Errata for Introduction to Statistical Signal Processing by R.M. Gray and L.D. Davisson
|
|
- Τωβίτ Βλαστός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Errt for Introduction to Sttisticl Signl Processing by R.M. Gry nd L.D. Dvisson Errors not cught in the corrected 2 edition re noted with n sterisk *. Updted October 2, 24 hnks to In Lee, Michel Gutmnn, Frédéric Vrins, André Isidio de Melo, Philippe Bonnet, Osmn Muso, Alex Rzumko, nd to the chmpion typo finder, Ron Aloysius. p. * prioriprobbility priori probbility p. 2 * generter genertor p. 49: he summtions in (2.42)-(2.43) should run from k to n, not from k to n s stted becuse the pmf is uniform on {,,..., n } nd not on {, 2,..., n}. As result the sum in (2.42) should evlute to (n )/2 nd not (n + )/2 nd the sum in (2.43) should evlute to (2n )(n )/6 nd not (n + )(2n + )/6. p. 5: Eq. (2.49) ( 2 m (2) k 2 p( p) k p p ) 3 p 2 nd not m (2) Eq. (2.5) nd not k k p. 6: In (2.68) m m (2). (2.74) is missing π, it nd not ( 2 k 2 p( p) k p p + ) 3 p 2 σ 2 p p 2 σ 2 2 p 2 2πσ 2 e (x m)2 /2σ 2 dx 2σ 2 e (x m)2 /2σ 2 dx
2 p. 62 As on the previous pge πs re missing. (2.75) nd not nd (2.76) nd not p. 63 Second line of (2.82): 2πσ 2 xe (x m)2 /2σ 2 dx m 2σ 2 xe (x m)2 /2σ 2 dx m 2πσ 2 (x m)2 e (x m)2 /2σ 2 dx σ 2 2σ 2 (x m)2 e (x m)2 /2σ 2 dx σ 2 (α m)/σ (α m)/σ 2π e u2 /2 dx 2π e u2 /2 du (the differentil du) p. 68: E(g) λ x F g(x)p(x) + ( λ) g(x)f(x) dx x F E(g) λ x Ω g(x)p(x) + ( λ) g(x)f(x) dx x Ω p. 75. In Problem 4 the comment In words: if the probbility of the symmetric difference of two events is smll, then the two events must hve pproximtely the sme probbility. belongs with Problem 2.5, not with 2.3. p. 94 In cption of Figure 3. Pr(f F ) P ({ω : ω F }) P (f (F )) Pr(f F ) P ({ω : f(ω) F }) P (f (F )) p. 3* he boldfce nottion is still found, but it is fr less common then it used to be. he boldfce nottion is still found, but it is fr less common thn it used to be. p. 25: P (X (F ) Y (F 2 ) P (X (F )) Y (F 2 )). 2
3 P (X (F ) Y (F 2 ) P (X (F ))P (Y (F 2 )). p. 3 Eq. (3.55) [ Λ σ 2 X ρσ X σ Y ρσ X σ Y σ 2 Y ], not [ σx Λ 2 ρσ X σ Y he second line of (3.58) nd not 2π det Λ e ρσ X σ Y σ Y 2 (x m X,y m Y )Λ (x m X,y m Y ) t 2π det Λ e 2 (x m X,y m Y )Λ (x m X,y m Y ) t p. 32 Second line, the men m Y X m Y + ρ(σ Y /σ X )(x m X ) nd not m Y X y m Y + ρ(σ Y /σ X )(x m X ) he finl line of (3.62) nd not n f X (x ) f Xl X,...,X l (x l x,..., x l ) l k f X (x ) f Xl X,...,X l (x l x,..., x l ) l (he upper limit of the sum n not k) p. 44 Eq. (3.99) P e ( ( ) (.5 Φ + Φ.5 )) ( Φ ). 2 σ W σ W 2σ W ] nd not P e 2 ( ( Φ (.5 ) ( + Φ.5 )) ( ) Φ. σ W σ W 2σ W 3
4 (remove extr left pren nd dd minus sign). p. 45 Just bove Section 3.2, f X Y (x y) f Y X (y x)f Y (y)/f X (x) should be f X Y (x y) f Y X (y x)f X (x)/f Y (y) p. 38, eqution bove (3.82): ( exp 2 (α m ) ) 2. σ 2 ( exp 2 (α m ) ) 2. σ p. 49 In line eqution following (3.5) M X (ju) F u/2π (f X ) L ju (f X ), tht is, the subscript of L needs minus sign. p. 5 Penultimte line of (3.2) { } ))2/2σ2 (2πσ 2 e (x (m+juσ2 dx e jum u2 σ 2 /2 ) /2 nd not { (the y 2 u 2 p. 62 Eq. (3.39) p Yn Y n,...,y (y n y n,..., y ) } ))2/2σ2 (2πσ 2 e (x (m+juσ2 dx e jum y2 σ 2 /2 ) /2 Pr(Y n y n Y l y l ; l,..., y n ) Pr(X n y n y n Y l y l ; l,..., y n ) Pr(X n y n y n X y, X i y i y i ; i 2, 3,..., n ), should red p Yn Y n,...,y (y n y n,..., y ) Pr(Y n y n Y l y l ; l,..., y n ) Pr(X n y n y n Y l y l ; l,..., n ) Pr(X n y n y n X y, X i y i y i ; i 2, 3,..., n ), tht is, the finl index in the penultimte line is n nd not y n. 4
5 p. 65 he sentence he discrete time, continuous lphbet cse of summing iid rndom vribles is hndled in virtully the sme mnner s the discrete time cse, with conditionl pdfs replcing conditionl pmfs. should red he discrete time, continuous lphbet cse of summing iid rndom vribles is hndled in virtully the sme mnner s the discrete time, discrete lphbet cse, with conditionl pdfs replcing conditionl pmfs. Eq. (3.49) k f Y,...,Y n (y,..., y n ) f Yl Y,...,Y l (y l y,..., y l ). l should red f Y,...,Y n (y,..., y n ) n f Yl Y,...,Y l (y l y,..., y l ). l ht is, the upper limit of the product n. Eq. (3.52) f Y,...,Y n (y,..., y n ) n f X (y i y i ) i should red f Y,...,Y n (y,..., y n ) n f X (y i y i ) tht is, the finl index on the left is n, not n. p. 68 Problem : X(r) r 2 X(r) r 2 Y (r) r /2 Y (r) r /2 p. 76, problem 43, lst line. B t β t. p. 84 Eighth line following (4.), r n (n) r (n) p. 85 Eq. (4.4) E(X) p X (x) x A i. E(X) x A xp X (x) 5
6 p. 28 Note tht if we tke g(x) x nd h(x, y), this generl form reduces to the previous form. Note tht if we tke g(x) nd h(x, y) y, this generl form reduces to the previous form. p. 2: f Y X (y x) f XY (x, y) f Y (y) ( ( )) x exp (/2)((x m X ) t (y m Y ) t )K mx U y m Y (2π) (k+m) det K U (2π)k det K X exp ( (x m X ) t K X (x m X)/2 ) (2π)m det K X / det K U ( exp (/2)((x m X ) t (y m Y ) t )K U ) + (x m X ) t K X (x m X) ( x mx y m Y ) f Y X (y x) f XY (x, y) f X (x) ( ( x exp (/2)((x m X ) t (y m Y ) t )K mx U y m Y (2π) (k+m) det K U )) (2π)k det K X exp ( (x m X ) t K X (x m X)/2 ) (2π)m det K U / det K X ( ( x exp (/2)((x m X ) t (y m Y ) t )K mx U y m Y ) + (/2)(x m X ) t K X (x m X) ) 6
7 Lst line: N k N n. p. 23 In the first displyed eqution following A direct proof of this result, E[(Y g(x)) 2 ] E[(Y E(Y X) + E(Y X) g(x)) 2 ] E[(Y E(Y X)) 2 ] 2E[(Y E(Y X))(E(Y X) g(x))] +E[(E(Y X) g(x)) 2 ]. E[(Y g(x)) 2 ] E[(Y E(Y X) + E(Y X) g(x)) 2 ] E[(Y E(Y X)) 2 ] +2E[(Y E(Y X))(E(Y X) g(x))] +E[(E(Y X) g(x)) 2 ]. tht is, the sign in front of the 2 on the penultimte line positive. p. 25 Second line from the bottom of the pge, K (X,Y ) E[((X t, Y t ) (m t X mt Y ))t ((X t, Y t ) (m t X mt Y ))] K (X,Y ) E[((X t, Y t ) (m t X, mt Y ))t ((X t, Y t ) (m t X, mt Y ))], tht is, the minus signs seprting the mens comms. p. 26 op line, K Y X E[(Y m Y )(Y m Y ) t ] K Y X E[(Y m Y )(X m X ) t ] p. 27 MMSE det(k(n) X ) det(k (n ) X ), () should red MMSE det(k(n+) X ) det(k (n) X ), (2) p. 28, four lines bove (2.64) nd one line below (4.64) b E(Y ) + AE(X) b E(Y ) AE(X) Eq. (4.64) MSE(A, b) r ( (Y AX b)(y AX b) t) r(k Y K Y X K X K XY ) 7
8 MSE(A, b) E [ r ( (Y AX b)(y AX b) t)] p. 29 op of the pge. r(k Y K Y X K X K XY ) MMSE(A, b) r ( (Y AX b)(y AX b) t) r ((Y m Y + A(X m X ) b + m Y + Am X ) (Y m Y + A(X m X ) b + m Y + Am X ) t) r ( K Y AK XY K Y X A t + AK X A t) + (b m Y Am X ) t (b m Y Am X ) MMSE(A, b) E [ r ( (Y AX b)(y AX b) t)] E [r ((Y m Y A(X m X ) b + m Y Am X ) (Y m Y A(X m X ) b + m Y Am X ) t)] r ( K Y AK XY K Y X A t + AK X A t) + (b m Y + Am X ) t (b m Y + Am X ) (4.65) b m Y + Am X. b m Y Am X. In heorem 4.6, K Y X E[(Y m Y )(Y m Y ) t ] K Y X E[(Y m Y )(X m X ) t ]. p. 22, first line, b E(Y ) + AE(X) b E(Y ) AE(X) p In proof of Lemm 4.4, finl eqution on pge: F Yn (y) F Y (y + ɛ) Pr(Y y + ɛ nd Y n > y) Pr(Y n y nd Y > y + ɛ) Pr(Y y + ɛ nd Y n > y) Pr( Y Y n ɛ). 8
9 F Yn (y) F Y (y + ɛ) Pr(Y n y nd Y > y + ɛ) Pr(Y y + ɛ nd Y n > y) Pr(Y n y nd Y > y + ɛ) Pr( Y Y n ɛ). p. 26, Problem 9. his problem considers some useful properties of utocorreltion or covrince function. his problem considers some useful properties of utocorreltion or covrince functions for rel-vlued rndom processes. E(X 2 t R X (t, t) R X (, ) E(X 2 t ) R X (t, t) R X (, ) ( right pren is missing) p. 262, problem2: Given two rndom processes {X t ; t } nd {X t ; t } should red Given two rndom processes {X t ; t } nd {Y t ; t } p. 267, Problem 4.37, the upper cse G k lower cse g k. p. 27, Problem 47. wo other rndom processes wo other rndom processes p. 273, Problem 4.57(c), E[X n ] E[X N ]. p. 289, the K Y (k, j)e should red σ 2 k j r2(min(k,j)+) r. r 2 p. 3 In severl formuls the index k n: N R X (k) < X n Xn k > lim X n Xn k N N k N R X (k) < X n Xn k > lim X n Xn k N N n N R X (k) lim X n (ω)x N N n k(ω), k 9
10 N R X (k) lim X n (ω)x N N n k(ω), n N P X R X () lim X n 2, N N k N P X R X () lim X n 2, N N n p. 33, the lst line in the top eqution should red nd not lim N N k (N ) lim N N N k (N ) ( k N )R X(k)e i2πfk tht is, the extr /N removed. p. 38 In Lemm 5., item 3, Eq. (5.6.2), ( k N )R X(k)e i2πfk E( X ) X. E(X) X. p. 39 Continuing the corrections of p. 38: in the proof of item 3 of the lemm, E( X ) E( X ) X X. E(X) E(X ) X X.
11 A relted error in the proof of item 5 is the presence of superfluous line in the sequence of inequlities. In prticulr, E[X n Y m XY ] E[X n Y m XY m + XY m XY ] E[(X n X)Y m] + E[X(Y m Y ) ] E[(X n X)Y m] + E[X(Y m Y ) ] E[ (X n X)Y m ] + E[ X(Y m Y ) ] X n X Y m + X Y m Y X n X Y m Y + Y + X Y m Y X n X ( Y m Y + Y ) + X Y m Y E[X n Y m XY ] E[X n Y m XY m + XY m XY ] p. 324: Replce E[(X n X)Y m] + E[X(Y m Y ) ] E[(X n X)Y m] + E[X(Y m Y ) ] X n X Y m + X Y m Y X n X Y m Y + Y + X Y m Y n X n X ( Y m Y + Y ) + X Y m Y ( n ) sin(π(t n )/ ) 2W x 2W π(t n )/ by n p. 325: Replce (5.) x (n ) sin(π(t n )/ ) π(t n )/ R X (t τ) n ( n ) sin(π(t n )/ ) R X 2W τ. π(t n )/ by R X (t τ) n R X (n τ) sin(π(t n )/ ). π(t n )/
12 by by p. 326: Replce the first eqution R X () R X () n n ( n ) sin(π(t n )/ ) R X 2W t. π(t n )/ R X (n t) Replce the penultimte eqution in the proof n,m:n mk n sin(π(t n )/ ). π(t n )/ sin(π(t n )/ ) sin(π(t m )/ ) π(t n )/ π(t m )/ sin(π(t n )/ ) sin(π( t (n k))) π(t n )/ π( t (n k)) sin(π( t k)) π( t k), n,m:n mk n sin(π(t n )/ ) sin(π(t m )/ ) π(t n )/ π(t m )/ sin(π(t n )/ ) sin(π(t + k n )/ ) π(t n )/ π(t + k n )/ sin(πk), πk Replce the finl eqution in the proof (just bove section 5.8.7) by lim N n N m N lim N n N m N sin(π(t n )/ ) R X ((n m) ) π(t n )/ sin(π(t n )/ ) R X ((n m) ) π(t n )/ 2 sin(π(t m )/ ) π(t m )/ R X (k) sin(π( t k)) π( t k) R X () sin(π(t m )/ ) π(t m )/ R X (k) sin(πk) πk R X ()
13 p. 327 In the equtions for R XN (t, s), the s severl times is incorrectly replced by t nd in the eqution preceeding (5.7), the subscript n should be m. hese re fixed by replcing [ N ] R XN (t, s) E[X N (t)xn(s)] E X n φ n (t) Xmφ m(t) so tht n m n E[X n Xm]φ n (t)φ m(t)] R X (t, s) lim N R X N (t, s) m λ N φ n (t)φ n(t) n λ n φ n (t)φ n(t). n Multiplying by φ-function nd integrting then yields by so tht R X (t, s)φ m (s) ds λ n φ n (t) n λ n φ n (t). [ N R XN (t, s) E[X N (t)xn(s)] E X n φ n (t) n m n E[X n Xm]φ n (t)φ m(s)] R X (t, s) lim N R X N (t, s) φ m (s)φ n(s) ds ] Xmφ m(s) m λ N φ n (t)φ n(s) n λ n φ n (t)φ n(s). n Multiplying by φ-function nd integrting then yields R X (t, s)φ m (s) ds λ n φ n (t) n λ m φ m (t). 3 φ m (s)φ n(s) ds
14 p. 328 In the middle of the pge, so tht λ n φ m(t)φ n (t) dt (λ n λ m) λ n φ m(t)φ n (t) dt λ m φ m(t)r X (t, s)φ n (s) ds dt ( ) φ n (s) R X (t, s)φ m(t) ds ( φ n (s) R X (s, t)φ m (t)) ds λ m φ n (t)φ m(t) dt φ n (t)φ m(t) dt. φ m(t)r X (t, s)φ n (s) ds dt ( ) φ n (s) R X (t, s)φ m(t)dt ds ( φ n (s) R X (s, t)φ m (t)dt) ds φ n (s)φ m(s) ds so tht replcing the dummy vrible s by t yields (λ n λ m) φ n (t)φ m(t) dt. p. 329 In the first eqution, first line, complex conjugte is missing: [( ) ( )] E[X n Xm] E X(t)φ n(t) dt X(s)φ m (s) ds [( E[X n Xm] E ) ( )] X(t)φ n(t) dt X (s)φ m (s) ds 4
15 In the lst eqution on the pge λ n is missing, should red φ n(t) n φ n(t) n R X (t, s)φ n (s) ds R X (t, s)φ n (s) ds φ n(t)φ n(t). n λ n φ n(t)φ n(t). p. 33: he missing λ n of p. 329 crries to this pge. he first eqution E[X N (t)x(t) ] E[X N (t)x(t) ] Ner the middle of the pge, chnge If R X hs Fourier series expnsion R X (τ) to If R X hs Fourier series expnsion R X (τ) n φ n(t)φ n(t), n λ n φ n(t)φ n(t), n n n b n e j2πnt/ b n e j2πnτ/ nd just below it chnge then the integrl eqution to be solved for the Krhunen Loeve expnsion is λφ(t) n b n e j2πnt/ φ(s) ds b n e j2πn(t s)/ φ(s) ds. n to 5
16 then the integrl eqution (5.7) to be solved for the Krhunen Loeve expnsion is λφ(t) n b n e j2πn(t s)/ φ(s) ds b n e j2πn(t s)/ φ(s) ds. n he subscripts in the text nd eqution t the bottom of the pge need repir, s do the relted subscripts t the top of p. 33. Chnge Guessing solution φ n (t) c n e j2πnt/ where c n is normlizing constnt, then c n e j2πnt/ c m e j2πmt/ dt c n c m so tht c n /. hen with the integrl eqution becomes λ ej2πnt/ φ n (t) ej2πnt/ n n b n b n e j2πnt/ b m ej2πnt/ t c n 2 δ N M j2πn(t s)/ ej2πns/ e e j2π(m n)s bm φ m (t), e j2π(n m)t/ dt which we lredy knew ws solution from the development for Fourier series. to Guessing solution φ m (t) c n e j2πmt/ where c m is normlizing constnt, then c n e j2πnt/ c me j2πmt/ dt c n c m t c n 2 δ n m ds ds e j2π(n m)t/ dt 6
17 so tht c n /. hen with the integrl eqution becomes λ ej2πmt/ φ m (t) ej2πmt/ n n b n b n e j2πnt/ b m ej2πmt/ j2πn(t s)/ ej2πms/ e e j2π(m n)s b m φ m (t), which we lredy knew ws solution from the development for Fourier series. p.334 he lst eqution on the pge, E( ɛ 2 n) E(ɛ 2 n) + { (h i g i ) E(X n Y n i ) } h j E(Y n j Y n i, i: n i K is missing right pren, it E( ɛ 2 n) E(ɛ 2 n) + { (h i g i ) E(X n Y n i ) i: n i K j: n j K j: n j K ds ds h j E(Y n j Y n i ) p. 35 A new problem begins t the top of the pge, it is missing number 5. he remining problems should ll be dvnced by one. p. 48, Problem 28 Find the power spectrl densities S X (f) nd S Y (f)? Find the power spectrl densities S X (f) nd S Y (f). p. 435, Problem A.23 (b) hs typo nd s result the integrl blows up. It replced by x dxe x dye y. p. 439 (B.7) k 2 q k k 2q ( q) 3 + ( q) 2 7 },
18 insted of k 2 q k k 2 ( q) + 3 ( q) 2 he second line of the next eqution insted of q q k 2 q k q k k 2 q k q k kq k q k kq k q k k 2 q k ( q) 2 q k k 2 q k ( q) 2 k he finl eqution of the proof insted of k 2 q k k k 2 q k k p. 442 (B.3) chnged from 2q ( q) + 3 ( q), 2 2 ( q) + 3 ( q), 2 2σ 2 e (x m)2 /2σ 2 dx e r2 σ dr 2σ 2 2π. 2π to 2πσ 2 e (x m)2 /2σ 2 dx e r2 /2 σ dr 2πσ 2 2πσ. 2πσ 2 p. 446: Uniform pmf. Ω Z n {,,..., n } nd p(k) /n; k Z n. men: (n + )/2 8
19 vrince: (2n + )(n + )n/6 ((n + )/2) 2. Uniform pmf. Ω Z n {,,..., n } nd p(k) /n; k Z n. men: (n )/2 vrince: (2n )(n )/6 [(n )/2] 2 (n 2 )/2. he vrince of the geometric pmf ( p)/p 2, not 2/p 2. p. 447, the men of the Uniform pdf (b+)/2 nd not (b )/2. he vrince of the Gmm pdf is 2 b nd not b. 9
Oscillatory integrals
Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)
AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval
AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with
Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:
s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =
Solutions_3. 1 Exercise Exercise January 26, 2017
s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.
etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.
Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Probability theory STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 TABLE OF FORMULÆ (2016) Basic probability theory. One-dimensional random variables
Lund University Centre for Mthemticl Sciences Mthemticl Sttistics STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 TABLE OF FORMULÆ (06) Probbility theory Bsic probbility theory Let S be smple spce, nd let
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing
University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(
Some definite integrals connected with Gauss s sums
Some definite integrls connected with Guss s sums Messenger of Mthemtics XLIV 95 75 85. If n is rel nd positive nd I(t where I(t is the imginry prt of t is less thn either n or we hve cos πtx coshπx e
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Fourier Transform. Fourier Transform
ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following
Lecture 5: Numerical Integration
Lecture notes on Vritionl nd Approximte Metods in Applied Mtemtics - A Peirce UBC 1 Lecture 5: Numericl Integrtion Compiled 15 September 1 In tis lecture we introduce tecniques for numericl integrtion,
LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS
Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*
Studies in Mthemtil Sienes Vol. 5, No.,, pp. [9 97] DOI:.3968/j.sms.938455.58 ISSN 93-8444 [Print] ISSN 93-845 [Online] www.snd.net www.snd.org Osilltion of Nonliner Dely Prtil Differene Equtions LIU Gunghui
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
INTEGRAL INEQUALITY REGARDING r-convex AND
J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)
Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Notes on Tobin s. Liquidity Preference as Behavior toward Risk
otes on Tobin s Liquidity Preference s Behvior towrd Risk By Richrd McMinn Revised June 987 Revised subsequently Tobin (Tobin 958 considers portfolio model in which there is one sfe nd one risky sset.
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT
Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Chapter 5, 6 Multiple Random Variables ENCS Probability and Stochastic Processes
Chapter 5, 6 Multiple Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 Vector Random Variables A vector r.v. X is a function X : S R n, where S is the
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution
L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Corrections to Partial Differential Equations and Boundary-Value Problems with Applications by M. Pinsky, August 2001
Corrections to Prtil Differentil Equtions nd Boundry-Vlue Problems with Applictions by M. Pinsky, August pge 4, exercise : u(x, y) = e kx e k y pge 5, line : Newton s lw of... pge 5, line : u(x i ; t)
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Pairs of Random Variables
Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities
6.64, Continuum Electromechnics, Fll 4 Prof. Mrus Zhn Lecture 8: Electrohydrodynmic nd Ferrohydrodynmic Instilities I. Mgnetic Field Norml Instility Courtesy of MIT Press. Used with permission. A. Equilirium
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Electromagnetic Waves I
Electromgnetic Wves I Jnury, 03. Derivtion of wve eqution of string. Derivtion of EM wve Eqution in time domin 3. Derivtion of the EM wve Eqution in phsor domin 4. The complex propgtion constnt 5. The