Part 3 REFLECTION AND TRANSMISSION
|
|
- Σιμωνίδης Αλεξάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Part 3 REFLECTION AND TRANSMISSION
2 Normal Inidene Inident Wave Refletion ρ, 1 1 ρ, Transmission u e i ( k1 x t ) i A ω ( 1 ) i τ 1 1 ei k i uz i iωaz i x ω t u e i ( k 1 x t ) r A ω ( 1 ) r τ r u r Z1 iωar Z1 ei k x ω t t e i ( k x t ) ( ) t τ ei k t uz t iωaz t x ω t u A ω ( physial sign onvention) Boundary Conditions: for any value of t at x ui + ur ut τ i +τ r τ t Ai Ar At A Z + A Z A Z i 1 r 1 t
3 Refletion/Transmission Coeffiients Rd Ar Ai Td At Ai Z 1 + R d Td 1 Rd Td Z 1 displaement: stress: Rd Td Rs Ts Ar Z Z 1 Ai Z + Z1 At Ai Z1 Z1 + Z τr Z Z 1 τi Z + Z1 τ t τi Z Z1 + Z steel-water interfae ( ρ kg/m ss s, 6 ρ kg/m s ) w w a) p i steel water p t p r b) water steel p i p t p r
4 Power Coeffiients: Pr + Pt Pi (Instantaneous) Intensity: Ir + It Ii τ Zv I τ v Zv ωzu Z Z1 Z1 Z1 + Z Z1 Z + Z1 Z1 + Z Speial ases: solid/vauum ( Z ) Rd solid/rigid ( Z R 1, T, R 1, T s ) d s s Rd R 1, T, T s d s Shear wave at normal inidene: displaement: Ar Zs Z R s1 d Ai Zs + Zs1 Td t Z A s1 Ai Zs1 + Zs stress: Rs τr Zs Z s1 τi Zs + Zs1 Ts τt Z s τi Zs1 + Zs
5 Impedane-Translation Theorem Z 1 inident wave refleted wave Z input A + d Z o,k o A_ x Z load Z transmitted wave τ ( x) A exp( ik x) + A exp( ik x) + o o τ/ x 1 v ( x) [ A+ exp( ikox) A exp( ikox)] iωρ Z The input impedane of the layer: o o Zinput τ () A A Z + + o v() A+ A Zload ik d τ ( d ) o Z A + e + A e v( d) A e o A e ik d o ik d ikod + o A Z o o load e ik d Z ik d o e + + A Z ikod ikod load e Zo e
6 Translation Formula: os( ) sin( ) os( ) sin( ) Zload kd o izo kd Z o input Zo Z o kd o iz load kd o Refletion Coeffiient: R Zinput Z1 Zinput + Z1 Z Z load Immersed/Embedded Layer: Z Z 1 R itan( k od)( Zo Z 1 ) itan( k )( od Zo + Z1 ) ZoZ1 T (1 R ) R ξsin( kd o ) ξ sin ( kd o ) + 1 T 1 ξ sin ( kd o ) + 1 impedane ontrast: ξ ½ Zo/ Z1 Z1/ Zo
7 Refletion/Transmission at a Layered Interfae Inident Wave Refletion ρ, 1 1 ρ o, o ρ, 1 1 Transmission T 1 ξ sin ( kd o ) + 1 Transmission Coeffiient in water Plexiglas Steel Thikness / Wavelength
8 Refletivity of Thin Craks in Solids R ξsin( kd o ) ξ sin ( kd o ) + 1 lim d R ξ k d o 1 Refletion Coeffiient air gap in steel water-filled rak in steel log {Frequeny x Thikness [MHz mm]}
9 Impedane Mathing Z os( kd) iz sin( kd) os( ) sin( ) Z load o o o input Zo Z o kd o iz load kd o d (n+ 1) λ / 4 o ko d π (n+ 1) Zinput Z o Zload Perfet mathing by quarter-wavelength layer: enter frequeny fo d Zo Z1Z λo o 4 4 fo Bandwidth: R( f) Zinput ( f) Z1 Zinput ( f) + Z1 Zinput ( f) Zo π f π f Zload os( d) izo sin( d) o o π f π f Zo os( d) izload sin( d) o o
10 Zo Z1Z and Zload Z Zinput ( f) Z1 Z π f π f Zos( d) i Z1Zsin( d) o o π f π f Z1Zos( d) izsin( d) o o R R R( fo) + ( f fo) f f f o Z ( f ) Z input o 1 R( f o) r Z/ Z1 π f π f ros( d) i rsin( d) input ( ) o Z f Z o 1 π f π f os( d) i rsin( d) o o sin( kd o ) 1, and os( kd o ) Δ π fo fo f Z ( f) Z input 1 rδ i r Δ i r
11 R( f) rδ i r Z1 Z1 Δ i r Δ( r 1) rδ i r Δ ( r + 1) i r Z1 + Z1 Δ i r R( f) r r 1 r 1π i r r i Δ fo fo f Tenergy ( r 1) ( r 1) π f 1 1 o f Δ 4r 4r fo Br 1 f f1 4 r 1.8 r Q fo π( r 1) r 1 f 1 and f are the half-power (-3 db) points
12 Quarter-Wavelength Mathing Layer quarter-wavelength mathing layer between quartz and water 1 Energy Transmission exat unmathed approximate.5.5 Thikness / Wavelength quarter-wavelength mathing layer between steel and water 1 Energy Transmission exat unmathed approximate.5.5 Thikness / Wavelength
13 Continuous Transition ultrasoni transduer inident wave eho from the bottom j N lear water ρ, 1 1 mud ρ oj, oj j 1 solid rok ρ, For the jth layer: Zoj ρ oj oj, koj π f, (j 1,,... N) oj Reursive relationship: d N Zload1 Z ρ Zinp j Zoj Zload j os( kojd) izoj sin( kojd) Zoj os( kojd) izload j sin( kojd) Refletion oeffiient: Z load j+ 1 Zinp j R Zinp N Z1, where Z1 ρ 11 Zinp N + Z1
14 Imperfet Interfae, Finite Interfaial Stiffness u e i ( k1 x t ) i A ω ( 1 ) i τ 1 1 ei k i uz i iωaz i x ω t u e i ( k 1 x t ) r A ω ( 1 ) r τ r u r Z1 iωar Z1 ei k x ω t u e i ( k x t ) t A ω ( ) t τ ei k t uz t iωaz t x ω t x ρ 1, 1 Inident Wave Refletion K ρ, Transmission Boundary Conditions: ui + ur +Δ u ut τ i +τ r τ t τ +τ Δ u K τ K i r t K denotes the normal K n or transverse K t interfaial stiffness Slip boundary onditions: Kn/ Kt Low-density interphase layer: K / K 3 6 Kissing bond: K / K 3 Partial bond: K / K.5 1 n n n t t t
15 Refletion and Transmission Coeffiients Continuity of displaement: A A A i r t τt K Ai Ar At 1 iωz K Continuity of stress: A Z + A Z A Z i 1 r 1 t Stress refletion and transmission oeffiients: Imperfet interfae: R τr At Z Z1 + iωz1z/ K τi Ai Z + Z1 iωz1z/ K T τt At Z Z τi Ai Z1 Z1 + Z iωz1z/ K Ideal interfae (K ): R T τ r τi τ t τi Z Z Z + Z 1 1 Z Z + Z 1 lim R ω R and lim T T ω lim R 1 and lim T ω ω
16 Frequeny Dependene Moduli of the refletion and transmission oeffiients of an imperfet steelaluminum bond of K 114 N/ m3 for longitudinal wave at normal inidene Refletion and Transmission Coeffiients Refletion Transmission Frequeny [MHz] For similar materials ( Z 1 Z Z): R T iωz/ K iωω / 1 iωz/ K 1 iω/ Ω iωz/ K 1 iω/ Ω Ω K/ Z is the harateristi transition frequeny
17 Oblique Inidene, Snell s Law 1 θ 1 λ 1 Λ λ θ λ Λ sin θ λ sin θ 1 1 f sinθ f sinθ 1 1 sinθ sinθ 1 1
18 Refletion and Transmission y y θ s1 R s I s θ si θ s1 R s I d θ di θd1 R d θd1 R d solid 1 z solid 1 z solid solid θ s θ s θ d T s T d θ d T s T d Snell's Law: sin θ sin θ sinθ sin θ sin θ sinθ Constitutive relationships: di si d1 s1 d s d1 s1 d1 s1 d s u u z y τ yy λ + ( λ + μ) z y uy u τ ( z zy μ + ) z y μ 1 ρ1s 1, λ 1 + μ 1 ρ1d 1, μ ρs, and λ + μ ρ d
19 Boundary Conditions both normal and transverse veloity and stress omponents must be ontinuous at the interfae () (1) uy u y () (1) uz u z () (1) τ yy τ yy () (1) τzy τzy longitudinal inidene: ( d1) ( d) ( s1) ( s) ( i) uy + uy uy + u y u y ( d1) ( d) ( s1) ( s) ( i) uz + uz uz + u z u z ( d1) ( d) ( s1) ( s) ( i) τ yy +τyy τ yy +τ yy τ yy ( d1) ( d) ( s1) ( s) ( i) τ zy +τzy τ zy +τzy τzy shear inidene Id 1, Is Is 1, Id a11 a1 a13 a14 Rd b1 1 a1 a a3 a 4 T d b or a31 a3 a33 a34 Rs b3 3 a41 a4 a43 a44 Ts b4 4 longitudinal [b] or shear wave inidene []
20 The matrix elements aij, bi, and i an be easily alulated from simple geometrial onsiderations: a osθd1 osθd sinθs1 sinθs sin θd1 sin θd osθs1 osθ s Zd1osθs1 Zdosθs Zs1sin θs1 Zssin θs s1 Z 1 sin s s θd1 Zs sin θd Zs1osθs1 Zsosθ s d1 d (the ommon -iω fator was omitted in the last two rows) Cramer's rule: os θdi sinθsi sinθ di osθ si b Zd1osθsi and Zs1 sin θsi Z s1 s1 sin θ di Zs1 osθ si d1 a(1) a() a(3) a(4) d, d, s, s a a a a det[ ] det[ ] det[ ] det[ ] R T R T det[ ] det[ ] det[ ] det[ ]
21 Speial Cases a) fluid-vauum b) fluid-fluid ( d > d1 ) I d R dd I d R dd θ i θ r θ i θ r fluid vauum fluid 1 fluid θ d T dd ) solid-vauum d) solid-vauum (longitudinal inidene) (shear inidene) R ds I s R ss I d θ i θ s θr R dd θ i θ r θ d R sd solid solid vauum vauum
22 e) fluid-solid I d R dd θ i θ r fluid solid θ d T dd θ s T ds f) solid-fluid g) solid-fluid (longitudinal inidene) (shear inidene) θs1 R ds I s θ i θ r θ s1 R ss I d solid θ i θ r θd1 R dd solid θd1 R sd fluid fluid θ d T dd θ d T sd
23 h) solid-solid i) solid-solid (longitudinal inidene) (shear inidene) θ s1 R ds I s θ i θ r θ s1 R ss I d θ i θ r θd1 R dd θd1 R sd solid 1 solid 1 solid solid θ s θ s θ d T ds T dd θ d T ss T sd Fluid-vauum: R 1, θ dd r θ i Fluid-fluid: sin sin θ, d θi θr θ i d d1 sin θd d d1 sin θ i then d < d1 θd < θ i then d > d1 θd > θ i There exists one ritial angle ( sin θd 1, θ d 9 ) sin θ r1 d1 d
24 Solid-Vauum Interfae, Mode Conversion P-wave inident (no ritial angle): sin θ sin ( ), s θi θr θd θ i s d S-wave inident: sin θ sin ( ), d θi θr θs θ i There exists one ritial angle (sin θd 1 or θd 9 ) d s sin θ r1 s d The boundary onditions require that both normal and transverse stress disappear at the surfae. Zd osθs Zssin θs Zd osθs Rdd s Z sin os s s θd Zs θs R ds Zs sin θd d d Rdd os θ s s sin θ sin s θd d os θ s s + sin θ sin s θd d depends on the Poisson ratio of the solid R dd ( ) R (9 ) 1 dd
25 Longitudinal and Shear Wave Refletion Coeffiients ν.3 (solid) and ν.35 (dashed) Refletion Coeffiient longitudinal-tolongitudinal longitudinal-toshear Angle of Inidene [deg] 1. 1 shear-to-shear Refletion Coeffiient shear-to-longitudinal Angle of Inidene [deg]
26 Polar diagrams longitudinal inidene o 3 45 o 15 o o 15 o 3 o longitudinal shear 45 o 75 o 9 o 6 o 6 o 75 o 9 o shear inidene o 3 45 o 15 o o 15 o 3 o longitudinal shear 45 o 75 o 9 o 6 o 6 o 75 o 9 o
27 Fluid-Solid Interfae ( d1) ( d) ( s) ( i) uy + uy + u y u y ( d1) ( d) ( s) ( i) τ yy +τ yy +τ yy τ yy ( d) ( s) +τ zy +τ zy a11 a1 a14 Rdd b1 a31 a3 a 34 T dd b 3 a4 a44 Tds osθ osθ sin θ R osθ i d s dd i Zd1 Zdos s Zssin s T dd Z θ θ d1 s T sin os ds Zs θd Zs θ s d Rdd det[ a (1)] det[ a] osθi osθd sin θs Zd1 Zdosθs Zssin θs Z s s sinθd d Zsosθs osθi osθd sin θs Zd1 Zdosθs Zssin θs Z s s sinθd d Zsosθs
28 Rdd osθi osθd sin θs ρf d osθs ssin θs ssinθd d osθs osθi osθd sin θs ρf d osθs ssin θs ssinθd d osθs ρ ρ1/ ρ f d1, d d, s s, i di d1 θ θ θ, θ d θ d, and θ s θ s R dd i d s s d s f d s d s d s i d s s d s f d s d s d s os θ ( os θ + sin θ sin θ ) ρ ( os θ osθ + sin θ sin θ ) os θ ( os θ + sin θ sin θ ) + ρ ( os θ osθ + sin θ sin θ )
29 Displaement, Stress, Intensity, and Power Coeffiients ( stress) ( displaement) Zβj αβ αβ Zα1 Γ Γ ( stress) Z Γ αβ Γ αβ Z βj α1 Γ stands for either R (j 1) or T (j ) α and β are either d or s ( intensity) ( displaement) ( stress) Z βj Γ αβ Γαβ Γ αβ Γ αβ Z α 1 os Z os ( power) ( intensity) θβj βj θβj Γ αβ Γ αβ Γ osθ αβ α1 Zα1 osθα1 R ( power) ( power) ( power) ( power) αd + R αs + T αd + T αs 1 Law of reiproity: ( power) ( power) αβ βα Γ Γ
30 Energy Refletion and Transmission Coeffiients aluminum in water Energy Refletion and Transmission Coeffiients refletion longitudinal transmission Angle of Inidene [deg] shear transmission Energy Refletion and Transmission Coeffiients refletion longitudinal transmission steel in water Angle of Inidene [deg] shear transmission
31 Energy Refletion and Transmission Coeffiients 1 Plexiglas/aluminum interfae Energy Refletion Coeffiients longitudinal refletion shear refletion Angle of Inidene [deg].6 Energy Transmission Coeffiients longitudinal transmission shear transmission Angle of Inidene [deg]
32 Slip Boundary Conditions ( d1) ( d) ( s1) ( s) uy + uy uy + u () i y u normal displaement y ( d1) ( d) ( s1) ( s) tangential displaement uz + uz uz + u () i z u z normal tration ( d1) ( d) ( s1) ( s) () τ yy +τyy τ yy +τ i yy τ yy tangential tration ( d1) ( d) ( s1) ( s) ( i) τ zy +τzy τ zy +τzy τzy a11 a1 a13 a14 Rd b1 1 a1 a a3 a 4 T d b or a31 a3 a33 a34 Rs b3 3 a41 a4 a43 a44 Ts b4 4 Slip boundary onditions: ontinuity of the normal displaement and tration vanishing tangential tration on both sides a11 a1 a13 a14 Rd b1 1 a31 a3 a33 a 34 T d b or a41 a43 Rs b4 4 a4 a44 Ts
33 Angle-Beam Transduers wedge θ i transduer ouplant θ s speimen s i sin θ sin θ s i Plexiglas/Aluminum, longitudinal-to-shear transmission Energy Transmission.7.6 "slip" boundary "rigid" boundary Angle of Refration [deg]
34 SH Wave Refletion and Transmission at a Solid-Solid Interfae I θ i y θ s1 θ i R solid 1 solid z θ s T () i ( r) () t ux + ux ux and () i ( r) () t τ xy +τ xy τ xy ( r) ( t) ( i) x x x ( r) ( t) ( i) xy xy xy u + u u τ + τ τ or a11 a1 R 1 a13 a 14 T All displaements are in the x diretion only (without the ommon i t e ω term): () i i( os i ks1 y sin i ks1z) x u e θ + θ () i i( os i ks1 y sin i ks1z) x u e θ + θ () t i( os t ks y sin t ks z) x u Te θ + θ θ t θ s, sin θ t s/ s1sin θi
35 Stress omponents: xy xy s x/ τ με ρ u y () i ( os 1 sin 1 ) 1 os i i k s y i k s xy i Zs i e θ + θ z τ ω θ ( r ) (os 1 sin 1 ) 1 os i i k s y i k s xy i Zs i Re θ + θ z τ ω θ () t ( os sin ) os i t k s y t k s xy i Zs t Te θ + θ z τ ω θ Z s sρ is the speifi aousti impedane of the medium 1 1 R 1 Z osθ Z osθ T Z osθ s1 i s t s1 i (the seond row was divided by -iω) (Displaement) refletion and transmission oeffiients: R T 1 1 Zs1osθi Zsosθt Zs1osθi Zsosθ t 1 1 Zs1osθ i + Zsosθt Zs1osθi Zsosθt 1 1 Zs1osθi Zs1osθi Zs1 osθ i 1 1 Zs1osθ i + Zsosθt Zs1osθi Zsosθt Normal omponent of the aousti impedane Z' s Zsosθ R Z ' ' s1 Zs Z ' ' s1 + Zs and T Z ' s1 Z ' ' s1 + Zs
36 Solid-vauum interfae (free surfae): Rayleigh Wave Zd osθs Zssin θs Rd Z s s sin θd Zsosθs R s d Nontrivial solution exists if: os θ s s + sinθ sin s θ d d sin θs sin θd 1 s d R Relative veloities: s 1 ν ξ ( ) d (1 ν) Exat Rayleigh equation: η R s η6 8η 4+ 8(3 ξ) η 16(1 ξ ) Approximate expression: η ν 1+ν
Part 4 RAYLEIGH AND LAMB WAVES
Part 4 RAYLEIGH AND LAMB WAVES Rayleigh Surfae Wave x x 1 x 3 urfae wave x 1 x 3 Partial Wave Deompoition Diplaement potential: u = ϕ + ψ Wave equation: 1 ϕ 1 ψ ϕ = = k ϕ an ψ = = k t t ψ Wave veloitie:
Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M
Maxwell' s Equations in vauum E ρ ε Physis 4 Final Exam Cheat Sheet, 7 Apil E B t B Loent Foe Law: F q E + v B B µ J + µ ε E t Consevation of hage: J + ρ t µ ε ε 8.85 µ 4π 7 3. 8 SI ms) units q eleton.6
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Chap. 6 Pushdown Automata
Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Chapter 2. Stress, Principal Stresses, Strain Energy
Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Mechanics of Materials Lab
Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik
Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero
Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Enantioselective Organocatalytic Michael Addition of Isorhodanines to α,
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
3.5 - Boundary Conditions for Potential Flow
13.021 Marine Hydrodynamics, Fall 2004 Lecture 10 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 10 3.5 - Boundary Conditions for Potential
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
LTI Systems (1A) Young Won Lim 3/21/15
LTI Systems (1A) Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
Empirical best prediction under area-level Poisson mixed models
Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS
NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF NAVAL ARCHITECTURE AND ARINE ENGINEERING SHIPBUILDING TECHNOLOGY LABORATORY EXPERIENTAL AND NUERICAL STUDY OF A STEEL-TO-COPOSITE ADHESIVE JOINT UNDER
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
ITU-R BT ITU-R BT ( ) ITU-T J.61 (
ITU-R BT.439- ITU-R BT.439- (26-2). ( ( ( ITU-T J.6 ( ITU-T J.6 ( ( 2 2 2 3 ITU-R BT.439-2 4 3 4 K : 5. ITU-R BT.24 :. ITU-T J.6. : T u ( ) () (S + L = M) :A :B :C : D :E :F :G :H :J :K :L :M :S :Tsy :Tlb
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear
2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F 441.6 441.6 441.6 441.6 30 50 70 100 TEM00 TEM00 TEM00 TEM00 BEAM DIAMETER ( 1/e2) 1.1 1.1 1.2 1.2 0.5 0.5 0.5 0.4 RATIO
DuPont Suva 95 Refrigerant
Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Monolithic Crystal Filters (M.C.F.)
Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
COMPLEX NUMBERS. 1. A number of the form.
COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Seria : 0. T_ME_(+B)_Strength of Materia_9078 Dehi Noida Bhopa Hyderabad Jaipur Luckno Indore une Bhubanesar Kokata atna Web: E-mai: info@madeeasy.in h: 0-56 CLSS TEST 08-9 MECHNICL ENGINEERING Subject
Linearized Lifting Surface Theory Thin-Wing Theory
13.021 Marine Hdrodnamics Lecture 23 Copright c 2001 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hdrodnamics Lecture 23 Linearized Lifting Surface Theor Thin-Wing Theor
DuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered