LTI Systems (1A) Young Won Lim 3/21/15

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "LTI Systems (1A) Young Won Lim 3/21/15"

Transcript

1 LTI Systems (1A)

2 Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to youngwlim@hotmail.com. This document was produced by using OpenOffice and Octave.

3 An Improper Integration F (s) = f (t)e s t dt Complex Number Real Number Real Number s = σ + i ω t Integration Variable R{s} real part I {s} imag part The improper integral converges if the limit defining it exists. LTI Systems (1A) 3

4 An Integration Function For a given function f(t) F (s) = f (t)e st dt Complex Number Real Number s = σ + i ω t Real Number Integration Variable s 1 s 2 s 3 F (s 1 ) = F (s 2 ) = F (s 3 ) = f (t )e s 1t f (t )e s 2 t f (t)e s 3 t dt dt dt F (s 1 ) F (s 2 ) F (s 3 ) Complex Numbers Complex Numbers LTI Systems (1A) 4

5 Complex Function Plot I F I R{F (s 1 )} F (s 1 ) R R I s 1 = σ 1 + iω 1 F (s 1 ) = R{F (s 1 )} + i I{F (s 1 )} R s 1 I F I I{F (s 1 )} arg {F (s 1 )} R R I s 1 s 1 = σ 1 + iω 1 F (s 1 ) = R{F (s 1 )} + i I{F (s 1 )} R LTI Systems (1A) 5

6 Two Functions: f(t) & F(s) For a given function f(t) there exits a unique F(s) s-domain function F(s) R{F (s 1 )} F (s 1 ) f (t) F (s) s 1 I{s} R{s} I{F (s 1 )} arg {F (s 1 )} t-domain function f(t) f (t) I{s} t R{s} s 1 Real number domain function f(t) Complex number domain function F(s) LTI Systems (1A) 6

7 Laplace Transform f a (x) L F A (s) 1 f 1 (t)e st dt = F 1 (s) 1 s f b (t ) L F B (s) e a t f 2 (t)e st dt = F 2 (s) 1 s+a f c (t) L F C (s) cos(k t) f 3 (t)e st dt = F 3 (s) s s 2 +k 2 f a (x) Real-valued Function F A (s) Complex Function f (t) I I t 1 s 1 = σ 1 + iω 1 f (t 1 ) ω 1 R{F (s 1 )} t 1 t σ 1 R R I{F (s 1 )} f (t 1 ) F (s 1 ) = R{F (s 1 )} + i I{F (s 1 )} LTI Systems (1A) 7

8 Some Laplace Transform Pairs 1 1 s e at 1 s+a t 1 s 2 sin(ωt) ω s 2 +ω 2 t 2 2 s 3 t 3 6 s 4 t n n! s n+1 cos(ωt ) sinh(ω t) cosh(ω t) s s 2 +ω 2 ω s 2 ω 2 s s 2 ω 2 LTI Systems (1A) 8

9 Partial Fraction Methods 1 (a x+b) + A (a x+b) + 1 (a x+b) k + A 1 (a x+b) + A 2 (a x+b) A k (a x+b) k + 1 (a x 2 +b x+c) + A x+b (a x 2 +b x+c) + 1 (a x 2 +b x+c) k + A 1 x+ B 1 (a x 2 +b x+c) + A 2 x+b 2 (a x 2 +b x+c) A k x+b k (a x 2 +b x+c) k + LTI Systems (1A) 9

10 Cover-up Method (1) 2s 1 (s+3)(s 2) = A (s+3) + B (s 2) 2s 1 (s+3)(s 2) (s+3) A = 2 s 1 (s 2) s= 3 = = s 1 (s+3)(s 2) (s 2) B = 2 s 1 (s+3) s=2 = = +3 5 LTI Systems (1A) 1

11 Examples 2 s+5 (s 3) 2 = A 1 (s 3) + A 2 (s 3) 2 2 s+5 (s 3) 2 (s 3)2 = A 1 (s 3) (s 3)2 + A 2 (s 3) 2 (s 3)2 = A 1 (s 3) + A 2 2 s+5 (s 3) 2 (s 3)2 = (2s+5) s=3 = 11 = A 2 s=3 d ( 2s+5 (s 3)2) = d ds (s 3) 2 ds (A (s 3) + A ) = A d ( 2 s+5 (s 3)2) ds (s 3) 2 s=3 = 2 = A 1 LTI Systems (1A) 11

12 Examples X (s) = P(s) (s+ p)(s+r) k = K (s+ p) + A (s+r) k + A 1 (s+r) k A k 1 (s+r) 1 A = X (s)(s+r) k s= r A 1 = d ds [ X (s)(s+r)k ] s= r A 2 = 1 2! d 2 ds 2 [ X (s)(s+r)k ] s= r A m = 1 m! d m ds m [ X (s)(s+r)k ] s= r LTI Systems (1A) 12

13 Differentiation in the s-domain f (t) F (s) F(s) = f (t) e s t dt t f (t) F '(s) d d s F (s) = [ s f ] (t) e st dt = ( t) f (t) e st dt +t 2 f (t ) F ' '(s) d 2 d s 2 F (s) = 2 [f (t) e s t ] dt = s 2 ( t) 2 f (t) e s t dt t 3 f (t ) F (3) (s) d 3 d s 3 F (s) = 3 [f (t ) e s t ] dt = s 3 ( t ) 3 f (t) e st dt t n f (t) ( 1) n d n ds n F (s) LTI Systems (1A) 13

14 Differentiation in the t-domain (1) f (t) F (s) F(s) = f (t) e s t dt f '(t) s F (s) f () f ' (t) e s t dt = [f (t) e s t ] = f () + s ( s) f (t) e st dt f (t) e s t dt = s F (s) f () f ' '(t ) s(s F (s) f ()) f '() f (3) (t ) s(s(s F (s) f ()) f '()) f ' ' () LTI Systems (1A) 14

15 Differentiation in the t-domain (2) f (t ) F (s) f '(t) s F (s) f () f ' '(t ) s 2 F (s) s f () f '() f (3) (t ) s 3 F (s) s 2 f () s f '() f ' ' () f (n) (t) s n F(s) s (n 1) f () s (n 2) f '() f (n 1) () LTI Systems (1A) 15

16 Integration in the t-domain f (t) F (s) g(t ) G(s) t f (τ)d τ F (s) s t f (τ) d τ? f (t) F (s) f (t ) = d dt { t f (τ)d τ} = d dt g (t) g '(t) sg(s) g() g(t ) = t f (τ)d τ g() = f (τ)d τ = F (s) = F(s) s LTI Systems (1A) 16

17 Translation in the s-domain f (t) F (s) F(s) = f (t) e s t dt e +a t f (t ) F (s a) F(s a) = f (t) e (s a )t dt = [e +a t f (t)]e s t dt e ±at f (t) F (s a) LTI Systems (1A) 17

18 Translation in the t-domain f (t) F (s) F(s) = f (t) e s t dt f (t a)u(t a) f (t a)u(t a) e a s F(s) e as F (s) shift right : always o.k. shift left: only when no information is lost during improper integration by the left shift a = = a = = e a s f (t a)u(t a) e st dt f (t a)u(t a) e s t dt + a f (t a)u(t a) e s t dt f (t a) e s t dt ν = t a d ν = d t f (ν) e s (ν+a) d ν = e a s F (s) f (ν) e s ν d ν = a a LTI Systems (1A) 18

19 Initial Value Theorem lim t + f (t ) = lim s s F (s) F (s) = s F (s) f ( ) = f (t ) e s t dt f ' (t) e s t dt lim s s F(s) = f ( ) + lim s f ' (t ) e s t dt = f ( ) + f ( + ) f ( ) = f ( + ) LTI Systems (1A) 19

20 Final Value Theorem lim s lim t f (t ) = lim s F (s) = s F (s) f ( ) = lim s [ s F (s) f ( )] = lim s s F (s) s F (s) = f ( ) + lim s = f ( ) + f () f ( ) = f () f (t ) e s t dt f ' (t) e s t dt f ' (t ) e st dt f ' (t ) e st dt LTI Systems (1A) 2

21 Laplace Transform and ODE's y ' ' + 3 y ' + 2 y = e 3 x y() = k 1, y ' () = k 2 y (x) y ' (x) y ' '(x) Y (s) sy (s) y() s 2 Y (s) s y () y ' () e 3 x 1 (s+3) [ s 2 Y (s) s y() y ' ()] + 3 [s Y (s) y() ] + 2 [Y (s)] = 1 s+3 (s 2 + 3s + 2)Y (s) = k 1 s+k 2 +3 k s+3 LTI Systems (1A) 21

22 Partitioning y ' ' + 3 y ' + 2 y = e 3 x y() = k 1, y ' () = k 2 [ s 2 Y (s) s y() y ' ()] + 3 [s Y (s) y() ] + 2 [Y (s)] = 1 s+3 (s s + 2)Y (s) = (k 1 s+k 2 +3 k 1 ) + 1 s+3 depends only on initial conditions k 1, k 2 depends only on input e -3x LTI Systems (1A) 22

23 Decomposed Y(s) output input (s s + 2)Y zi (s) = (k 1 s+k 2 +3 k 1 ) depends only on initial conditions k 1, k 2 No Input output input (s s + 2)Y zs (s) = 1 s+3 depends only on input e -3x No State output input (s s + 2)Y (s) = (k 1 s+k 2 +3 k 1 ) + 1 s+3 depends only on initial conditions k 1, k 2 depends only on input e -3x LTI Systems (1A) 23

24 ZIR & ZSR y zi (x) Y zi (s) = k 1 s+k 2 +3 k 1 (s+1)(s+2) Zero Input Response y zs (x) Y zs (s) = 1 (s+1)(s+2)(s+3) Zero State Response y (x) Y (s) = k 1s+k 2 +3 k 1 (s+1)(s+2) + 1 (s+1)(s+2)(s+3) y (x) Y (s) = Y zi (s) + Y zs (s) LTI Systems (1A) 24

25 Laplace Transform and IVP's y ' ' + 3 y ' + 2 y = y() = k 1, y ' () = k 2 ZIR IVP y zi (x) Y zi (s) = k 1 s+k 2 +3 k 1 (s+1)(s+2) y ' ' + 3 y ' + 2 y = e 3 x y() =, y ' () = ZSR IVP y zs (x) Y zs (s) = 1 (s+1)(s+2)(s+3) y ' ' + 3 y ' + 2 y = e 3 x y() = k 1, y ' () = k 2 LTI Systems (1A) 25

26 To include impulse inputs y ' ' + 3 y ' + 2 y = e 3 x y() = k 1, y ' () = k 2 y (x) y ' (x) y ' '(x) Y (s) sy (s) y( ) s 2 Y (s) s y ( ) y '( ) e 3 x 1 (s+3) [ s 2 Y (s) s y( ) y ' ( )] + 3 [s Y (s) y( )] + 2 [Y (s) ] = 1 s+3 LTI Systems (1A) 26

27 ODEs with an input g(x) y ' ' + 3 y ' + 2 y = e 3 x y() = k 1, y ' () = k 2 usually known i.c. y( ) = k 1, y ' ( ) = k 2 i.c. to be calculated y( + ) = m 1, y ' ( + ) = m 2 solution to be found y(t) (t > ) LTI Systems (1A) 27

28 ZIR & ZSR y ' ' + 3 y ' + 2 y = x (t ) y () = k 1, y ' () = k 2 (s s + 2)Y (s) = k 1 s+k 2 +3 k 1 + X (s) s 2 Y (s) s y() y ' ()+3(s Y (s) y())+2 Y (s)=x (s) Y (s) = k 1 s+k 2 +3 k 1 (s+1)(s+2) + X (s) (s+1)(s+2) Zero Input Response x (t) = Zero State Response y () =, y ' () = Y (s) = s+5 (s+1)(s+2) Y (s) = X (s) (s+1)(s+2) x (t) = e + t 1 = +4 (s+1) 3 1 (s+2) = (s+2) (s+1) (s 1) y = 4 e t 3 e 2t y = 1 2 e t e 2 t e+t LTI Systems (1A) 28

29 Transfer Function y ' ' + 3 y ' + 2 y = x (t ) y () = k 1, y ' () = k 2 (s s + 2)Y (s) = k 1 s+k 2 +3 k 1 + X (s) s 2 Y (s) s y() y ' ()+3(s Y (s) y())+2 Y (s)=x (s) Y (s) = k 1 s+k 2 +3 k 1 (s+1)(s+2) + X (s) (s+1)(s+2) Zero State Response y () =, y ' () = Y (s) = X (s) (s+1)(s+2) Y (s) X (s) = 1 (s+1)(s+2) Transfer Function LTI Systems (1A) 29

30 Transfer Function & Impulse Response y ' ' + 3 y ' + 2 y = x (t ) y () = k 1, y ' () = k 2 (s s + 2)Y (s) = k 1 s+k 2 +3 k 1 + X (s) s 2 Y (s) s y() y ' ()+3(s Y (s) y())+2 Y (s)=x (s) Y (s) = k 1 s+k 2 +3 k 1 (s+1)(s+2) + X (s) (s+1)(s+2) Transfer Function Y (s) X (s) = H (s) Zero State Response y () =, y ' () = Y (s) = H (s) X (s) y (t) = h(t) x (t) Y (s) = X (s) (s+1)(s+2) H (s) Transfer Function h(t) Impulse Response Y (s) X (s) = 1 (s+1)(s+2) Transfer Function LTI Systems (1A) 3

31 Everlasting & Causal Exponential Function exponential function e st = e σ t + i ω t s = σ + i ω sinusoid function e st = e i ω t s = i ω everlasting exponential function everlasting sinusoid function applied at t = applied at t = e st e i ωt causal exponential function causal sinusoid function applied at t = applied at t = e st u(t) e i ωt u(t) LTI Systems (1A) 31

32 Sinusoidal Functions and Initial Conditions everlasting sinusoid function causal sinusoid function applied at t = applied at t = e i ωt u(t) zero state (no initial conditions) non-zero state at t = + sin(ω t) sin(ω t)u (t) cos(ωt ) cos(ωt )u(t) creates zero conditions at time t = non-zero conditions at time t = + LTI Systems (1A) 32

33 ZSR to an everlasting exponential input input applied at t = - δ(t ) e s t zero initial conditions (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) h(t ) H (s)e s t y (t) = h(t ) e s t + = h(τ)e s(t τ) d τ + = e s t h(τ)e s τ d τ h(t ) = (t < ) = e s t H (s) + H (s) = h(τ)e s τ d τ LTI Systems (1A) 33

34 Forced Response to a causal exponential input input applied at t = δ(t) e ζ t u(t) (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) y y (1) y (N 1) ZIR i i natural ZSR c i e λ i t + h(t) K i e λ i t + βe ζ t forced initial conditions initial conditions at time t = at time t = + y n (t ) = y n (t ) + y p (t ) K 1 e λ 1 t + K 2 e λ 2t + K N e λ N t + {y ( N 1) ( + ),, y (1) ( + ), y( + )} = i K i K i e λ i t LTI Systems (1A) 34

35 Everlasting Exponential Total Response input applied at t = - δ(t ) e s t zero initial conditions (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) h(t ) H (s)e s t ZSR Laplace Transform of h(t) + H (s) = h(τ)e s τ d τ Polynomials of Differential Equation for a given s = ζ ZSR y (t) = H (ζ)e ζ t < t < + H (s) = P(s) Q(s) Transfer function (t-domain) H (s) = [ y (t ) x(t ) ]x(t )=e st y (t) = H (ζ)x (t) Y (s) = H (s) X (s) x(t ) = e ζ t Transfer function (s-domain) H (s) = Y (s) X (s) LTI Systems (1A) 35

36 Transfer Function & Frequency Response input applied at t = - δ(t ) e s t zero initial conditions (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) h(t ) H (s)e s t input applied at t = - δ(t ) e j ω t zero initial conditions (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) h(t ) H ( j ω)e j ω t y (t) = h(t ) e s t s = σ+ j ω y (t) = h(t ) e j ω t s = j ω + = h(τ)e s(t τ) d τ + = h(τ)e j ω(t τ) d τ + = e s t h(τ)e s τ d τ h(t ) = (t < ) + = e j ω t h(τ)e j ω τ d τ h(t ) = (t < ) = e s t H (s) = e j ω t H ( j ω) + H (s) = h(τ)e s τ d τ Transfer function + H ( j ω) = h(τ)e j ω τ d τ Frequency response LTI Systems (1A) 36

37 Frequency Response Laplace Transform of h(t) Fourier Transform of h(t) + H (s) = h(τ)e s τ d τ s = σ+ j ω + H ( j ω) = h(τ)e j ω τ d τ s = j ω Polynomials of Differential Equation Polynomials of Differential Equation H (s) = P(s) Q(s) s = σ+ j ω H ( j ω) = P( j ω) Q( j ω) s = j ω Transfer function (t-domain) Frequency response (t-domain) H (s) = [ y (t ) x(t ) ]x(t )=e st s = σ+ j ω H ( j ω) = [ y (t ) x(t ) ]x (t )=e jω t s = j ω Transfer function (s-domain) Frequency response (ω-domain) H (s) = Y (s) X (s) s = σ+ j ω H ( j ω) = Y ( j ω) X ( j ω) s = j ω LTI Systems (1A) 37

38 ZSR to everlasting sinusoidal inputs e + j ω t h(t ) H (+ j ω)e + j ω t = H (+ j ω) e + j arg{h (+ j ω)} e + j ω t e j ω t h(t ) H ( j ω)e j ω t = H ( j ω) e + j arg{h ( j ω)} e j ω t e + j ω t + e j ω t h(t ) H (+ j ω) e [+ j ω t +arg{h (+ j ω)}] [ j ω t+arg{h ( j ω)}] + H ( j ω) e = H (+ j ω) {e [+ j ω t +arg {H (+ j ω)}] + e [ j ω t arg{h (+ j ω)}] } 2 cos(ω t) h(t ) H ( j ω) 2cos(ω t+arg {H ( j ω)}) A cos(ωt +α) h(t ) A H ( j ω) cos(ωt +α+arg{h ( j ω)}) A sin (ω t+α) h(t ) A H ( j ω) sin (ω t+α+arg {H ( j ω)}) LTI Systems (1A) 38

39 Sinusoidal Steady State Response (1) input applied at t = ZIR ZSR δ(t) e ζ t (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) y y (1) y (N 1) i i natural c i e λ i t + h(t) K i e λ i t + βe ζt forced input applied at t = - δ(t ) e s t zero initial conditions (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) h(t ) H (s)e s t total response steady state response natural forced forced y (t) = i K i e λ i t + H (ζ)e ζ t t y ss (t) = H (ζ)e ζ t t y (t) = i K i e λ i t + H (ζ)x(t) x(t) = e ζ t y ss (t) = H (ζ) x(t ) x (t) = e ζ t Y (s) = [ i K i (s λ i ) + H (s) ] X (s) Y ss (s) = H (s) X (s) LTI Systems (1A) 39

40 Sinusoidal Steady State Response (2) input applied at t = ZIR ZSR δ(t) e ζ t (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) y y (1) y (N 1) i i natural c i e λ i t + h(t) K i e λ i t + βe ζt forced steady state response x(t) = A h(t ) y ss (t ) = H () A e t (N 1) y ξ = = A H () y y (1) x(t) = A e j ωt ξ = j ω h(t ) y y (1) y (N 1) y ss (t ) = H ( j ω) A e jωt = A H ( j ω) e jω x(t) = A cos(ωt ) h(t ) y y (1) y ss (t ) = H ( j ω) A cos(ωt ) (N 1) ξ = j ω y = A H ( j ω) cos(ω t) LTI Systems (1A) 4

41 Sinusoidal Steady State Response (3) y ss (t ) = H () A e t = A H () x(t) = A ξ = input applied at t = ZIR ZSR δ(t) e ζ t (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) y y (1) y (N 1) i i natural c i e λ i t + h(t) K i e λ i t + βe ζ t forced steady state response steady state response Forced response Forced response steady state response y ss (t ) = H ( j ω) A cos(ωt ) x(t) = A cos(ωt ) = A H ( j ω) cos(ω t) ξ = j ω LTI Systems (1A) 41

42 Frequency Response y ss (t ) = H ( j ω) A cos(ωt ) x(t) = A cos(ωt ) = A H ( j ω) cos(ω t) ξ = j ω ω 1 ω 1 ω 2 ω 3 ω 1 ω 2 ω 2 ω 3 ω 3 LTI Systems (1A) 42

43 Transient Response y ss (t ) = H () A e t = A H () x(t) = A ξ = Natural + Forced response transient response LTI Systems (1A) 43

44 Frequency Response in Control Theory (1) A 2 +B 2 cos(ωt θ) G(s) ( ) G( j ω) A 2 +B 2 cos(ω t θ+arg {G( j ω)}) A cos(ωt)+b sin(ωt ) A cos(ωt)+b sin(ωt ) = A 2 +B 2 [ A cos(ωt )+ B sin(ω A 2 + B 2 A 2 + B t)] 2 = A 2 +B 2 [cos(θ)cos(ωt)+sin(θ)sin(ωt )] = A 2 +B 2 cos(θ ωt ) = A 2 +B 2 cos(ωt θ) = A 2 + B 2 cos(ωt θ) cos(θ) = sin(θ) = A A 2 +B 2 B A 2 +B 2 LTI Systems (1A) 44

45 Frequency Response in Control Theory (2) A 2 +B 2 cos(ωt θ) G(s) G( j ω) A 2 +B 2 cos(ω( t θ+arg {G( j ω)}) ) A cos(ωt)+b sin(ωt ) = A 2 +B 2 cos(ωt θ) A s s 2 +ω + B ω 2 s 2 +ω 2 = A s+b ω s 2 +ω 2 Y (s) = A s+b ω s 2 +ω 2 G(s) = A s+b ω (s+ j ω)(s j ω) G(s) = K 1 s+ j ω + K 2 s j ω + F( s) Partial Fraction [ K 1 = A s+b ω [ (s+ j = A s+b ω s 2 +ω 2 (s j ω) ω)g(s)]s= j G(s) = ω ]s= j ω A jω+b ω 2 jω G ( j ω) = 1 ( A+ j B)G( j ω) 2 [ K 2 = A s+b ω [ (s j = A s+b ω s 2 +ω 2 (s+ j ω) ω)g(s)]s=+ G(s) = A j ω+b ω j ω ]s=+ j ω +2 j ω G(+ j ω) = 1 ( A j B)G(+ j ω) 2 LTI Systems (1A) 45

46 Frequency Response in Control Theory (3) A 2 +B 2 cos(ωt θ) G(s) G( j ω) A 2 +B 2 cos(ω( t θ+arg {G( j ω)}) ) Y (s) = K 1 s+ j ω + K 2 s j ω + F( s) K 1 = 1 2 ( A+ j B)G( j ω) K 2 = 1 ( A j B)G(+ j ω) 2 A± j B = A 2 + B 2[ A A 2 +B 2 ± j = A 2 +B 2 [cos θ ± j sin θ ] = A 2 + B 2 e ± j θ B ] A 2 +B 2 Stable System e p i e σ i lim t f (t ) = lim s system modes p i <, σ i < s F (s) = Ignore F (s) Y ss (s) = K 1 s+ j ω + K 2 s j ω K 1 = 1 2 A2 +B 2 e + jθ G( j ω) K 2 = 1 2 A 2 +B 2 e j θ G ( j ω) LTI Systems (1A) 46

47 Frequency Response in Control Theory (4) A 2 +B 2 cos(ωt θ) G(s) G( j ω) A 2 +B 2 cos(ω( t θ+arg {G( j ω)}) ) Y ss (s) = K 1 s+ j ω + K 2 s j ω = 1 2 ( A + j B)G( j ω) 1 s+ j ω ( A j B)G(+ j ω) 1 s j ω = 1 2 A 2 +B 2 e + jθ G( j ω) 1 s+ j ω + 1 A 2 +B 2 e jθ 1 G(+ j ω) 2 s j ω A 2 +B 2 y ss (t ) = [G( j ω)e jωt e + jθ 2 + G(+ j ω)e + jωt e jθ ] A 2 +B 2 = [G(+ j ω)e j(ωt θ) 2 + G(+ j ω)e + j( ωt θ) ] = A 2 +B 2 R{G(+ j ω) e + j(ωt θ) } = A 2 +B 2 G(+ j ω) cos(ωt θ+arg{g(+ j ω)}) LTI Systems (1A) 47

48 Impulse Response h(t) LTI Systems (1A) 48

49 Impulse Response h(t) LTI Systems (1A) 49

50 Impulse Response h(t) LTI Systems (1A) 5

51 Impulse Response h(t) LTI Systems (1A) 51

52 References [1] [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 23 [3] M. J. Roberts, Fundamentals of Signals and Systems [4] S. J. Orfanidis, Introduction to Signal Processing [5] B. P. Lathi, Signals and Systems

Spectrum Representation (5A) Young Won Lim 11/3/16

Spectrum Representation (5A) Young Won Lim 11/3/16 Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

Διαβάστε περισσότερα

Sampling Basics (1B) Young Won Lim 9/21/13

Sampling Basics (1B) Young Won Lim 9/21/13 Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

Διαβάστε περισσότερα

Digital Signal Octave Codes (0B)

Digital Signal Octave Codes (0B) Digital Signal Aliasing and Folding Frequencies Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

Διαβάστε περισσότερα

CORDIC Background (4A)

CORDIC Background (4A) CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

CORDIC Background (2A)

CORDIC Background (2A) CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15 Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

Διαβάστε περισσότερα

BandPass (4A) Young Won Lim 1/11/14

BandPass (4A) Young Won Lim 1/11/14 BandPass (4A) Copyright (c) 22 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version

Διαβάστε περισσότερα

CT Correlation (2B) Young Won Lim 8/15/14

CT Correlation (2B) Young Won Lim 8/15/14 CT Correlation (2B) 8/5/4 Copyright (c) 2-24 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any

Διαβάστε περισσότερα

Trigonometry Functions (5B) Young Won Lim 7/24/14

Trigonometry Functions (5B) Young Won Lim 7/24/14 Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

Διαβάστε περισσότερα

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL SMAC) I Dynamicresponseof 2 nd ordersystem Prof.SongZhangMEG088) Solutions to ODEs Forann@thorderLTIsystem a n yn) + a n 1 y n 1) ++ a 1 "y + a 0 y = b m u m)

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12 ni-aliasing Prefiler (6B) Copyrigh (c) Young W. Lim. Permission is graned o copy, disribue and/or modify his documen under he erms of he GNU Free Documenaion License, Version. or any laer version published

Διαβάστε περισσότερα

Fundamentals of Signals, Systems and Filtering

Fundamentals of Signals, Systems and Filtering Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness

Διαβάστε περισσότερα

Assignment 1 Solutions Complex Sinusoids

Assignment 1 Solutions Complex Sinusoids Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(

Διαβάστε περισσότερα

Επίλυση Δ.Ε. με Laplace

Επίλυση Δ.Ε. με Laplace Επίλυση Δ.Ε. με Laplace Ν. Παπαδάκης 24 Οκτωβρίου 2015 Ν. Παπαδάκης Επίλυση Δ.Ε. με Laplace 24 Οκτωβρίου 2015 1 / 78 Περιεχόμενα 1 Παρουσίαση Προβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα

Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα 1. Χρονική απόκριση συστημάτων αυτομάτου ελέγχου Στα περισσότερα συστήματα αυτομάτου ελέγχου χρησιμοποιείται ως ανεξάρτητη μεταβλητή ο χρόνος,

Διαβάστε περισσότερα

Linear System Response to Random Inputs. M. Sami Fadali Professor of Electrical Engineering University of Nevada

Linear System Response to Random Inputs. M. Sami Fadali Professor of Electrical Engineering University of Nevada Linear System Response to Random Inputs M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline Linear System Response to deterministic input. Response to stochastic input. Characterize

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ο μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 2011-12 Εαρινό Εξάµηνο Ενδιάµεση Εξέταση 1 Παρασκευή 17 Φεβρουαρίου

Διαβάστε περισσότερα

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συστήματα πρώτης και δεύτερης τάξης Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Μετασχηματισμοί Laplace. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας

Μετασχηματισμοί Laplace. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας ιαφορικές Εξισώσεις Μετασχηματισμοί Laplace Μανόλης Βάβαλης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας Βόλος, 11 Μαΐου 2015 Περιεχόμενα Μετασχηματισμοί Laplace Ορισμός μετασχηματισμού

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 3: Μετασχηματισμός Laplace: Συνάρτηση μεταφοράς

Διαβάστε περισσότερα

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 203 ιδάσκων : Π. Τσακαλίδης Λύσεις Πέµπτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/05/203 Ηµεροµηνία

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης Δ. Δημογιαννόπουλος,

Διαβάστε περισσότερα

ΜΜ803 ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ

ΜΜ803 ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ ΜΜ83 ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Εαρινό εξάµηνο 8 Λύσεις εργασίας # Λύση άσκησης : Για την πρώτη συνάρτηση ισχύει ότι sin( ωt+ θ) sinωtcosθ + cosωtsinθ άρα L[sin( ωt+ θ)] L[sin ωtcosθ + cosωtsin θ] cos θ L[sin ωt]

Διαβάστε περισσότερα

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με

Διαβάστε περισσότερα

Nachrichtentechnik I WS 2005/2006

Nachrichtentechnik I WS 2005/2006 Nachrichtentechnik I WS 2005/2006 1 Signals & Systems wt 10/2005 1 Overview (Signals & Systems) Signals: definition & classification properties basic signals Signal transformations Fourier transformation

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

LECTURE 2 : MODELS AND METHODS. Time-Series Models: Feedback Form and Transfer-Function Form

LECTURE 2 : MODELS AND METHODS. Time-Series Models: Feedback Form and Transfer-Function Form LECTURE 2 : MODELS AND METHODS Time-Series Models: Feedback Form and Transfer-Function Form A dynamic regression model is a relationship comprising any number of consecutive elements of x(t), y(t) and

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL Biochemical Journal: this is an Accepted Manuscript, not the final Version of Record. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Κεφάλαιο 7. Μετασχηματισμός Laplace. 7.1 Εισαγωγή στον μετασχηματισμό Laplace

Κεφάλαιο 7. Μετασχηματισμός Laplace. 7.1 Εισαγωγή στον μετασχηματισμό Laplace Κεφάλαιο 7 Μετασχηματισμός Laplace Σε αυτο το κεφάλαιο θα μελετήσουμε τη μέθοδο του μετασχηματισμού Laplace, η οποία αποτελεί μία από τις βασικές τεχνικές μαθηματικών προβλημάτων: μετασχηματίζει δύσκολα

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye ME 374, System Dynamics Analysis and Design Homewk 9: Solution June 9, 8 by Jason Frye Problem a he frequency response function G and the impulse response function ht are Fourier transfm pairs herefe,

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation Pi Notations Traditional name Π Traditional notation Π Mathematica StandardForm notation Pi Primary definition.3... Π Specific values.3.3.. Π 3.5965358979338663383795889769399375589795937866868998683853

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

2.153 Adaptive Control Lecture 7 Adaptive PID Control

2.153 Adaptive Control Lecture 7 Adaptive PID Control 2.153 Adaptive Control Lecture 7 Adaptive PID Control Anuradha Annaswamy aanna@mit.edu ( aanna@mit.edu 1 / 17 Pset #1 out: Thu 19-Feb, due: Fri 27-Feb Pset #2 out: Wed 25-Feb, due: Fri 6-Mar Pset #3 out:

Διαβάστε περισσότερα