Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M"

Transcript

1 Maxwell' s Equations in vauum E ρ ε Physis 4 Final Exam Cheat Sheet, 7 Apil E B t B Loent Foe Law: F q E + v B B µ J + µ ε E t Consevation of hage: J + ρ t µ ε ε 8.85 µ 4π SI ms) units q eleton.6 9 m eleton 9. 3 SI ms) units Maxwell' s Equations in linea medium D ρ E B t B D εe ε E + P B µh µ H + M Geneal plane wave in linea medium: v [ ] ; B ˆ E P f v ˆ v t v P f v ˆ v t Hamoni plane wave in linea medium: [ ] ; B E P exp i ωt) H J + D t [ ] ; v εµ ; P v ; ˆ [ ] ; ω P exp i ωt ω v ; P Linea medium bounday onditions: D nomal, E paallel, B nomal, H paallal ae ontinuous v E ˆ B ˆ Kinemati bounday onditions: θ inident θ efleted ; v inident sinθ inident v tansmitted sinθ tansmitted Enegy: U field [ E D + B H ] Consevation of enegy: Poynting veto: S E B µ t U + U field patiles) + S E H Maxwell Stess Tenso: T ij ε E i E j δ ij E + µ H H i j δ ij H Momentum density: Consevation of momentum: p field volume εµs S εe B p field t volume + p patile volume T

2 Pefet onduto bounday onditions: E B inside E paallel B nomal E nomal σ ε B paallal µ I E nomal nomal B paallel nomal) θ inidene θ efletion v nomal hanges sign, P paallel hanges sign Retangula avity fields: E exp iωt), B exp iωt), ω π m a + n b + l d E x A EX os mπ x a sin nπ y b sin lπ d B A sin mπ x x BX a os nπ y b os lπ d E y A EY sin mπ x a os nπ y b sin lπ d B A os mπ x y BY a sin nπ y b os lπ d E A EZ sin mπ x a sin nπ y b os lπ d B A os mπ x BZ a os nπ y b sin lπ d A E A EX, A EY, A EZ ) A B A BX,A BY, A BZ ) M mπ a, nπ b, lπ d A E M A B M M A E iωa B M A B iω A E Retangula waveguide: same xy dependene, t dependene exp[ i ωt) ] TE E TM B ω + mπ + nπ v a b goup dω d TEM mode: E B, eletostati & magnetostati solutions in xy, v, B ˆ E Waves in ondutos: ondutivity σ J σe τ ε σ [ ] B B exp[ i ωt) ] B ω ˆ E E exp i ωt) E eal ω σ + ωε + imag ω σ + ωε good onduto: eal imag ωσµ d sin poo onduto: eal ω, imag σ ε

3 Kinemati bounday onditions: θ inident θ efleted ; v inident sinθ inident v tansmitted sinθ tansmitted Index of efation: n v εµ ε µ Total Intenal Refletion: sinθ I > v v n n Fesnel Equations: α osθ T osθ I β µ v µ v µ n µ n ε µ ε µ E in plane of inidene: E R E to plane of inidene: E R Model of medium: d y dt α β α +β αβ + αβ E T α + β E T + αβ + γ dy dt + ω y q m E exp iωt + γ j ω tanθ Bewste n n if µ µ ; ε ε + Nq fo low density, n + Nq f j ω j ω mε ω j ω ; α Nq ω mε Model of onduto: ω σ Nfq m γ iω Model of plasma: γ ω ω p q µεω + iσµω Nf ω ω p mε f j mε ω j ω ) iγ j ω ω j ω f j γ j + γ j ω Fields fom potentials: E V A B A t Potential Maxwell: V + A A ) ρ A A t ε t A + V µ t J Gauge Tansfomations: A A + V V t Coulomb Gauge: A V ρ A A ε t V µ t J Loent Gauge: A + V t V V ρ A A t ε t Loent in d' Alembetian fom: [ ] V ρ ε [ ] A µ J [ ] t µ J

4 Retaded Time: t t - Retaded Potentials: φ,t) ρ, t 4πε d v A µ ρ,t Fields: E ) ρ +,t ) 4πε ˆ J,t ) d v B µ 4π q Lienad - Wiehet Potentials: φ,t) 4πε u q Fields: E 4πε [ ] B u ) v )u + u a 3 Lamo Fomula: S da µ 6π qa) qa) 3 3 4πε Radiation at high veloity: dp ad dω q 6π ε Eleti Dipole Radiation: p p ˆ os ωt E µ p ω 4π sin θ os ωt )ˆ θ S µ p ω 4 sinθ os ωt 6π ) ˆ [ u a )] ˆ u B µ p ω 4π ˆ Powe µ p 6π 4π J, t d v J J A,t) v φ,t) u ˆ v ˆ E S µ 5 P µ q ρ,t )d v sinθ ω 4 os ωt )ˆ φ os ωt Magneti Dipole Radiation: m m ˆ os ωt) I t) Aea E µ m ω 4π sinθ os ωt )ˆ φ B µ m ω 4π sin θ os ωt )ˆ θ S µ m ω 4 sin θ os ωt 6π 3 ) ˆ Powe µ m ω 4 os ωt 6π 3 i e Multipole Radiation: A,t) ωt ) µ i) n n! J n γ 6 6π ˆ ) n d v ˆ [ E E ˆ E )] a v a d v Fields: B A E i B Radiation Reation: F µ q 6π da dt

5 Loent Tansfomation: β v x γ t γ β x βγ Coodinate 4 - veto: x µ t, x ) x µ t, x ) x µ x µ x µ x µ x ν x ν Relativisti veloity 3 ν βγ γ t x t) + x + y + η µ γ,β γ) Relativisti momentum: p ν E, p ) Newtonian mehanis: F dp elativisti dt obseve Minowsian mehanis: K µ dp µ dτ 4 veto deivative: µ t, 4 - veto uent density: J µ ρη µ ρ γ,β γ d'alembetian µ µ [ ] 4 - veto potential: A µ φ, A ) Maxwell Equations: ν ν A µ µ J µ Loent ondition: µ A µ Field - Stength Tensos: E x E y E E x B F µν E y B B x E B y B x Maxwell in Tenso Fom: B x B E B x E y G µν E B E y x E B y E x µ F µν µ J ν µ G µν Loent Tansfomation of Fields: E x E x B x B x E y γ E y vb ) E γ E + v ) γ + v E B γ B v E y pio 9 nano 6 mio µ) 3 milli +3 ilo +6 Mega +9 Giga + Tea

6 Catesian oodinates : f f x x ˆ + f y y ˆ + f ˆ V V y V y + V x V x + V y x V x y V V x x + V y y + V f f x + f y + f Cylindial oodinates : f f ˆ + f φ ˆ + f φ ˆ V f φ V ) V φ Spheial oodinates : f f ˆ + f θ V ˆ + f + f φ + f sinθ θ ˆ + f sinθ φ θ sinθv φ V ) V ) V φ ˆ + V φ + φ ˆ V V φ V θ ˆ + sin θ V + sinθ φ V ) V φ f f + f sinθ sinθ θ θ + f sin θ φ x ˆ y ˆ ˆ A B det A x A y A B x B A B C φ V φ V φ) + V ) ˆ θ sin θv θ) + θ ˆ + V θ A y B S ) x ˆ + A B x A x B ) y ˆ + A x A y B x ) ˆ B C A ) C A B ) B A C ) C A B ) A B ) C B C A ) A C B ) A B C f g + g f fg A B ) + B A ) + A )B + B f A ) + A f B A ) A B ) f A ) + A f ) B )A A )B + A B ) B A ) A B fa A B fa A B A sinθ φ V φ) θ V φ ˆ

7 + if i j δ ij if i j x i ε ij if i j, j, o i + if ij 3, 3, 3 if ij 3, 3, 3 ε ij ε lm δ il δ jm δ im δ jl A B δ ij B j A B ε ij B j A B C [ A B C )] B C i C [ fg) ] fg [ A B )] fa f g + g f f ε ij B + f + f ε ij B + ε ij B ε ij f + ε ij f ε ij B j C A B [ fa ] ε ij f [ A B ] ε ij ε lmj A l B m ε ij ε lmj A l B m δ l δ im δ m δ il A l B m A B A + A B B

Synchrotron Radiation. G. Wang

Synchrotron Radiation. G. Wang Synhoton Radiation G. Wang What is synhoton adiation Stati field fo a hage at est When a patile moves with a onstant veloity, field moves with patile. When a patile gets aeleated, some pat of the field

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

Accelerator Physics. G. A. Krafft, A. Bogacz, and H. Sayed Jefferson Lab Old Dominion University Lecture 9

Accelerator Physics. G. A. Krafft, A. Bogacz, and H. Sayed Jefferson Lab Old Dominion University Lecture 9 Acceleato Physics G. A. Kafft, A. Bogacz, and H. Sayed Jeffeson Lab Old Dominion Univesity Lectue 9 USPAS Acceleato Physics Jan. 11 Synchoton Radiation Acceleated paticles emit electomagnetic adiation.

Διαβάστε περισσότερα

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University Physics 804 Electromagnetic Theory II

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University Physics 804 Electromagnetic Theory II Physics 74/84 Elecomagneic Theoy II G. A. Kaff Jeffeson Lab Jeffeson Lab Pofesso of Physics Old Dominion Univesiy Physics 84 Elecomagneic Theoy II -3-1 Pependicula Polaizaion = E + E E Tangenial E ( )

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Curvilinear Systems of Coordinates

Curvilinear Systems of Coordinates A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Chapter 7a. Elements of Elasticity, Thermal Stresses

Chapter 7a. Elements of Elasticity, Thermal Stresses Chapte 7a lements of lasticit, Themal Stesses Mechanics of mateials method: 1. Defomation; guesswok, intuition, smmet, pio knowledge, epeiment, etc.. Stain; eact o appoimate solution fom defomation. Stess;

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)

Διαβάστε περισσότερα

( ) ( ) ( )z. HMY Φωτονική. Διάλεξη 08 Οι εξισώσεις του Maxwell. r = A r. B r. ˆ det = Βαθμωτά και διανυσματικά μεγέθη

( ) ( ) ( )z. HMY Φωτονική. Διάλεξη 08 Οι εξισώσεις του Maxwell. r = A r. B r. ˆ det = Βαθμωτά και διανυσματικά μεγέθη HMY - Φωτονική Διάλεξη 8 Οι εξισώσεις του Mawell Βαθμωτά και διανυσματικά μεγέθη Πολλαπλασιασμός Πρόσθεση διανυσμάτων Βαθμωτό: το μέγεθος που για τον προσδιορισμό του χρειάζεται μόνο το μέτρο του και η

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

Inflation and Reheating in Spontaneously Generated Gravity

Inflation and Reheating in Spontaneously Generated Gravity Univesità di Bologna Inflation and Reheating in Spontaneously Geneated Gavity (A. Ceioni, F. Finelli, A. Tonconi, G. Ventui) Phys.Rev.D81:123505,2010 Motivations Inflation (FTV Phys.Lett.B681:383-386,2009)

Διαβάστε περισσότερα

Part 3 REFLECTION AND TRANSMISSION

Part 3 REFLECTION AND TRANSMISSION Part 3 REFLECTION AND TRANSMISSION Normal Inidene Inident Wave Refletion ρ, 1 1 ρ, Transmission u e i ( k1 x t ) i A ω ( 1 ) i τ 1 1 ei k i uz i iωaz i x ω t u e i ( k 1 x t ) r A ω ( 1 ) r τ r u r Z1

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

General Relativity (225A) Fall 2013 Assignment 5 Solutions

General Relativity (225A) Fall 2013 Assignment 5 Solutions Univesity of Califonia at San Diego Depatment of Physics Pof. John McGeevy Geneal Relativity 225A Fall 2013 Assignment 5 Solutions Posted Octobe 23, 2013 Due Monday, Novembe 4, 2013 1. A constant vecto

Διαβάστε περισσότερα

ΦΥΕ34 Λύσεις 5 ης Εργασίας

ΦΥΕ34 Λύσεις 5 ης Εργασίας ΦΥΕ3 Λύσεις 5 ης Εργασίας ) Έστω αρµονικό κύµα της (εκθετικής) µορφής: F( x, t) i( kx ωt+ ϕ ) = Ae. Παραγωγίζοντας βρίσκουµε: = iωf( x, t) t = ikf( x, t) x Παραγωγίζοντας αυτές τις δύο σχέσεις µία ακόµη

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ MAXWELL ΣΕ ΜΕΣΟ

ΕΞΙΣΩΣΕΙΣ MAXWELL ΣΕ ΜΕΣΟ ΕΞΙΣΩΣΕΙΣ MAXWELL ΣΕ ΜΕΣΟ ΤΙ ΕΞΕΤΑΖΟΥΜΕ? ΤΟ ΦΩΣ ΙΑ Ι ΕΤΑΙ ΣΕ ΕΝΑ ΜΕΣΟ (ΓΥΑΛΙ, κα) ΑΠΑΙΤΕΙΤΑΙ ΜΕΛΕΤΗ ΤΗΣ ΙΑ ΟΣΗΣ ΣΤΟ ΜΕΣΟ ΕΦΑΡΜΟΓΗ ΣΥΝΟΡΙΑΚΩΝ ΣΥΝΘΗΚΩΝ ευθύγραµµη διάδοσητου φωτός Πυθαγόρας, ηµόκριτος, Εµπεδοκλής,

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 22: Κυματοπακέτα-Κυματοδηγοί Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την έννοια του κυματοπακέτου,

Διαβάστε περισσότερα

r = x 2 + y 2 and h = z y = r sin sin ϕ

r = x 2 + y 2 and h = z y = r sin sin ϕ Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations

Διαβάστε περισσότερα

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor VEKTORANALYS Kusvecka 4 CURVILINEAR COORDINATES (koklinjiga koodinatstem) Kapitel 10 Sido 99-11 TARGET PROBLEM An athlete is otating a hamme Calculate the foce on the ams. F ams F F ma dv a v dt d v dt

Διαβάστε περισσότερα

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011 2.019 Design of Ocean Systems Lecture 6 Seakeeping (II) February 21, 2011 ω, λ,v p,v g Wave adiation Problem z ζ 3 (t) = ζ 3 cos(ωt) ζ 3 (t) = ω ζ 3 sin(ωt) ζ 3 (t) = ω 2 ζ3 cos(ωt) x 2a ~n Total: P (t)

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

Κεραίες. Ενότητα 2: Το πρόβλημα της ακτινοβολίας

Κεραίες. Ενότητα 2: Το πρόβλημα της ακτινοβολίας Κεραίες Ενότητα : Το πρόβλημα της ακτινοβολίας Δημήτρης Βαρουτάς, Αριστείδης Τσίπουρας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Το πρόβλημα της ακτινοβολίας ΚΕΡΑΙΕΣ ΜΑΘΗΜΑ ο Το πρόβλημα

Διαβάστε περισσότερα

ΗΜ & Διάδοση ΗΜ Κυμάτων

ΗΜ & Διάδοση ΗΜ Κυμάτων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΗΜ & Διάδοση ΗΜ Κυμάτων Ενότητα : Κυματική Εξίσωση & Επίπεδο ΗΜ Κύμα Σαββαΐδης Στυλιανός Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων

Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων ΕΙΣΑΓΩΓΗ - Το μάθημα αυτό πραγματεύεται θεμελιώδεις έννοιες των γραμμών μεταφοράς στην επιστημονική περιοχή των ηλεκτρονικών συστημάτων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 16/11/10

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 16/11/10 9// ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 3 - η ΕΡΓΑΣΙΑ Προθεσµία παράδοσης 6// Άσκηση A) Θεωρούµε x την απόσταση της µάζας m από το σηµείο ισορροπίας της και x, x3 τις αποστάσεις των µαζών m και m3 από το

Διαβάστε περισσότερα

(product-operator) I I cos ω ( t sin ω ( t x x ) + Iy )

(product-operator) I I cos ω ( t sin ω ( t x x ) + Iy ) (product-operator) I I cos( t) + I sin( t) x x y z 2π (rad) y 1 y t x = 2πν x t (rad) sin t Iy# cos t t Ix# Ix# (t ) z Ix# Iy# Ix# (t ) z Ix cos (t ) + Iy sin (t ) -x -y t y I-y# I-y# (t ) z (t ) z x I-y#

Διαβάστε περισσότερα

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 ) 九十七學年第一學期 PHY 電磁學期中考試題 ( 共兩頁 ) [Giffiths Ch.-] 補考 8// :am :am, 教師 : 張存續記得寫上學號, 班別及姓名等 請依題號順序每頁答一題 Useful fomulas V ˆ ˆ V V = + θ+ V φ ˆ an θ sinθ φ v = ( v) (sin ) + θvθ + v sinθ θ sinθ φ φ. (8%,%) cos

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά Κυµατική ΦΥΕ4 5/7/8 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 Ιούλιος 8 KYMATIKH ιάρκεια: λεπτά Θέµα ο (Μονάδες:.5) A) Θεωρούµε τις αποστάσεις

Διαβάστε περισσότερα

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall

Διαβάστε περισσότερα

3.7 Governing Equations and Boundary Conditions for P-Flow

3.7 Governing Equations and Boundary Conditions for P-Flow .0 - Maine Hydodynaics, Sping 005 Lectue 10.0 - Maine Hydodynaics Lectue 10 3.7 Govening Equations and Bounday Conditions fo P-Flow 3.7.1 Govening Equations fo P-Flow (a Continuity φ = 0 ( 1 (b Benoulli

Διαβάστε περισσότερα

Strain and stress tensors in spherical coordinates

Strain and stress tensors in spherical coordinates Saeanifolds.0 Stain and stess tensos in spheical coodinates This woksheet demonstates a few capabilities of Saeanifolds (vesion.0, as included in Saeath 7.5) in computations eadin elasticity theoy in Catesian

Διαβάστε περισσότερα

Problems in curvilinear coordinates

Problems in curvilinear coordinates Poblems in cuvilinea coodinates Lectue Notes by D K M Udayanandan Cylindical coodinates. Show that ˆ φ ˆφ, ˆφ φ ˆ and that all othe fist deivatives of the cicula cylindical unit vectos with espect to the

Διαβάστε περισσότερα

φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

CS348B Lecture 10 Pat Hanrahan, Spring 2002

CS348B Lecture 10 Pat Hanrahan, Spring 2002 Page 1 Reflecton Models I Today Types of eflecton models The BRDF and eflectance The eflecton equaton Ideal eflecton and efacton Fesnel effect Ideal dffuse Next lectue Glossy and specula eflecton models

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2 Theoetical Competition: July Question Page of. Ένα πρόβλημα τριών σωμάτων και το LISA μ M O m EIKONA Ομοεπίπεδες τροχιές των τριών σωμάτων. Δύο μάζες Μ και m κινούνται σε κυκλικές τροχιές με ακτίνες και,

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

4.4 Superposition of Linear Plane Progressive Waves

4.4 Superposition of Linear Plane Progressive Waves .0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive

Διαβάστε περισσότερα

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,

Διαβάστε περισσότερα

Reflection Models. Reflection Models

Reflection Models. Reflection Models Reflecon Models Today Types of eflecon models The BRDF and eflecance The eflecon equaon Ideal eflecon and efacon Fesnel effec Ideal dffuse Thusday Glossy and specula eflecon models Rough sufaces and mcofaces

Διαβάστε περισσότερα

Time dependent Convection vs. frozen convection approximations. Plan

Time dependent Convection vs. frozen convection approximations. Plan Time epenent onvection vs. fozen convection appoximations A. Gigahcène, M-A. Dupet an. Gaio oto Nov 006 lan Intouction Fozen onvection Appoximations Time Depenent onvection onclusion Intouction etubation

Διαβάστε περισσότερα

The Friction Stir Welding Process

The Friction Stir Welding Process 1 / 27 The Fiction Sti Welding Pocess Goup membes: Kik Fase, Sean Bohun, Xiulei Cao, Huaxiong Huang, Kate Powes, Aina Rakotondandisa, Mohammad Samani, Zilong Song 8th Monteal Industial Poblem Solving Wokshop

Διαβάστε περισσότερα

Spin Precession in Electromagnetic Field

Spin Precession in Electromagnetic Field Spin Preession in Eletromagneti Field Eunil Won, eunil@{hep.korea,kaist}.a.kr v0150417 1 T-BMT Equation This note is an expliit alulation of the spin preession known as T-BMT equation. The method used

Διαβάστε περισσότερα

The Laplacian in Spherical Polar Coordinates

The Laplacian in Spherical Polar Coordinates Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu

Διαβάστε περισσότερα

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane. upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation

Διαβάστε περισσότερα

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x STEADY, INVISCID ( potential flow, iotational) INCOMPRESSIBLE constant Benolli's eqation along a steamline, EQATION MOMENTM constant is a steamline the Steam Fnction is sbsititing into the continit eqation,

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

ITU-R P (2012/02) khz 150

ITU-R P (2012/02) khz 150 (0/0) khz 0 P ii (IPR) (ITU-T/ITU-R/ISO/IEC) ITU-R http://www.itu.int/itu-r/go/patents/en http://www.itu.int/publ/r-rec/en BO BR BS BT F M P RA RS S SA SF SM SNG TF V ITU-R 0 ITU 0 (ITU) khz 0 (0-009-00-003-00-994-990)

Διαβάστε περισσότερα

Oscillatory Gap Damping

Oscillatory Gap Damping Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution

Διαβάστε περισσότερα

Constitutive Relations in Chiral Media

Constitutive Relations in Chiral Media Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization

Διαβάστε περισσότερα

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 11 Topics Coveed: Obital angula momentum, cente-of-mass coodinates Some Key Concepts: angula degees of feedom, spheical hamonics 1. [20 pts] In

Διαβάστε περισσότερα

ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ Ó³ Ÿ. 2018.. 15, º 6218).. 467Ä475 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ.. Ê 1 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± μ± μ, ÎÉμ ³μ Ë ± Í Ö ³³ É Î ±μ, μ ² μ μ ƒ ²Ó ÉÊ μ² μ ²μÉ μ É É μ Ô -

Διαβάστε περισσότερα

Name: Math Homework Set # VI. April 2, 2010

Name: Math Homework Set # VI. April 2, 2010 Name: Math 4567. Homework Set # VI April 2, 21 Chapter 5, page 113, problem 1), (page 122, problem 1), (page 128, problem 2), (page 133, problem 4), (page 136, problem 1). (page 146, problem 1), Chapter

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

Course Reader for CHEN 7100/7106. Transport Phenomena I

Course Reader for CHEN 7100/7106. Transport Phenomena I Couse Reade fo CHEN 7100/7106 Tanspot Phenomena I Pof. W. R. Ashust Aubun Univesity Depatment of Chemical Engineeing c 2012 Name: Contents Peface i 0.1 Nomenclatue........................................

Διαβάστε περισσότερα

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Σ Χ Ο Λ Η Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Ω Ν Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Κ Α Ι Φ Υ Σ Ι Κ Ω Ν Ε Π Ι Σ Τ Η Μ Ω Ν Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ Εαναλητική εξέταση στο µάθηµα ΕΙ

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική II 20 Σεπτεμβρίου 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική II 20 Σεπτεμβρίου 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική II 20 Σεπτεμβρίου 200 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 3 θέματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

Magnetic bubble refraction in inhomogeneous antiferromagnets

Magnetic bubble refraction in inhomogeneous antiferromagnets Magnetic bubble refraction in inhomogeneous antiferromagnets Martin Speight University of Leeds Nonlinearity 19 (006) 1565-1579 Plan Planar isotropic inhomogeneous antiferromagnetic spin lattices Continuum

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34 KYMATIKH. ιάρκεια: 210 λεπτά

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34 KYMATIKH. ιάρκεια: 210 λεπτά Εηνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τεικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34 KYMATIKH ιάρκεια: επτά Ονοµατεπώνυµο: Τµήµα: Θέµα ο (Μονάδες:.) Το σύστηµα του σχήµατος αποτεείται από

Διαβάστε περισσότερα

Part 4 RAYLEIGH AND LAMB WAVES

Part 4 RAYLEIGH AND LAMB WAVES Part 4 RAYLEIGH AND LAMB WAVES Rayleigh Surfae Wave x x 1 x 3 urfae wave x 1 x 3 Partial Wave Deompoition Diplaement potential: u = ϕ + ψ Wave equation: 1 ϕ 1 ψ ϕ = = k ϕ an ψ = = k t t ψ Wave veloitie:

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

( ) Sine wave travelling to the right side

( ) Sine wave travelling to the right side SOUND WAVES (1) Sound wave: Varia2on of density of air Change in density at posi2on x and 2me t: Δρ(x,t) = Δρ m sin kx ωt (2) Sound wave: Varia2on of pressure Bulk modulus B is defined as: B = V dp dv

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

Low Frequency Plasma Conductivity in the Average-Atom Approximation

Low Frequency Plasma Conductivity in the Average-Atom Approximation Low Frequency Plasma Conductivity in the Average-Atom Approximation Walter Johnson & Michael Kuchiev Physical Review E 78, 026401 (2008) 1. Review of Average-Atom Linear Response Theory 2. Demonstration

Διαβάστε περισσότερα

Επίλυση Προβληµάτων Αρχικών / Συνοριακών Τιµών Μεταδόσεως Θερµότητας

Επίλυση Προβληµάτων Αρχικών / Συνοριακών Τιµών Μεταδόσεως Θερµότητας Επίλυση Προβληµάτων Αρχικών / Συνοριακών Τιµών Μεταδόσεως Θερµότητας Τα προβλήµατα µεταδόσεως θερµότητας (ή θερµικής αγωγιµότητας heat conduction), µε την υπόθεση ισχύος του νόµου Fourier, διέπονται από

Διαβάστε περισσότερα

Solutions Ph 236a Week 2

Solutions Ph 236a Week 2 Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................

Διαβάστε περισσότερα

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities 6.64, Continuum Electromechnics, Fll 4 Prof. Mrus Zhn Lecture 8: Electrohydrodynmic nd Ferrohydrodynmic Instilities I. Mgnetic Field Norml Instility Courtesy of MIT Press. Used with permission. A. Equilirium

Διαβάστε περισσότερα

Eulerian Simulation of Large Deformations

Eulerian Simulation of Large Deformations Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 19: Η συνάρτηση Green για την κυματική εξίσωση και θεώρημα Poynting Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

ME340B Elasticity of Microscopic Structures Wei Cai Stanford University Winter Midterm Exam. Chris Weinberger and Wei Cai

ME340B Elasticity of Microscopic Structures Wei Cai Stanford University Winter Midterm Exam. Chris Weinberger and Wei Cai ME34B Elasticity of Microscopic Structures Wei Cai Stanford University Winter 24 Midterm Exam Chris Weinberger and Wei Cai c All rights reserved Issued: Feb. 9, 25 Due: Feb. 6, 25 (in class Problem M.

Διαβάστε περισσότερα

Christian J. Bordé SYRTE & LPL.

Christian J. Bordé SYRTE & LPL. Relativisti atom optis and interferometry : a trip in the fifth dimension Christian J. Bordé SYRTE & LPL http://hristian..borde.free.fr/st1633.pdf 1 t Δ ENERGY E( p) M + p 4 hν db E(p) Ω atom slopev M

Διαβάστε περισσότερα

1 (a) The kinetic energy of the rolling cylinder is. a(θ φ)

1 (a) The kinetic energy of the rolling cylinder is. a(θ φ) NATURAL SCIENCES TRIPOS Part II Wednesday 3 January 200 0.30am to 2.30pm THEORETICAL PHYSICS I Answers (a) The kinetic energy of the rolling cylinder is T c = 2 ma2 θ2 + 2 I c θ 2 where I c = ma 2 /2 is

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Άσκηση η Να υπολογιστεί η έξοδος του συστήματος με κρουστική απόκριση h()=u()-u(-4) και είσοδο x()=u(-) u(-3)

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα