אינפי - 1 תרגול בינואר 2012

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "אינפי - 1 תרגול בינואר 2012"

Transcript

1 אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום, סגור או פתוח) ו R f : D היא פונקציה רציפה (אך לא בהכרח במ"ש). ננסה להבין מה זה אומר להיות רציף במ"ש ומה ההבדל בין רציפות במ"ש לרציפות. באופן אינטואיטיבי, רציפות במ"ש אומרת שעבור כל זוג נקודות קרובות, הערכים שהפונקציה תקבל עליהן יהיו קרובים, כך שמידת הקירבה לא תלויה במיקום הנקודות. רציפות במ"ש ודאי גוררת רציפות. באופן אולי מפתיע, הוכחתם בכיתה שאם D קטע סגור וחסום, אז פונקציה הרציפה ב D רציפה בו במידה שווה. מתי, אם כן, פונקצייה רציפה לא תהיה רציפה במ"ש? מאחר ועבור קטעים סגורים וחסומים תתקיים בהכרח רציפות במ"ש, נסיק שרציפות במ"ש יכולה לא להתקיים רק כאשר D הינו קטע פתוח (לפחות באחד קצוותיו) או לא חסום - שם, כאשר המשתנה שואף לאינסוף או לנקודת הקצה בה הפונקציה לא מוגדרת, עשויות להתרחש מספר תופעות שימנעו מהפונקצייה להיות רציפה במ" ש. נביט במספר דוגמאות לתופעות כנ"ל. נתחיל במקרה [b D =,a) עבור a. R במקרה זה מתקיים ש f רציפה במ"ש אמ"מ ל f יש הרחבה רציפה ל [ b,a] וזה מתקיים אמ"מ הגבול מימין של f ב a קיים. לכן, קיבלנו ש טענה. יהיו a < b מספרים ממשיים. ותהא f : (a, b] R פונקצייה רציפה. אזי f רציפה במ"ש אמ"מ f(x) lim x a קיים. במילים אחרות, התופעה היחידה שעשוייה למנוע מפונקצייה רציפה f :,a) [b R להיות רציפה במ"ש היא אי קיום הגבול של f מימין ל a. נעבור למקרה השני בו תופעות הקורות "באינסוף" מונעות מפונקצייה רציפה להיות רציפה במ" ש. נניח אם כן ש R f :,a] ( הינה פונקצייה רציפה. מתי f לא תהיה רציפה במ"ש? במקרה הקודם, ראינו שקיום הגבול בנקודה "הבעייתית" שקול לרציפות במ"ש. נשאלת אם כן השאלה שאלה: האם מתקיים ש f רציפה במ"ש אמ"מ f(x) lim x קיים? התשובה היא לא. מצד אחד, אם הגבול קיים אז f הינה רציפה במ"ש (ראו תרגיל 4). עם זאת, יכול להיות ש f רציפה במ"ש והגבול לא קיים - למשל, קל לראות שהפונקצייה

2 f(x) = x רציפה במ" ש, אבל f(x) lim x לא קיים (ואם מאד רוצים, ניתן למצוא פונקצייה רציפה במ"ש f, :,a] ( R כך שהגבול לא קיים גם במובן הרחב - למשל כל פונקציה רציפה, מחזורית ולא קבועה תעבוד). מה, אם כן, יכול לגרום ל f כנ"ל להיות לא רציפה במ"ש? נראה שתי דוגמאות, בהן יש התנהגות "לא סדירה" באינסוף המונעת מהפונקצייה להיות רציפה במ"ש. הדוגמא הראשונה תהיה של גידול מהיר והדוגמה השנייה תהיה של תנודות מהירות. דוגמא ראשונה (גידול מהיר לאינסוף): נגדיר f : [0, ) R ע"י.f(x) = x נביט בגרף הפונקצייה. נשים לב שאם אנחנו מסתכלים מספיק "רחוק" אז f יכולה לקבל ערכים מאד רחוקים אחד מהשני על נקודות מאד קרובות. לכן ננחש ש f לא תהיה רציפה במ"ש ואכן, נבחר = ɛ ותהא > 0 δ צ"ל שקיימות נקודות ) [0, y x, כך ש δ x y <,y = x + δ עבור ) [0, x שיבחר בהמשך. מתקיים וגם f(y). f(x) נקח ש δ x y = δ < ונותר להראות שניתן לבחור את x כך ש f(y). f(x) נחשב f(x) f(y) = x y = x + y x y = (x + δ ) δ > x δ ואם נבחר x = δ נקבל ש f(y) f(x) כנדרש. דוגמא שנייה (תנודות מהירות באינסוף): נגדיר f : [0, ) R ע"י ).f(x) = sin(x גרף הפונקצייה מבצע תנודות בין ל כאשר תדירות התנודות הולכת וגדלה. לכן, אם אנחנו שוב מסתכלים מספיק "רחוק", נוכל למצוא נקודות קרובות מאד כך ש f מבצעת תנודה מלאה בינהן ולכן ננחש ש f לא תהיה רציפה במ"ש. ואכן, נקבע = ɛ תהא > 0 δ צ"ל שקיימים ) [0, y x, כך ש δ x y < וגם f(y) ( f(x נשים לב ש f עוברת מהערך 0 ל בין הנקודות πn ו πn + π. הוכחנו בעבר ש πn + π. נבחר πn < כך ש δ n ולכן קיים lim n πn + π πn = 0.x = πn + π, y = πn מתקיים x y < δ ומצד שני, כנדרש. f(x) f(y) = sin(πn + π ) sin(πn) = לאחר שראינו מקרים של פונקציות רציפות f :,0] ( R שאינן רציפות במ"ש, ננסה לראות מתי פונקציות כנ"ל הן כן רציפות במ"ש. משתי הדוגמאות האחרונות, ראינו שפונקצייה כזו צריכה להתנהג בצורה "סדירה" באינסוף - למשל, לא לגדול מהר מידי ולא לבצע תנודות מהירות. תנאי מפורסם שכופה התנהגות כזו הוא "תנאי ליפשיץ": הגדרה.3 תהא f : D R פונקצייה. נאמר ש f לפשיצית (או, מקיימת תנאי לפישיץ) אם קיים > 0 K כך שלכל x, y D מתקיים הקבוע K נקרא קבוע ליפשיץ של הפונקצייה. f(x) f(y) K x y

3 טענה.4 כל פונקצייה ליפשיצית הינה רציפה במ" ש. הוכחה: תהא f : D R פונקצייה ליפשיצית עם קבוע ליפשיץ K. יהא > 0 ɛ. נקבע.δ = ɛ K כעת, בהינתן x, y D המקיימים, x y < δ מתקיים f(x) f(y) K x y < Kδ = ɛ נביט בדוגמא. נגדיר f : [, ) R ע"י.f(x) = x נראה ש f ליפשיצית עם קבוע ליפשיץ : מתקיים, לכל ) [, y x, x y = x y x + y x y מכאן, f גם רציפה במ"ש. y x = + מה קורה עם מרחיבים את f לקרן )?[0, נגדיר f : [0, ) R ע"י.f(x) = x האם עדיין f ליפשיצית? נראה שלא. יהא > 0 K. צ"ל שקיימים (,0] y,x כך = x מתקיים ש y. f(x) f(y) > K x נבחר = 0 y ו (K+) x y = K + 0 > K + K K + = K = K x y (K + ) כנדרש. ראינו ש f אינה ליפשיצית ולכן לא נוכל להשתמש בטיעון מקודם ע"מ להוכיח שהיא רציפה במ"ש. האם היא רציפה במ"ש בכל זאת? נראה שכן. נשים לב ש f רציפה במ"ש על [,0] מפני שהיא רציפה שם. כמו כן, f רציפה במ"ש על (,] לפי מה שהראינו קודם. לכן יהיה סביר לנחש ש f תהיה רציפה על כל הקרן (,] [,0] = (,0]. ואכן, רציפותה במידה שווה של f נובעת מרציפותה במ"ש ב [,0] וב (,] יחד עם הטענה הבאה טענה.5 תהא f :,a] ( R פונצקיה רציפה ברציפה במ"ש ב [ c,a] וב (,c] עבור.[a, רציפה במ"ש ב ( f אזי.c [a, ) הוכחה: יהי > 0.ε קיים > 0 δ כך שלכל c] u, v [a, המקיימים u v < δ מתקיים. f(u) f(v) < ε קיים > 0 δ כך שלכל ) [c, u, v המקיימים u v < δ מתקיים. f(u) f(v) < ε נניח בה"כ כעת יהיו ) [a, u, v המקיימים. u v < δ ניקח }.δ = min{δ, δ.u < v 3

4 אם u, v c או,u, v c נובע ישירות מבחירת δ ש ε. f(u) f(v) < אם,u < c < v אז מתקיים c u < δ < δ ולכן. f(c) f(u) < ε כמו כן מתקיים v c < δ < δ ולכן, f(v) f(c) < ε ומכאן:, f(v) f(u) < f(v) c + c f(u) < ε + ε = ε כדרוש. דוגמא לחישוב גבול של פונקציה במובן הרחב הגדרה. תהא f פונקצייה המוגדרת בסביבה מנוקבת של הנקודה x. 0 R נאמר ש f שואפת לאינסוף כאשר x שואף ל x 0 ונסמן = f(x) lim x x0 אם לכל M R קיימת > 0 δ כך שלכל x המקיים x x 0 < δ < 0 מתקיים.f(x) > M באופן דומה, מגדירים שאיפה למינוס אינסוף..f(x) = ex נראה ש = f(x).lim x 0 יהא.M R נבחר x דוגמא. נביט בפונקציה min{.δ = כעת, בהניתן x המקיים x < δ <.0 מתקיים > x ומכאן e M, } f(x) = ex x e x > e e M = M M ומכאן, = f(x) lim x 0 כנדרש. 3 משפטי ויירשטראס על קטעים אינסופיים ומשפט ערך הביניים שני משפטים חשובים הנוגעים לפונקציות רציפות הם משפטי ויישטרס לפיהם פונקציה רציפה על קטע סגור הינה חסומה ומקבלת מינימום ומקסימום בקטע. המשפטים הנ"ל לא עובדים כלשונם בקטעים שאינם סגורים. למשל, הפונקציה,f(x) = x המוגדרת על כל הישר, אינה חסומה. קל וחומר, f אינה מקבלת מינימום או מקסימום. עם זאת, אם נדרוש התנהגות מסויימת באינסוף. למשל ע"י קיום גבול, נוכל לנסח טענות אנולוגיות גם לפונקציות המוגדרות על קטעים פתוחים/אינסופיים. למשל טענה 3. תהא f : R R פונקצייה רציפה המקיימת = f(x) lim x f(x) = lim x. אזי f מקבלת מינימום. הוכחה: נסמן f(0).k = קיים > 0 M כך שלכל M < x מתקיים.f(x) > K באופן דומה, קיים < 0 M כך שלכל x < M מתקיים.f(x) > K כעת, ממשפט ויירשטראס קיימת נקודה ] c M], M שבה מתקבל המינימום של f ב f(c) f(x) מתקיים x R ומכאן שלכל,f(c) f(0) = K בפרט מתקיים:.[M, M ] (על ידי פיצול לשלושת הקטעים ),.((, M ),[M, M ],(M 4

5 שאלה: תהא f : R R פונקצייה רציפה ונניח שמתקיים = f(x) lim x f(x) = lim x.0 lim x f(x) קל לוודא ש = f(x) = האם f מקבלת מינימום? לא! נגדיר x+ = 0 f(x).lim x כמו כן, f חיובית (כלומר, לכל (f(x) > 0,x R ולכן = 0 R} inf{f(x) : x ומכאן, לו הייתה f מקבלת מינימום בנקודה,c R היה צריך להתקיים = 0 f(c) וקל לראות שאין נקודה c R המקיימת את הנ"ל. האם f חסומה? כן! כמו בהוכחת הטענה האחרונה, ניתן למצוא M < M כך שכל ] x / [M, M מתקיים <. f(x) ולכן f חסומה מחוץ לקטע ].[M, M מצד שני, f רציפה בקטע הנ"ל ולכן חסומה שם, ובסה"כ, f חסומה על כל הישר. באופן דומה לגרסה של משפטי ויישטרס לקטעים אינסופיים, ניתן להוכיח גרסה של משפט ערך הביניים לקטעים אינסופיים: טענה 3. תהא f : R R פונקצייה רציפה המקיימת = f(x) lim x f(x) =, lim x. אזי לכל y R קיים c R כך ש y.f(c) = למעשה ראיתם הוכחה דומה בהרצאה, כאשר הוכחתם שלכל פולינום ממעלה אי זוגית יש שורש - מהנחות הטענה, ניתן למצוא x, x R כך ש (.f(x ) < y < f(x לכן, ממשפט ערך הביניים "הרגיל" קיימת נקודה c בין x ל x כך ש y.f(c) = שאלה: תהא f : R R פונקצייה רציפה ונניח שעבור a, b R מתקיים = f(x) lim x f האם בהכרח.a < y < b מקבלת כל ערך f ע"י טיעון דומה,.a < b = lim x f(x) מקבלת את הערכים a ו b עצמם? תשובה: לא! נגדיר (x).f(x) = tan מתקיים = lim x f(x) = π < π π < f(x) < π ולכן f לא מקבלת את f(x).lim x עם זאת, לכל x R מתקיים הערכים. π, π תרגילי כיתה - אם ישאר זמן למשל נגדיר = f(x) כן!. תהי f : (0, ] R רציפה האם ייתכן ש f על?R.R רציפה ועל f. x sin( x ). תהי f : [0, ) R פונקצייה רציפה ונניח כי הסדרה f(n) a n = מתכנסת. האם f(x) lim קיים? לא! נגדיר sin(πx).f(x) = לכל f(n) = 0,n N ולכן x הסדרה f(n) מתכנסת ל 0. מצד שני, הגבול f(x) lim לא קיים. x 3. האם קיימת [,0] [,0] : f, מונוטונית עולה (חלש) שיש לה אינסוף נקודות אי רציפות? כן! נגדיר { f(x) = n x ( n+, n ], n N 0 x = 0 לא קשה לראות ש f מונוטונית עולה (חלש) ויש לה אינסוף נקודות אי רציפות. 5

x a x n D f (iii) x n a ,Cauchy

x a x n D f (iii) x n a ,Cauchy גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

רשימת משפטים והגדרות

רשימת משפטים והגדרות רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A ) הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

סרוקל רזע תרבוח 1 ילמיסיטיפניא ןובשח

סרוקל רזע תרבוח 1 ילמיסיטיפניא ןובשח חוברת עזר לקורס חשבון אינפיטיסימלי 495 יולי 4 חוברת עזר לקורס חשבון אינפיטיסימלי 495 עמוד חוברת עזר לקורס חשבון אינפיטיסימלי 495 יולי 4 תוכן העניינים נושא עמוד נושא כללי 3 רציפות זהויות טריגונומטריות 4

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

סיכום אינפי 2 19 ביוני 2010 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין

סיכום אינפי 2 19 ביוני 2010 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין סיכום אינפי 2 9 ביוני 200 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה בשום דרך. סוכם ע"י נגה רוטמן בשעות לא הגיוניות בעליל,

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

co ארזים 3 במרץ 2016

co ארזים 3 במרץ 2016 אלגברה לינארית 2 א co ארזים 3 במרץ 2016 ניזכר שהגדרנו ווקטורים וערכים עצמיים של מטריצות, והראינו כי זהו מקרה פרטי של ההגדרות עבור טרנספורמציות. לכן כל המשפטים והמסקנות שהוכחנו לגבי טרנספורמציות תקפים גם

Διαβάστε περισσότερα

חדוו"א 2 סיכום טענות ומשפטים

חדווא 2 סיכום טענות ומשפטים חדוו"א 2 סיכום טענות ומשפטים 3 ביוני 2 n S(f, T ) := (t k+ t k ) inf k= סכום דרבו תחתון מוגדר על ידי [t k,t k+ ] f אינטגרל רימן חלוקות של קטע חלוקה של קטע [,] הינה אוסף סדור סופי של נקודות מהצורה: טענה.2

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח. 1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר

לוגיקה ותורת הקבוצות מבחן סופי אביב תשעב (2012) דפי עזר לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה.

חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. מרצה: למברג דן תוכן העניינים 3 מספרים ממשיים 1 3.................................. סימונים 1. 1 3..................................

Διαβάστε περισσότερα

חשבון אינפיניטסימלי 1

חשבון אינפיניטסימלי 1 חשבון אינפיניטסימלי 1 יובל קפלן סיכום הרצאות פרופ צליל סלע בקורס "חשבון אינפיניטסימלי 1" (80131) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו.

Διαβάστε περισσότερα

(Derivative) של פונקציה

(Derivative) של פונקציה נגזרת Drivtiv של פונקציה t הנגזרת היא המושג החשוב בקורס, ולה חשיבות מעשית רבה היא מכמתת את קצב השינוי של תופעה כלשהי פיסיקלית, כלכלית, וויזואלית דוגמאות: מהירות של עצם היא קצב השינוי במקומו, ולכן המהירות

Διαβάστε περισσότερα

מערך תרגיל קורס סמסטר ב תשע ה בחשבון אינפיניטסימלי 2 למדעי המחשב

מערך תרגיל קורס סמסטר ב תשע ה בחשבון אינפיניטסימלי 2 למדעי המחשב מערך תרגיל קורס 89-33 סמסטר ב תשע ה בחשבון אינפיניטסימלי למדעי המחשב יוני 05, גרסה 0.9 מבוא נתחיל עם כמה דגשים: דף הקורס נמצא באתר.www.math-wiki.com שאלות בנוגע לחומר הלימודי מומלץ לשאול בדף השיחה באתר

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב 2011 2010 פרופ' יעקב ורשבסקי אסף כץ 15//11 1 סמל לזנדר יהי מספר שלם קבוע, ו K שדה גלובלי המכיל את חבורת שורשי היחידה מסדר µ. תהי S קבוצת הראשוניים הארכימדיים

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר

לוגיקה ותורת הקבוצות מבחן סופי אביב תשעד (2014) דפי עזר לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת

Διαβάστε περισσότερα

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך

Διαβάστε περισσότερα

חשבון אינפיניטסימלי (2)

חשבון אינפיניטסימלי (2) חשבון אינפיניטסימלי (2) איתי שפירא 30 ביוני 2017 מתוך הרצאות מהאונברסיטה העברית 2017. i.j.shpir@gmil.com תוכן עניינים 1 מבוא והשלמות 5 1.1 כלל לופיטל................................. 5 1.2 חקירת פונקציות..............................

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z.

פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z. פרק 5 טורי חזקות 5.5 טור לורן הגדרה 5. טורלורןסביבקוטב z מסדרm שלפונקציה( f(z הואמהצורה n m a n(z z m. למשל,טורלורן שלהפונקציה e z /z 2 סביב הוא + 2./z 2 +/z+/2+/3!z+/4!z משפט 5. תהי f פונקציה אנליטית

Διαβάστε περισσότερα

n x 2 i x i x 2 i 1 x i A n = אשר מייצגים את השטח של איחוד של מלבנים, במקרה אחד החוסמים את הגרף מבחוץ, ובמקרה השני אשר חסומים בתוך הגרף.

n x 2 i x i x 2 i 1 x i A n = אשר מייצגים את השטח של איחוד של מלבנים, במקרה אחד החוסמים את הגרף מבחוץ, ובמקרה השני אשר חסומים בתוך הגרף. סיכומים בחדו"א 2 שירי ארטשטיין 22 co כל הזכויות שמורות לשירי ארטשטיין. אין להעתיק, לשכפל, לצלם, לתרגם, להקליט, לשדר, לקלוט ו/או לאכסן במאגר מידע בכל דרך ו/או אמצעי מכני, דיגיטלי, אופטי, מגנטי ו/או אחר

Διαβάστε περισσότερα

אינפי 1 פרופ י. בנימיני אביב תש ע

אינפי 1 פרופ י. בנימיני אביב תש ע אינפי 1 פרופ י. בנימיני אביב תש ע ברשימות ראשוניות אלה יש בוודאי שגיאות רבות: טעויות דפוס, אי בהירויות ואפילו טעויות מתמטיות. תודתי נתונה מראש לכל מי שיעביר אלי הערות ותיקונים מכל סוג. בכתיבת הרשימות נעזרתי

Διαβάστε περισσότερα

חשבון אינפיניטסמלי 2 סיכומי הרצאות

חשבון אינפיניטסמלי 2 סיכומי הרצאות חשבון אינפיניטסמלי סיכומי הרצאות 9 ביולי מרצה: פרופ מתניה בן ארצי מתרגל: מני אקא mennyk@mth.huji.c.il סוכם ע י: אור שריר פניות לתיקונים והערות: tnidtnid@gmil.com הערה לקראת המבחנים כרגע חסרים מספר דברים

Διαβάστε περισσότερα

תורת הקבוצות תרגיל בית 2 פתרונות

תורת הקבוצות תרגיל בית 2 פתרונות תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית

Διαβάστε περισσότερα

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות מינימיזציה של DFA L. הוא אוטמומט מינימלי עבור L של שפה רגולרית A ראינו בסוף הסעיף הקודם שהאוטומט הקנוני קיים A DFA בכך הוכחנו שלכל שפה רגולרית קיים אוטומט מינמלי המזהה אותה. זה אומר שלכל נקרא A A לאוטומט

Διαβάστε περισσότερα

תרגול מס' 6 פתרון מערכת משוואות ליניארית

תרגול מס' 6 פתרון מערכת משוואות ליניארית אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית

Διαβάστε περισσότερα

תורת ההסתברות 2: (או הסתברות ותהליכים סטוכסטים)

תורת ההסתברות 2: (או הסתברות ותהליכים סטוכסטים) תורת ההסתברות : או הסתברות ותהליכים סטוכסטים סוכם על ידי תום חן tomhen@gmail.com בדצמבר 04 שימו לב יתכנו שגיאות בטקסט עידכונים יתבצעו במהלך הסמסטר נא לדווח שגיאות ל gidi.amir@gmail.com או לחלופין שלשמור

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 7

אלגברה ליניארית 1 א' פתרון 7 אלגברה ליניארית 1 א' פתרון 7 2 1 1 1 0 1 1 0 1 0 2 1 1 0 1 0 2 1 2 1 1 0 2 1 0 1 1 3 1 2 3 1 2 0 1 5 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 4 0 0 0.1 עבור :A לכן = 3.rkA עבור B: נבצע פעולות עמודה אלמנטריות

Διαβάστε περισσότερα

אוסף שאלות מס. 3 פתרונות

אוסף שאלות מס. 3 פתרונות אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,

Διαβάστε περισσότερα

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית:

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית: משפט הדיברגנץ תחום חסום וסגור בעל שפה חלקה למדי, ותהי F פו' וקטורית :F, R n R n אזי: div(f ) dxdy = F, n dr נוסחת גרין I: uδv dxdy = u v n dr u, v dxdy הוכחה: F = (u v v, u x y ) F = u v כאשר u פו' סקלרית:

Διαβάστε περισσότερα

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז פתרון תרגיל בית 6 מבוא לתורת החבורות 88-211 סמסטר א תשע ז הוראות בהגשת הפתרון יש לרשום שם מלא, מספר ת ז ומספר קבוצת תרגול. תאריך הגשת התרגיל הוא בתרגול בשבוע המתחיל בתאריך ג טבת ה תשע ז, 1.1.2017. שאלות

Διαβάστε περισσότερα

gra לא שימושי -rad רדיינים. רדיין = רק ברדיינים. נניח שיש לנו משולש ישר זוית. היחס בין שתי הצלעות שמול הזוית הישרה, נקבע ע"י הזוית.

gra לא שימושי -rad רדיינים. רדיין = רק ברדיינים. נניח שיש לנו משולש ישר זוית. היחס בין שתי הצלעות שמול הזוית הישרה, נקבע עי הזוית. A-PDF MERGER DEMO 56 פונקציות טריגונומטריות במחשבון בד"כ יש אופציות: deg מעלות מניח חלוקת המעגל ל 6 חלקים, כל אחד מעלה למה עשו 6? זה מספר עם הרבה מחלקים וזה גם קרוב ל 65 6 π π 6 π π α α α 6 8 π 6 57 ~

Διαβάστε περισσότερα

חשבון אינפיניטסמלי מתקדם 1 סיכומי הרצאות

חשבון אינפיניטסמלי מתקדם 1 סיכומי הרצאות חשבון אינפיניטסמלי מתקדם 1 סיכומי הרצאות 13 בינואר 211 מרצה: אילון לינדנשטראוס מתרגל: רון רוזנטל סוכם ע י: אור שריר פניות לתיקונים והערות: tnidtnid@gmail.com אתר הסיכומים שלי: http://bit.ly/huji_notes

Διαβάστε περισσότερα

תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות

תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות תורת המספרים סיכום הגדרות טענות ומשפטים אביב 017 1 פירוק לגורמים ראשוניים 1.1 הגדרות חוג A C נקראת חוג אם: היא מכילה את 0 ואת 1 סגורה תחת חיבור, חיסור, וכפל הפיך A חוג. a A נקרא הפיך אם 0,a.a 1 A קבוצת

Διαβάστε περισσότερα

פולינומים אורתוגונליים

פולינומים אורתוגונליים פולינומים אורתוגונליים מרצה: פרופ' זינובי גרינשפון סיכום: אלון צ'רני הקורס ניתן בסמסטר אביב 03, בר אילן פולינומים אורתוגונאליים תוכן עניינים תאריך 3.3.3 הרצאה מרחב מכפלה פנימית (הגדרה, תכונות, דוגמאות)

Διαβάστε περισσότερα

חשבון אינפיניטסימלי מתקדם II 21 ביוני 2012

חשבון אינפיניטסימלי מתקדם II 21 ביוני 2012 חשבון אינפיניטסימלי מתקדם 836 II אור דגמי, or@digmi.org ביוני אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ ארז לפיד בשנת לימודים נושאים לקורס. המרחב.C(K). קירוב ע י פולינומים, משפט Stone-Weirstrss

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

פונקציות מרוכבות בדצמבר 2012

פונקציות מרוכבות בדצמבר 2012 פונקציות מרוכבות 80519 אור דגמי, or@digmi.org 30 בדצמבר 2012 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ גנאדי לוין בשנת לימודים 2013 מייל של המרצב: levin@math.huji.ac.il אפשר לקבוע פגישה. הקורסלאמבוססעלאףספרספציפי,

Διαβάστε περισσότερα

תרגול מס' 1 3 בנובמבר 2012

תרגול מס' 1 3 בנובמבר 2012 תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),

Διαβάστε περισσότερα

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה. בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית

Διαβάστε περισσότερα

c ארזים 15 במרץ 2017

c ארזים 15 במרץ 2017 הסתברות למתמטיקאים c ארזים 15 במרץ 2017 הקורס הוא המשך של מבוא להסתברות שם דיברנו על מרחבים לכל היותר בני מניה. למשל, סדרת הטלות מטבע בלתי תלויות היא דבר שאי אפשר לממש במרחב בן מניה נסמן את התוצאה של ההטלה

Διαβάστε περισσότερα

. {e M: x e} מתקיים = 1 x X Y

. {e M: x e} מתקיים = 1 x X Y שימושי זרימה פרק 7.5-13 ב- Kleinberg/Tardos שידוך בגרף דו-צדדי עיבוד תמונות 1 בעיית השידוך באתר שידוכים רשומים m נשים ו- n גברים. תוכנת האתר מאתרת זוגות מתאימים. בהינתן האוסף של ההתאמות האפשריות, יש לשדך

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 12

מתמטיקה בדידה תרגול מס' 12 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

משוואות דיפרנציאליות רגילות 80320

משוואות דיפרנציאליות רגילות 80320 1 משוואות דיפרנציאליות רגילות 832 דויד שיפרוט 25 ביוני 215 תוכן עניינים Á מבוא 2 1 הגדרות................................................................ 2 4 ÁÁ משוואות מסדר ראשון משוואה לינארי מסדר ראשון:.....................................................

Διαβάστε περισσότερα

תורת ההסתברות 1 יובל קפלן סיכום הרצאות פרופ יורי קיפר בקורס "תורת ההסתברות 1" (80420) באוניברסיטה העברית,

תורת ההסתברות 1 יובל קפלן סיכום הרצאות פרופ יורי קיפר בקורס תורת ההסתברות 1 (80420) באוניברסיטה העברית, תורת ההסתברות יובל קפלן סיכום הרצאות פרופ יורי קיפר בקורס "תורת ההסתברות " (80420) באוניברסיטה העברית, 8 2007. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו. סודר באמצעות

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 5

מודלים חישוביים תרגולמס 5 מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך

Διαβάστε περισσότερα

מבוא ללוגיקה מתמטית 80423

מבוא ללוגיקה מתמטית 80423 מבוא ללוגיקה מתמטית 80423 24 במרץ 2012 איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה או המתרגל קשורים לסיכום זה בשום דרך. הערות יתקבלו בברכה.noga.rotman@gmail.com אהבתם? יש עוד! www.cs.huji.ac.il/

Διαβάστε περισσότερα

אלגברה לינארית 2 משפטים וטענות

אלגברה לינארית 2 משפטים וטענות אלגברה לינארית 2 משפטים וטענות סוכם ע"פ הרצאות פרופ' מ.קריבלביץ' 1.2 אידאלים של פולינומים הגדרה 1.13 יהי F שדה. קבוצת פולינומים [x] I F נקראת אידיאל ב [ x ] F אם מתקיים:.0 I.1.2 לכל f 1, f 2 I מתקיים.f

Διαβάστε περισσότερα

מבנים אלגבריים II 27 במרץ 2012

מבנים אלגבריים II 27 במרץ 2012 מבנים אלגבריים 80446 II אור דגמי, or@digmi.org 27 במרץ 2012 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ אלכס לובוצקי בשנת לימודים 2012 1 תוכן עניינים 1 שדות 3 1.1 תזכורת מהעבר....................................................

Διαβάστε περισσότερα

( k) ( ) = ( ) ( ) ( ) ( ) A Ω P( B) P A B P A P B תכונות: A ו- B ב"ת, אזי: A, B ב "ת. בינומי: (ההסתברות לk הצלחות מתוך n ניסויים) n.

( k) ( ) = ( ) ( ) ( ) ( ) A Ω P( B) P A B P A P B תכונות: A ו- B בת, אזי: A, B ב ת. בינומי: (ההסתברות לk הצלחות מתוך n ניסויים) n. Ω קבוצת התוצאות האפשריות של הניסוי A קבוצת התוצאות המבוקשות של הניסוי A A מספר האיברים של P( A A Ω מבוא להסתברות ח' 434 ( P A B הסתברות מותנית: P( A B P( B > ( P A B P A B P A B P( B PB נוסחאת ההסתברות

Διαβάστε περισσότερα

i שאלות 8,9 בתרגיל 2 ( A, F) אלגברת יצירה Α היא זוג כאשר i F = { f קבוצה של פונקציות {I קבוצה לא ריקה ו A A n i n i מקומית מ ל. A נרשה גם פונקציות 0 f i היא פונקציה n i טבעי כך ש כך שלכל i קיים B נוצר

Διαβάστε περισσότερα

אוטומטים- תרגול 8 שפות חסרות הקשר

אוטומטים- תרגול 8 שפות חסרות הקשר אוטומטים- תרגול 8 שפות חסרות הקשר דקדוק חסר הקשר דקדוק חסר הקשר הנו רביעיה > S

Διαβάστε περισσότερα

1 סכום ישר של תת מרחבים

1 סכום ישר של תת מרחבים אלמה רופיסה :הצירטמ לש ןדרו'ג תרוצ O O O O O O ןאבצ זעוב סכום ישר של תת מרחבים פרק זה כולל טענות אלמנטריות, שהוכחתן מושארת לקורא כתרגיל הגדרה: יהיו V מרחב וקטורי, U,, U k V תת מרחבים הסכום W U + U 2 +

Διαβάστε περισσότερα

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי

Διαβάστε περισσότερα

תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס "תורת הקבוצות" (80200) באוניברסיטה העברית,

תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס תורת הקבוצות (80200) באוניברסיטה העברית, תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס "תורת הקבוצות" (80200) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו. סודר באמצעות L

Διαβάστε περισσότερα

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן .. The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן 03.01.16 . Factor Models.i = 1,..., n,r i נכסים, תשואות (משתנים מקריים) n.e[f j ] נניח = 0.j = 1,..., d,f j

Διαβάστε περισσότερα

מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015)

מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מרצה: פרופ' בני שור מתרגלים: אורית מוסקוביץ' וגל רותם 28.1.2015 הנחיות: 1. מומלץ לקרוא את כל ההנחיות והשאלות בתחילת המבחן, לפני כתיבת התשובות. 2. משך

Διαβάστε περισσότερα

ÈËÓ Ó ÌÈ ÂÓ ÔÂÏÈÓ. Â Ó Â Â ÌÈËÙ Ó Â ÁÒÂapple ÌÈ Â È Â Â. ÈÂÒÈapple  Ó

ÈËÓ Ó ÌÈ ÂÓ ÔÂÏÈÓ. Â Ó Â Â ÌÈËÙ Ó Â ÁÒÂapple ÌÈ Â È Â Â. ÈÂÒÈapple Â Ó ÈËÓ Ó ÌÈ ÂÓ ÔÂÏÈÓ ÂȈ appleâù Â Ó Â Â ÌÈËÙ Ó Â ÁÒÂapple ÌÈ Â È Â Â ÈÂÒÈapple Â Ó תוכן העניינים 7 9 6 0 8 6 9 55 59 6 מושגים בסיסיים... אינטרוולים וסביבות... מאפיינים של פונקציות... סוגי הפונקציות ותכנותיהם...

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

סיכום לינארית 1 28 בינואר 2010 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך.

סיכום לינארית 1 28 בינואר 2010 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך. סיכום לינארית 28 בינואר 2 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך הערות יתקבלו בברכה nogarotman@gmailcom תוכן עניינים 3 מבוא והגדרות בסיסיות 6 שדות 7 המציין של

Διαβάστε περισσότερα

אלגברה לינארית (1) - פתרון תרגיל 11

אלגברה לינארית (1) - פתרון תרגיל 11 אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6

Διαβάστε περισσότερα

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל- מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 2

מתמטיקה בדידה תרגול מס' 2 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.

Διαβάστε περισσότερα

תרגול 1: מד"ר 1 הפרדת משתנים משוואות,, 0 הומוגניות משוואות מציבים לינאריות כאשר 0 המשוואה הומוגנית של כפונקציה של בלבד. משוואות ברנולי מסמנים או:

תרגול 1: מדר 1 הפרדת משתנים משוואות,, 0 הומוגניות משוואות מציבים לינאריות כאשר 0 המשוואה הומוגנית של כפונקציה של בלבד. משוואות ברנולי מסמנים או: אריאל סטולרמן 1 סיכומי תרגולים: סיכומים במד"ר 1 סמסטר קיץ 2009 (פרופ' ודים אוסטפנקו) תרגול 1: סוגים של מד"ר ודרכי פתרון: חשוב: לשים לב לקבוע c המצורף כתוצאה מאינטגרציה דרך פתרון שיטה צורה הפרדת משתנים

Διαβάστε περισσότερα

В.О. Бугаенко. Уравнения Пелля. Второе издание. МЦНМО, 2010.

В.О. Бугаенко. Уравнения Пелля. Второе издание. МЦНМО, 2010. ודים בוגיינקו תורגם ע"י מריה סבצ'וק משוואות פ ל זהו תרגום מרוסית של הספר: В.О. Бугаенко. Уравнения Пелля. Второе издание. МЦНМО, 00. http://biblio.mccme.ru/ode/34/shop קובץ PDF של ההוצאה הראשונה ברוסית:

Διαβάστε περισσότερα