 0 2 1 0 1 1 3 1 2 3 1 2 0 1 5 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 4 0 0 0.1 עבור :A לכן = 3.rkA עבור B: נבצע פעולות עמודה אלמנטריות
מבני נתונים ואלגוריתמים תרגול #11
מבני נתונים ואלגוריתמים תרגול # התאמת מחרוזות סימונים והגדרות: P[,,m] כך Σ * טקסט T )מערך של תווים( באורך T[,,n] n ותבנית P באורך m ש.m n התווים של P ו T נלקחים מאלפבית סופי Σ. לדוגמא: {a,b,,z},{,}=σ.
אלגברה מודרנית פתרון שיעורי בית 6
אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:
תורת הקבוצות תרגיל בית 2 פתרונות
תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית
brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק
יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות
מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1
1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n
צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים
מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה
חלק א' שאלה 3. a=3, b=2, k=0 3. T ( n) היותר H /m.
פתרון למבחן במבני נתונים, מועד א', קיץ 2005 חלק א' שאלה 1 א. רכיב הקשירות החזק של קודקוד x בגרף מכוון הינו אוסף כל הקודקודים y שמקימים שיש מסלול מ- x ל- y וכן מסלול מy ל- x. טעויות נפוצות שכחו לכתוב שזה
מבחן במודלים חישוביים + פתרון מוצע
מבחן במודלים חישוביים + פתרון מוצע סמסטר ב' התשס"ט, מועד ב' תאריך: 1.9.2009 מרצים: ד"ר מירי פרייזלר, פרופ' בני שור מתרגלים: יהונתן ברנט, רני הוד מומלץ לקרוא את כל ההנחיות והשאלות בתחילת המבחן, לפני תחילת
"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי
הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת
אינפי - 1 תרגול בינואר 2012
אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,
הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות
אלגוריתמים חמדניים אלגוריתם חמדן, הוא כזה שבכל צעד עושה את הבחירה הטובה ביותר האפשרית, ולא מתחרט בהמשך גישה זו נראית פשטנית מדי, וכמובן שלא תמיד היא נכונה, אך במקרים רבים היא מוצאת פתרון אופטימאלי בתרגול
TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים
TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b
אופטימיזציה דיסקרטית 67855
אופטימיזציה דיסקרטית 67855 14 בינואר 2013 מרצה: יובל רבני איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה או המתרגל קשורים לסיכום זה בשום דרך. הערות יתקבלו בברכה.noga.rotman@gmail.com אהבתם?
מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. לדוגמה:בסרטוט שלפappleיכם EC אלכסוןבמצולע.
גיאומטריה מצולעים מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שappleי קדקודים שאיappleם סמוכים זה לזה. לדוגמה:בסרטוט שלפappleיכם
ב ה צ ל ח ה! /המשך מעבר לדף/
בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"א, מועד ב מועד הבחינה: משרד החינוך 035804 מספר השאלון: דפי נוסחאות ל 4 יחידות לימוד נספח: מתמטיקה 4 יחידות לימוד שאלון ראשון תכנית ניסוי )שאלון
לוגיקה ותורת הקבוצות אביבתשס ז מבחןסופי מועדב בהצלחה!
הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב 24/10/2007 מרצה: פרופ אורנה גרימברג מתרגלים: גבי סקלוסוב,קרן צנזור,רותם אושמן,אורלי יהלום לוגיקה ותורת הקבוצות 234293 אביבתשס ז מבחןסופי מועדב הנחיות: משךהבחינה:
פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.
פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך
מבני נתונים מבחן מועד א' סמסטר אביב תשס"ו
TECHNION ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצה: אהוד ריבלין מבני נתונים 234218 1 מבחן מועד א' סמסטר אביב תשס"ו מתרגלים: איתן
שיעור 1. זוויות צמודות
יחידה 11: זוגות של זוויות שיעור 1. זוויות צמודות נתבונן בתמרורים ובזוויות המופיעות בהם. V IV III II I הדסה מיינה את התמרורים כך: בקבוצה אחת שלושת התמרורים שמימין, ובקבוצה השנייה שני התמרורים שמשמאל. ש
מודלים חישוביים תרגולמס 5
מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך
מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות
מינימיזציה של DFA L. הוא אוטמומט מינימלי עבור L של שפה רגולרית A ראינו בסוף הסעיף הקודם שהאוטומט הקנוני קיים A DFA בכך הוכחנו שלכל שפה רגולרית קיים אוטומט מינמלי המזהה אותה. זה אומר שלכל נקרא A A לאוטומט
מיון. 1 מיון ערימה (Heapsort) חלק I 1.1 הגדרת ערימה 0.1 הגדרה של המושג מיון מסקנה: הערך הכי גבוה בערימה נמצא בשורש העץ!
מיון ערימה (Heapsort) מבני נתונים חלק I מיון מבני נתונים ד"ר ערן לונדון. הגדרת ערימה ערימה (בינארית) הינה מערך אשר ניתן להציגו כמו עץ בינארי מלא או כמעט מלא כאשר כל קודקוד בעץ מתאים לתא במערך. העץ הינו
Regular Expressions (RE)
Regular Expressions (RE) ביטויים רגולריים עד כה דנו במספר מודלים חישוביים להצגת (או ליצור) שפות רגולריות וראינו שכל המודלים האלה הם שקולים מבחינת כוח החישובי שלהם. בסעיף זה נראה עוד דרך להצגת (או ליצור)
השאלות..h(k) = k mod m
מבני נתונים פתרונות לסט שאלות דומה לשאלות מתרגיל 5 השאלות 2. נתונה טבלת ערבול שבה התנגשויות נפתרות בשיטת.Open Addressing הכניסו לטבלה את המפתחות הבאים: 59 88, 17, 28, 15, 4, 31, 22, 10, (מימין לשמאל),
(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;
מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =
1 סכום ישר של תת מרחבים
אלמה רופיסה :הצירטמ לש ןדרו'ג תרוצ O O O O O O ןאבצ זעוב סכום ישר של תת מרחבים פרק זה כולל טענות אלמנטריות, שהוכחתן מושארת לקורא כתרגיל הגדרה: יהיו V מרחב וקטורי, U,, U k V תת מרחבים הסכום W U + U 2 +
Trie מאפשר חיפוש, הכנסה, הוצאה, ומציאת מינימום (לקסיקוגרפי) של מחרוזות.
מילון למחרוזות - Trie Lecture of Geiger & Itai s slide brochure www.cs.technion.ac.il/~dang/courseds מבני נתונים למחרוזות Trie מאפשר חיפוש, הכנסה, הוצאה, ומציאת מינימום (לקסיקוגרפי) של מחרוזות. המימוש
סימני התחלקות ב 3, ב 6 וב 9
סימני התחלקות ב 3, ב 6 וב 9 תוכן העניינים מבוא לפרק "סימני התחלקות" ב 3, ב 6 וב 9............ 38 א. סימני ההתחלקות ב 2, ב 5 וב 10 (חזרה)............ 44 ב. סימן ההתחלקות ב 3..............................
הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-
מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות
x a x n D f (iii) x n a ,Cauchy
גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת
אלגו מתקדם ביוני 2012 מרצה: יאיר בר טל בודק: אורן בקר. איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה קשור לסיכום זה בשום דרך.
אלגו מתקדם 67824 11 ביוני 2012 מרצה: יאיר בר טל בודק: אורן בקר איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה קשור לסיכום זה בשום דרך. הערות יתקבלו בברכה.noga.rotman@gmail.com אהבתם? יש