Part 3 REFLECTION AND TRANSMISSION

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Part 3 REFLECTION AND TRANSMISSION"

Transcript

1 Part 3 REFLECTION AND TRANSMISSION

2 Normal Inidene Inident Wave Refletion ρ, 1 1 ρ, Transmission u e i ( k1 x t ) i A ω ( 1 ) i τ 1 1 ei k i uz i iωaz i x ω t u e i ( k 1 x t ) r A ω ( 1 ) r τ r u r Z1 iωar Z1 ei k x ω t t e i ( k x t ) ( ) t τ ei k t uz t iωaz t x ω t u A ω ( physial sign onvention) Boundary Conditions: for any value of t at x ui + ur ut τ i +τ r τ t Ai Ar At A Z + A Z A Z i 1 r 1 t

3 Refletion/Transmission Coeffiients Rd Ar Ai Td At Ai Z 1 + R d Td 1 Rd Td Z 1 displaement: stress: Rd Td Rs Ts Ar Z Z 1 Ai Z + Z1 At Ai Z1 Z1 + Z τr Z Z 1 τi Z + Z1 τ t τi Z Z1 + Z steel-water interfae ( ρ kg/m ss s, 6 ρ kg/m s ) w w a) p i steel water p t p r b) water steel p i p t p r

4 Power Coeffiients: Pr + Pt Pi (Instantaneous) Intensity: Ir + It Ii τ Zv I τ v Zv ωzu Z Z1 Z1 Z1 + Z Z1 Z + Z1 Z1 + Z Speial ases: solid/vauum ( Z ) Rd solid/rigid ( Z R 1, T, R 1, T s ) d s s Rd R 1, T, T s d s Shear wave at normal inidene: displaement: Ar Zs Z R s1 d Ai Zs + Zs1 Td t Z A s1 Ai Zs1 + Zs stress: Rs τr Zs Z s1 τi Zs + Zs1 Ts τt Z s τi Zs1 + Zs

5 Impedane-Translation Theorem Z 1 inident wave refleted wave Z input A + d Z o,k o A_ x Z load Z transmitted wave τ ( x) A exp( ik x) + A exp( ik x) + o o τ/ x 1 v ( x) [ A+ exp( ikox) A exp( ikox)] iωρ Z The input impedane of the layer: o o Zinput τ () A A Z + + o v() A+ A Zload ik d τ ( d ) o Z A + e + A e v( d) A e o A e ik d o ik d ikod + o A Z o o load e ik d Z ik d o e + + A Z ikod ikod load e Zo e

6 Translation Formula: os( ) sin( ) os( ) sin( ) Zload kd o izo kd Z o input Zo Z o kd o iz load kd o Refletion Coeffiient: R Zinput Z1 Zinput + Z1 Z Z load Immersed/Embedded Layer: Z Z 1 R itan( k od)( Zo Z 1 ) itan( k )( od Zo + Z1 ) ZoZ1 T (1 R ) R ξsin( kd o ) ξ sin ( kd o ) + 1 T 1 ξ sin ( kd o ) + 1 impedane ontrast: ξ ½ Zo/ Z1 Z1/ Zo

7 Refletion/Transmission at a Layered Interfae Inident Wave Refletion ρ, 1 1 ρ o, o ρ, 1 1 Transmission T 1 ξ sin ( kd o ) + 1 Transmission Coeffiient in water Plexiglas Steel Thikness / Wavelength

8 Refletivity of Thin Craks in Solids R ξsin( kd o ) ξ sin ( kd o ) + 1 lim d R ξ k d o 1 Refletion Coeffiient air gap in steel water-filled rak in steel log {Frequeny x Thikness [MHz mm]}

9 Impedane Mathing Z os( kd) iz sin( kd) os( ) sin( ) Z load o o o input Zo Z o kd o iz load kd o d (n+ 1) λ / 4 o ko d π (n+ 1) Zinput Z o Zload Perfet mathing by quarter-wavelength layer: enter frequeny fo d Zo Z1Z λo o 4 4 fo Bandwidth: R( f) Zinput ( f) Z1 Zinput ( f) + Z1 Zinput ( f) Zo π f π f Zload os( d) izo sin( d) o o π f π f Zo os( d) izload sin( d) o o

10 Zo Z1Z and Zload Z Zinput ( f) Z1 Z π f π f Zos( d) i Z1Zsin( d) o o π f π f Z1Zos( d) izsin( d) o o R R R( fo) + ( f fo) f f f o Z ( f ) Z input o 1 R( f o) r Z/ Z1 π f π f ros( d) i rsin( d) input ( ) o Z f Z o 1 π f π f os( d) i rsin( d) o o sin( kd o ) 1, and os( kd o ) Δ π fo fo f Z ( f) Z input 1 rδ i r Δ i r

11 R( f) rδ i r Z1 Z1 Δ i r Δ( r 1) rδ i r Δ ( r + 1) i r Z1 + Z1 Δ i r R( f) r r 1 r 1π i r r i Δ fo fo f Tenergy ( r 1) ( r 1) π f 1 1 o f Δ 4r 4r fo Br 1 f f1 4 r 1.8 r Q fo π( r 1) r 1 f 1 and f are the half-power (-3 db) points

12 Quarter-Wavelength Mathing Layer quarter-wavelength mathing layer between quartz and water 1 Energy Transmission exat unmathed approximate.5.5 Thikness / Wavelength quarter-wavelength mathing layer between steel and water 1 Energy Transmission exat unmathed approximate.5.5 Thikness / Wavelength

13 Continuous Transition ultrasoni transduer inident wave eho from the bottom j N lear water ρ, 1 1 mud ρ oj, oj j 1 solid rok ρ, For the jth layer: Zoj ρ oj oj, koj π f, (j 1,,... N) oj Reursive relationship: d N Zload1 Z ρ Zinp j Zoj Zload j os( kojd) izoj sin( kojd) Zoj os( kojd) izload j sin( kojd) Refletion oeffiient: Z load j+ 1 Zinp j R Zinp N Z1, where Z1 ρ 11 Zinp N + Z1

14 Imperfet Interfae, Finite Interfaial Stiffness u e i ( k1 x t ) i A ω ( 1 ) i τ 1 1 ei k i uz i iωaz i x ω t u e i ( k 1 x t ) r A ω ( 1 ) r τ r u r Z1 iωar Z1 ei k x ω t u e i ( k x t ) t A ω ( ) t τ ei k t uz t iωaz t x ω t x ρ 1, 1 Inident Wave Refletion K ρ, Transmission Boundary Conditions: ui + ur +Δ u ut τ i +τ r τ t τ +τ Δ u K τ K i r t K denotes the normal K n or transverse K t interfaial stiffness Slip boundary onditions: Kn/ Kt Low-density interphase layer: K / K 3 6 Kissing bond: K / K 3 Partial bond: K / K.5 1 n n n t t t

15 Refletion and Transmission Coeffiients Continuity of displaement: A A A i r t τt K Ai Ar At 1 iωz K Continuity of stress: A Z + A Z A Z i 1 r 1 t Stress refletion and transmission oeffiients: Imperfet interfae: R τr At Z Z1 + iωz1z/ K τi Ai Z + Z1 iωz1z/ K T τt At Z Z τi Ai Z1 Z1 + Z iωz1z/ K Ideal interfae (K ): R T τ r τi τ t τi Z Z Z + Z 1 1 Z Z + Z 1 lim R ω R and lim T T ω lim R 1 and lim T ω ω

16 Frequeny Dependene Moduli of the refletion and transmission oeffiients of an imperfet steelaluminum bond of K 114 N/ m3 for longitudinal wave at normal inidene Refletion and Transmission Coeffiients Refletion Transmission Frequeny [MHz] For similar materials ( Z 1 Z Z): R T iωz/ K iωω / 1 iωz/ K 1 iω/ Ω iωz/ K 1 iω/ Ω Ω K/ Z is the harateristi transition frequeny

17 Oblique Inidene, Snell s Law 1 θ 1 λ 1 Λ λ θ λ Λ sin θ λ sin θ 1 1 f sinθ f sinθ 1 1 sinθ sinθ 1 1

18 Refletion and Transmission y y θ s1 R s I s θ si θ s1 R s I d θ di θd1 R d θd1 R d solid 1 z solid 1 z solid solid θ s θ s θ d T s T d θ d T s T d Snell's Law: sin θ sin θ sinθ sin θ sin θ sinθ Constitutive relationships: di si d1 s1 d s d1 s1 d1 s1 d s u u z y τ yy λ + ( λ + μ) z y uy u τ ( z zy μ + ) z y μ 1 ρ1s 1, λ 1 + μ 1 ρ1d 1, μ ρs, and λ + μ ρ d

19 Boundary Conditions both normal and transverse veloity and stress omponents must be ontinuous at the interfae () (1) uy u y () (1) uz u z () (1) τ yy τ yy () (1) τzy τzy longitudinal inidene: ( d1) ( d) ( s1) ( s) ( i) uy + uy uy + u y u y ( d1) ( d) ( s1) ( s) ( i) uz + uz uz + u z u z ( d1) ( d) ( s1) ( s) ( i) τ yy +τyy τ yy +τ yy τ yy ( d1) ( d) ( s1) ( s) ( i) τ zy +τzy τ zy +τzy τzy shear inidene Id 1, Is Is 1, Id a11 a1 a13 a14 Rd b1 1 a1 a a3 a 4 T d b or a31 a3 a33 a34 Rs b3 3 a41 a4 a43 a44 Ts b4 4 longitudinal [b] or shear wave inidene []

20 The matrix elements aij, bi, and i an be easily alulated from simple geometrial onsiderations: a osθd1 osθd sinθs1 sinθs sin θd1 sin θd osθs1 osθ s Zd1osθs1 Zdosθs Zs1sin θs1 Zssin θs s1 Z 1 sin s s θd1 Zs sin θd Zs1osθs1 Zsosθ s d1 d (the ommon -iω fator was omitted in the last two rows) Cramer's rule: os θdi sinθsi sinθ di osθ si b Zd1osθsi and Zs1 sin θsi Z s1 s1 sin θ di Zs1 osθ si d1 a(1) a() a(3) a(4) d, d, s, s a a a a det[ ] det[ ] det[ ] det[ ] R T R T det[ ] det[ ] det[ ] det[ ]

21 Speial Cases a) fluid-vauum b) fluid-fluid ( d > d1 ) I d R dd I d R dd θ i θ r θ i θ r fluid vauum fluid 1 fluid θ d T dd ) solid-vauum d) solid-vauum (longitudinal inidene) (shear inidene) R ds I s R ss I d θ i θ s θr R dd θ i θ r θ d R sd solid solid vauum vauum

22 e) fluid-solid I d R dd θ i θ r fluid solid θ d T dd θ s T ds f) solid-fluid g) solid-fluid (longitudinal inidene) (shear inidene) θs1 R ds I s θ i θ r θ s1 R ss I d solid θ i θ r θd1 R dd solid θd1 R sd fluid fluid θ d T dd θ d T sd

23 h) solid-solid i) solid-solid (longitudinal inidene) (shear inidene) θ s1 R ds I s θ i θ r θ s1 R ss I d θ i θ r θd1 R dd θd1 R sd solid 1 solid 1 solid solid θ s θ s θ d T ds T dd θ d T ss T sd Fluid-vauum: R 1, θ dd r θ i Fluid-fluid: sin sin θ, d θi θr θ i d d1 sin θd d d1 sin θ i then d < d1 θd < θ i then d > d1 θd > θ i There exists one ritial angle ( sin θd 1, θ d 9 ) sin θ r1 d1 d

24 Solid-Vauum Interfae, Mode Conversion P-wave inident (no ritial angle): sin θ sin ( ), s θi θr θd θ i s d S-wave inident: sin θ sin ( ), d θi θr θs θ i There exists one ritial angle (sin θd 1 or θd 9 ) d s sin θ r1 s d The boundary onditions require that both normal and transverse stress disappear at the surfae. Zd osθs Zssin θs Zd osθs Rdd s Z sin os s s θd Zs θs R ds Zs sin θd d d Rdd os θ s s sin θ sin s θd d os θ s s + sin θ sin s θd d depends on the Poisson ratio of the solid R dd ( ) R (9 ) 1 dd

25 Longitudinal and Shear Wave Refletion Coeffiients ν.3 (solid) and ν.35 (dashed) Refletion Coeffiient longitudinal-tolongitudinal longitudinal-toshear Angle of Inidene [deg] 1. 1 shear-to-shear Refletion Coeffiient shear-to-longitudinal Angle of Inidene [deg]

26 Polar diagrams longitudinal inidene o 3 45 o 15 o o 15 o 3 o longitudinal shear 45 o 75 o 9 o 6 o 6 o 75 o 9 o shear inidene o 3 45 o 15 o o 15 o 3 o longitudinal shear 45 o 75 o 9 o 6 o 6 o 75 o 9 o

27 Fluid-Solid Interfae ( d1) ( d) ( s) ( i) uy + uy + u y u y ( d1) ( d) ( s) ( i) τ yy +τ yy +τ yy τ yy ( d) ( s) +τ zy +τ zy a11 a1 a14 Rdd b1 a31 a3 a 34 T dd b 3 a4 a44 Tds osθ osθ sin θ R osθ i d s dd i Zd1 Zdos s Zssin s T dd Z θ θ d1 s T sin os ds Zs θd Zs θ s d Rdd det[ a (1)] det[ a] osθi osθd sin θs Zd1 Zdosθs Zssin θs Z s s sinθd d Zsosθs osθi osθd sin θs Zd1 Zdosθs Zssin θs Z s s sinθd d Zsosθs

28 Rdd osθi osθd sin θs ρf d osθs ssin θs ssinθd d osθs osθi osθd sin θs ρf d osθs ssin θs ssinθd d osθs ρ ρ1/ ρ f d1, d d, s s, i di d1 θ θ θ, θ d θ d, and θ s θ s R dd i d s s d s f d s d s d s i d s s d s f d s d s d s os θ ( os θ + sin θ sin θ ) ρ ( os θ osθ + sin θ sin θ ) os θ ( os θ + sin θ sin θ ) + ρ ( os θ osθ + sin θ sin θ )

29 Displaement, Stress, Intensity, and Power Coeffiients ( stress) ( displaement) Zβj αβ αβ Zα1 Γ Γ ( stress) Z Γ αβ Γ αβ Z βj α1 Γ stands for either R (j 1) or T (j ) α and β are either d or s ( intensity) ( displaement) ( stress) Z βj Γ αβ Γαβ Γ αβ Γ αβ Z α 1 os Z os ( power) ( intensity) θβj βj θβj Γ αβ Γ αβ Γ osθ αβ α1 Zα1 osθα1 R ( power) ( power) ( power) ( power) αd + R αs + T αd + T αs 1 Law of reiproity: ( power) ( power) αβ βα Γ Γ

30 Energy Refletion and Transmission Coeffiients aluminum in water Energy Refletion and Transmission Coeffiients refletion longitudinal transmission Angle of Inidene [deg] shear transmission Energy Refletion and Transmission Coeffiients refletion longitudinal transmission steel in water Angle of Inidene [deg] shear transmission

31 Energy Refletion and Transmission Coeffiients 1 Plexiglas/aluminum interfae Energy Refletion Coeffiients longitudinal refletion shear refletion Angle of Inidene [deg].6 Energy Transmission Coeffiients longitudinal transmission shear transmission Angle of Inidene [deg]

32 Slip Boundary Conditions ( d1) ( d) ( s1) ( s) uy + uy uy + u () i y u normal displaement y ( d1) ( d) ( s1) ( s) tangential displaement uz + uz uz + u () i z u z normal tration ( d1) ( d) ( s1) ( s) () τ yy +τyy τ yy +τ i yy τ yy tangential tration ( d1) ( d) ( s1) ( s) ( i) τ zy +τzy τ zy +τzy τzy a11 a1 a13 a14 Rd b1 1 a1 a a3 a 4 T d b or a31 a3 a33 a34 Rs b3 3 a41 a4 a43 a44 Ts b4 4 Slip boundary onditions: ontinuity of the normal displaement and tration vanishing tangential tration on both sides a11 a1 a13 a14 Rd b1 1 a31 a3 a33 a 34 T d b or a41 a43 Rs b4 4 a4 a44 Ts

33 Angle-Beam Transduers wedge θ i transduer ouplant θ s speimen s i sin θ sin θ s i Plexiglas/Aluminum, longitudinal-to-shear transmission Energy Transmission.7.6 "slip" boundary "rigid" boundary Angle of Refration [deg]

34 SH Wave Refletion and Transmission at a Solid-Solid Interfae I θ i y θ s1 θ i R solid 1 solid z θ s T () i ( r) () t ux + ux ux and () i ( r) () t τ xy +τ xy τ xy ( r) ( t) ( i) x x x ( r) ( t) ( i) xy xy xy u + u u τ + τ τ or a11 a1 R 1 a13 a 14 T All displaements are in the x diretion only (without the ommon i t e ω term): () i i( os i ks1 y sin i ks1z) x u e θ + θ () i i( os i ks1 y sin i ks1z) x u e θ + θ () t i( os t ks y sin t ks z) x u Te θ + θ θ t θ s, sin θ t s/ s1sin θi

35 Stress omponents: xy xy s x/ τ με ρ u y () i ( os 1 sin 1 ) 1 os i i k s y i k s xy i Zs i e θ + θ z τ ω θ ( r ) (os 1 sin 1 ) 1 os i i k s y i k s xy i Zs i Re θ + θ z τ ω θ () t ( os sin ) os i t k s y t k s xy i Zs t Te θ + θ z τ ω θ Z s sρ is the speifi aousti impedane of the medium 1 1 R 1 Z osθ Z osθ T Z osθ s1 i s t s1 i (the seond row was divided by -iω) (Displaement) refletion and transmission oeffiients: R T 1 1 Zs1osθi Zsosθt Zs1osθi Zsosθ t 1 1 Zs1osθ i + Zsosθt Zs1osθi Zsosθt 1 1 Zs1osθi Zs1osθi Zs1 osθ i 1 1 Zs1osθ i + Zsosθt Zs1osθi Zsosθt Normal omponent of the aousti impedane Z' s Zsosθ R Z ' ' s1 Zs Z ' ' s1 + Zs and T Z ' s1 Z ' ' s1 + Zs

36 Solid-vauum interfae (free surfae): Rayleigh Wave Zd osθs Zssin θs Rd Z s s sin θd Zsosθs R s d Nontrivial solution exists if: os θ s s + sinθ sin s θ d d sin θs sin θd 1 s d R Relative veloities: s 1 ν ξ ( ) d (1 ν) Exat Rayleigh equation: η R s η6 8η 4+ 8(3 ξ) η 16(1 ξ ) Approximate expression: η ν 1+ν

Part 4 RAYLEIGH AND LAMB WAVES

Part 4 RAYLEIGH AND LAMB WAVES Part 4 RAYLEIGH AND LAMB WAVES Rayleigh Surfae Wave x x 1 x 3 urfae wave x 1 x 3 Partial Wave Deompoition Diplaement potential: u = ϕ + ψ Wave equation: 1 ϕ 1 ψ ϕ = = k ϕ an ψ = = k t t ψ Wave veloitie:

Διαβάστε περισσότερα

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M Maxwell' s Equations in vauum E ρ ε Physis 4 Final Exam Cheat Sheet, 7 Apil E B t B Loent Foe Law: F q E + v B B µ J + µ ε E t Consevation of hage: J + ρ t µ ε ε 8.85 µ 4π 7 3. 8 SI ms) units q eleton.6

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Chap. 6 Pushdown Automata

Chap. 6 Pushdown Automata Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

Chapter 2. Stress, Principal Stresses, Strain Energy

Chapter 2. Stress, Principal Stresses, Strain Energy Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Mechanics of Materials Lab

Mechanics of Materials Lab Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Enantioselective Organocatalytic Michael Addition of Isorhodanines to α,

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

3.5 - Boundary Conditions for Potential Flow

3.5 - Boundary Conditions for Potential Flow 13.021 Marine Hydrodynamics, Fall 2004 Lecture 10 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 10 3.5 - Boundary Conditions for Potential

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

LTI Systems (1A) Young Won Lim 3/21/15

LTI Systems (1A) Young Won Lim 3/21/15 LTI Systems (1A) Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

Διαβάστε περισσότερα

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF NAVAL ARCHITECTURE AND ARINE ENGINEERING SHIPBUILDING TECHNOLOGY LABORATORY EXPERIENTAL AND NUERICAL STUDY OF A STEEL-TO-COPOSITE ADHESIVE JOINT UNDER

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

ITU-R BT ITU-R BT ( ) ITU-T J.61 ( ITU-R BT.439- ITU-R BT.439- (26-2). ( ( ( ITU-T J.6 ( ITU-T J.6 ( ( 2 2 2 3 ITU-R BT.439-2 4 3 4 K : 5. ITU-R BT.24 :. ITU-T J.6. : T u ( ) () (S + L = M) :A :B :C : D :E :F :G :H :J :K :L :M :S :Tsy :Tlb

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear 2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F 441.6 441.6 441.6 441.6 30 50 70 100 TEM00 TEM00 TEM00 TEM00 BEAM DIAMETER ( 1/e2) 1.1 1.1 1.2 1.2 0.5 0.5 0.5 0.4 RATIO

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Monolithic Crystal Filters (M.C.F.)

Monolithic Crystal Filters (M.C.F.) Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Seria : 0. T_ME_(+B)_Strength of Materia_9078 Dehi Noida Bhopa Hyderabad Jaipur Luckno Indore une Bhubanesar Kokata atna Web: E-mai: info@madeeasy.in h: 0-56 CLSS TEST 08-9 MECHNICL ENGINEERING Subject

Διαβάστε περισσότερα

Linearized Lifting Surface Theory Thin-Wing Theory

Linearized Lifting Surface Theory Thin-Wing Theory 13.021 Marine Hdrodnamics Lecture 23 Copright c 2001 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hdrodnamics Lecture 23 Linearized Lifting Surface Theor Thin-Wing Theor

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα