Point-to-point digital link design

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Point-to-point digital link design"

Transcript

1 15-16η Διάλεξη Point-to-point digital link design Γ. Έλληνας, Διάλεξη 15-16, σελ. 1 Outline Link Design Rise-Time Intro to WDM WDM-LANs Γ. Έλληνας, Διάλεξη 15-16, σελ. 2 Page 1

2 Point-to-point digital link design The simplest optical fiber communications system is a point-to-point link in which an optical transmitter and receiver are connected to one another via an optical fiber. This simple architecture is typical of those used in trans-oceanic links for example. Information source Optical transmitter Optical receiver Information recipient Optical fiber Γ. Έλληνας, Διάλεξη 15-16, σελ. 3 Point-to-point digital link design In digital communications, three key specifications are: 1. The length of the link (in km) 2. The bit rate (in Mb/s or Gb/s) 3.The bit error rate (BER). In addition, such considerations as component cost (per subscriber) and reliability also have to be taken care of. In satisfying the link specifications, a designer has a number of decisions to take, because... Γ. Έλληνας, Διάλεξη 15-16, σελ. 4 Page 2

3 Bandwidth (bit rate) and repeater spacing are determined by: Transmitter (e.g. laser) Power Modulation bandwidth Transmission Medium (fiber) λ Attenuation λ Δλ Dispersion Receiver (photodiode) λ Sensitivity Modulation bandwidth Γ. Έλληνας, Διάλεξη 15-16, σελ. 5 A. Choice of operating wavelength Short haul links (e.g. LANs) :- use short wavelengths (e.g μm). Moderate fiber losses can be tolerated and the technology is cheap. By using multimode fiber, connectors are more rugged than for single mode. Long haul links (e.g. transatlantic) :- use long wavelengths where attenuation and dispersion are low. (e.g. 1.3 μm - gives dispersion minimum, or 1.55 μm - has attenuation minimum and is compatible with optical amplifiers). Γ. Έλληνας, Διάλεξη 15-16, σελ. 6 Page 3

4 A. Choice of operating wavelength Loss of modern fibers Γ. Έλληνας, Διάλεξη 15-16, σελ. 7 A. Choice of operating wavelength Dispersion (ps/(nm.km)) Dispersion for a silica single-mode fiber Γ. Έλληνας, Διάλεξη 15-16, σελ. 8 Page 4

5 B. Choice of source Power :- laser couples more power into single mode fiber than LED, but high-bit rate versions can be expensive and require temperature and optical power control. This makes them unsuitable for short links. Spectral width :- at short wavelengths (high material dispersion) LEDs with large spectral widths might cause problems with intersymbol interference. At 1.3 μm, we have very low dispersion fiber, which combined with low spectral width lasers allows high bit rates (e.g. 10 Gb/s and above). Γ. Έλληνας, Διάλεξη 15-16, σελ. 9 B. Choice of source Comparison of spectral widths Single-Mode Laser Diode Relative Power Density LED 3 to 6 nm Fabry-Perot Laser Diode < 1 pm 50 to 100 nm Wavelength Γ. Έλληνας, Διάλεξη 15-16, σελ. 10 Page 5

6 C. Choice of fiber Multimode :- modal dispersion limited can be used with LEDs and laser diodes graded index multimode fiber can achieve reasonable reduction in modal dispersion. Single-mode : no modal dispersion problems can only be used with laser diodes (high tolerance coupling) can support > 1 Tb/s (using WDM) small core diameter (8μm) leads to high tolerance (high price) connectors. Γ. Έλληνας, Διάλεξη 15-16, σελ. 11 D. Choice of photodetctor PIN :- simpler construction than APD relatively low sensitivity available for short and long wavelengths higher bandwidths achievable compared to APDs (up to 100 GHz) APD :- better receiver sensitivity temperature sensitive high bias voltages Γ. Έλληνας, Διάλεξη 15-16, σελ. 12 Page 6

7 Link Power Budget Put simply, the link power budget is an "accounting" procedure in which one calculates how much power can be lost between the transmitter and the receiver for a given receiver sensitivity (which depends on the bit rate) and transmitter power output. The resulting budget is allocated to connector losses, splice losses, fiber losses and a safety margin (system margin). db and dbm units are used in the link power budget. Γ. Έλληνας, Διάλεξη 15-16, σελ. 13 The db and dbm units See corresponding lecture for a discussion of this topic. Advantage of this approach is that it replaces multiplication & division with addition/subtraction in calculation of link gain/link loss. P in (dbm) G (db) P out (dbm) = P in (dbm) + G (db) P in (dbm) αl (db) P out (dbm) = P in (dbm) - αl (db) Γ. Έλληνας, Διάλεξη 15-16, σελ. 14 Page 7

8 power link budget LASER fiber PHOTODIODE P S (dbm) αl (db) P R (dbm) αl max = P S - P R Γ. Έλληνας, Διάλεξη 15-16, σελ. 15 LASER fiber OPTICAL AMPLIFIER PHOTODIODE fiber loss α db/km Loss due to fiber connector fiber pigtail; v. short, negligible loss fiber splice (permanent connection) Introduces splice loss Laser-to-fiber coupling loss; can be minimised using lenses Γ. Έλληνας, Διάλεξη 15-16, σελ. 16 Page 8

9 LASER fiber OPTICAL AMPLIFIER PHOTODIODE Power level (dbm) Total link loss M a Γ. Έλληνας, Διάλεξη 15-16, σελ. 17 Distance along link (km) Power link budget In practical applications, we often use components that have connectors attached (i.e. they are connectorized). fiber with one connector is known as a fiber pigtail. A length of fiber with connectors on both ends is called a patchcord (or jumper cable). In many link budgets, the splice loss is often lumped together with the fiber loss. We also include a safety factor known as the system margin (M a ) to account for component degradation. A typical value for M a is 6 db. Γ. Έλληνας, Διάλεξη 15-16, σελ. 18 Page 9

10 Example Calculate maximum link length for a system with: a connectorized laser transmitter (P S = 3 dbm) a connectorized receiver with sensitivity P R = -40 dbm a fiber patchcord (α F = 0.5 db/km, including splice losses) connector losses of α C = 1 db and system margin of 6 db Laser (P S ) α C fiber α F L α C Receiver (P R ) Total link loss (db) = P S - P R = α F L + 2 α C + M a Γ. Έλληνας, Διάλεξη 15-16, σελ. 19 α F L = P S - P R -2 α C -M a = 35 db Hence L max = 35 / 0.5 = 70 km Laser (P S ) P S = 3 2 Power level (dbm) α C α F L α C Receiver (P R ) α C α F L max N.B. Not to scale! P R = α C M a Distance (km) Γ. Έλληνας, Διάλεξη 15-16, σελ. 20 Page 10

11 Digital link design: Rise time budget In the previous example, we saw how the maximum link distance is affected by the fiber attenuation and also the source power and the photoreceiver sensitivity for a given bit rate; this gave us the link power budget. Information source Optical transmitter Optical receiver Information recipient Optical fiber Γ. Έλληνας, Διάλεξη 15-16, σελ. 21 power link budget LASER fiber PHOTODIODE P S (dbm) αl (db) P R (dbm) αl max = P S - P R - M a Γ. Έλληνας, Διάλεξη 15-16, σελ. 22 Page 11

12 Rise-time budget However, bit rate and repeater spacing are also determined by rise-time considerations: Transmitt er (e.g. laser) Power Transmission Medium (fiber) λ Attenuation Receiver (photodiode) λ Sensitivity Modulation bandwidth λ Δλ Dispersion Modulation bandwidth Γ. Έλληνας, Διάλεξη 15-16, σελ. 23 Concept of rise-time Any real-life system with an input/output will have a finite bandwidth. For example, consider typical modulation response of a laser diode: Γ. Έλληνας, Διάλεξη 15-16, σελ. 24 Page 12

13 i in (t) 0 Previous diagram relates to sinusoidal (jω) response. The corresponding step-response shows that it takes a finite time to reach the steady-state, and that in some cases there may even be relaxation oscillations: 0 Concept of rise-time t i in (t) p LD (t) p LD (t) 0 0 Typical step-response of a laser diode, showing turn-on delay and relaxation oscillations (due to low damping factor) Γ. Έλληνας, Διάλεξη 15-16, σελ. 25 t Similarly, a photodiode will take a finite time to respond to step-changes in the incidient optical power, as shown below for the case of a pulse input: p PD (t) Concept of rise-time p PD (t) i out (t) i out (t) 0 0 t 0 0 Note: Output current pulse shape depends on the device capacitance and also the width of the depletion region. The above response is quite poor due to large junction capcitance. Γ. Έλληνας, Διάλεξη 15-16, σελ. 26 t Page 13

14 Concept of rise-time Finally, the optical fiber itself will exhibit its own rise time due to the effects of dispersion. Γ. Έλληνας, Διάλεξη 15-16, σελ. 27 Concept of rise-time In the case of single-mode fibers, this is entirely due to intramodal dispersion, with the main contribution to this being being material dispersion. In multimode fibers, the dominant effect is intermodal dispersion. (Although material dispersion also exists, it is negligible in comparison). Although attenuation is important, it does not have an impact on rise-time. It affects the link power budget instead. Γ. Έλληνας, Διάλεξη 15-16, σελ. 28 Page 14

15 So, not surprisingly, the optical fiber link as a whole will have a rise-time (and fall-time) in response to a rectangular pulse input: i in (t) i in (t) Concept of rise-time p LD (t) fiber p PD (t) i out (t) i out (t) 0 0 t 0 0 Γ. Έλληνας, Διάλεξη 15-16, σελ. 29 t Definition of rise-time and fall-time N.B. y-axis is voltage, current or optical power as appropriate Rise-time: time taken to rise from 10% to 90% of the steady-state value of the pulse. Fall-time: time taken to fall from 90% to 10% of the steady-state value of the pulse. Γ. Έλληνας, Διάλεξη 15-16, σελ. 30 Page 15

16 Rise-time Budget Put simply, the rise-time budget is an "accounting" procedure in which one calculates how much pulse spreading can be tolerated between the transmitter and the receiver for a given transmitter rise-time, photoreceiver risetime and dispersion due to the fiber (both modal and chromatic, as appropriate). Γ. Έλληνας, Διάλεξη 15-16, σελ. 31 Rise-time Budget The total rise-time of the fiber-optic link is known as the system rise time t sys. It depends on the rise-times of the individual systems components, and assuming these are independent of one another, they affect t sys as follows: t = t + t + t + sys 2 TX 2 mat 2 mod t 2 RX Γ. Έλληνας, Διάλεξη 15-16, σελ. 32 Page 16

17 Rise-time Budget t TX = optical transmitter rise-time t RX = optical receiver rise-time t mat = material dispersion rise-time t mod = modal dispersion rise-time (for MM fiber only) The usual requirement on t sys is: t sys < 0.7 τ where τ is the pulse duration. Γ. Έλληνας, Διάλεξη 15-16, σελ. 33 LASER fiber rise-time budget PHOTODIODE t TX t mat t mod t = t + t + t + sys 2 TX 2 mat 2 mod t 2 RX t RX Γ. Έλληνας, Διάλεξη 15-16, σελ. 34 Page 17

18 Rise-time Budget The pulse duration depends on the data format. Two main data formats are used: NRZ and RZ Γ. Έλληνας, Διάλεξη 15-16, σελ. 35 Consider an NRZ stream composed of alternating 0 s and 1 s, and an RZ stream composed entirely of 1 s: τ NRZ NRZ RZ τ RZ T = /B T For NRZ signalling, τ NRZ = 1/B T, hence: t sys < 0.7 B T For RZ signalling, τ RZ = 1/2B T, hence: t sys 0.35 < B Γ. Έλληνας, Διάλεξη 15-16, σελ. 36 T Page 18

19 t mat : material dispersion rise-time due to material dispersion significant in single-mode fibers t mat = D mat σ λ L D mat = material dispersion parameter (ps/nm.km) σ λ = spectral width of optical source (in nm or μm) t mat can usually be neglected if the spectral width is narrow (e.g. in DFB lasers) or if operation is at 1.3 μm. Γ. Έλληνας, Διάλεξη 15-16, σελ. 37 t mod : modal dispersion rise-time due to (inter)modal dispersion dominant in multimode fibers In theory t mod is proportional to fiber length. In a real system, pulse distortion increases less rapidly after a certain initial length because of mode coupling. Γ. Έλληνας, Διάλεξη 15-16, σελ. 38 Page 19

20 t mod : modal dispersion rise-time Empirically, it can be shown that t mod in ns is given by: t mod = 0.44 L B O q where q is between 0.5 and 1.0 (depends on amount of mode coupling), L is the fiber length (km) and B O is the 3dB electrical bandwidth (in GHz) of 1 km of fiber. Γ. Έλληνας, Διάλεξη 15-16, σελ. 39 t RX : photoreceiver rise-time Assuming a simple low-pass RC characteristic for the frequency response of a photoreceiver, then we can relate t RX (in ns) to the 3 db receiver bandwidth (B RX in units of GHz) as follows: t RX = 0.35 B RX i signal i noise Cd R d A simple photodiode model; high frequency versions also include parasitics due to the packaging Γ. Έλληνας, Διάλεξη 15-16, σελ. 40 Page 20

21 t TX : optical transmitter rise-time This is a function of both the intrinsic frequency response (of either the LED or the laser diode) along with any drive electronics. LED and laser diode data sheets usually specify the device rise time. Γ. Έλληνας, Διάλεξη 15-16, σελ. 41 Finally... Although the above equations/analysis may appear to be straightforward, be VERY careful in using units. Bandwidths of laser diodes, for example, tend to be in the GHz range, so rise-times tend to be quoted in ns. However, it is possible to encounter a mix of units when performing rise-time calculations. If in any doubt, convert all quantities to SI units, and perform calculations in SI units, before converting to ns at the end. Γ. Έλληνας, Διάλεξη 15-16, σελ. 42 Page 21

22 Wavelength Division Multiplexing Limitations with earlier systems: Only a single wavelength is used, i.e. a minute fraction of the available optical bandwidth in fiber Only two end points are connected together, not allowing for a multi-user environment. Γ. Έλληνας, Διάλεξη 15-16, σελ. 43 Five generations of optical communications: Γ. Έλληνας, Διάλεξη 15-16, σελ. 44 Page 22

23 Wavelength Division Multiplexing Two developments have allowed us to start to access the massive bandwidth potential of optical fiber: Optical amplifiers: Provide amplification in the low loss window of optical fiber, and over a broad range of wavelengths (typically 40 nm centred on 1550 nm). Provide transparent operation, i.e. photons in, photons out. Wavelength division multiplexing: WDM components allow us to multiplex together different wavelength channels. Γ. Έλληνας, Διάλεξη 15-16, σελ. 45 How much bandwidth is there? Assume that our system will operate around 1550 nm and use optical amplifiers. The BW is given by the spectral range over which we get adequate amplification, say 10 db for 50 km spacing (50 km 0.2 db/km). Γ. Έλληνας, Διάλεξη 15-16, σελ. 46 Page 23

24 How much bandwidth is there? From earlier diagram, the following spectral bandwidth falls well within the 10 db gain requirement: 1530 nm 1550 nm 1570 nm λ 1 = c/f 1 λ 0 λ 2 = c/f 2 Δλ = λ 2 - λ 1 Δf = f 1 - f 2 λ 1 = 1530 nm, λ 2 = 1570 nm, i.e. λ 1 λ 2 λ 0 Γ. Έλληνας, Διάλεξη 15-16, σελ. 47 How much bandwidth is there? c c c 2 1 Δf = f1 f 2 = = λ λ λ λ Δf 1 2 λ 0 2 c Δλ ( λ λ ) 1 2 In this case, Δλ = 40 nm, λ 0 = 1550 nm which gives: Δf = 5 THz (= 5000 GHz) No laser exists that is capable of being modulated over this range. Γ. Έλληνας, Διάλεξη 15-16, σελ. 48 Page 24

25 How much bandwidth is there? The highest 3 db bandwidth achieved in lasers is about 30 GHz, and although modulators can do better, they are still limited to less than 100 GHz. Most off-the-shelf lasers are specified at no more than a few GHz. If we take a 1 GHz device at 1.55 μm, we can calculate how much spectral BW it occupies: 2 c Δλ λ0 Δf Δf Δλ = nm 2 λ0 c In other words, a single laser occupies a very small percentage of the available spectral bandwidth. Γ. Έλληνας, Διάλεξη 15-16, σελ. 49 WDM These limitations can be overcome with wavelength division multiplexing (WDM). Many different wavelengths (from different lasers) share the same optical fiber. In early WDM, wavelengths were separated by 10 nm; current separation is down to 0.8 nm, and is called dense WDM (i.e. DWDM). WDM holds the promise of high bandwidth multi-user networks, for applications such as video-on-demand, telemedicine etc. in local, wide and metropolitan area networks (LAN, WAN, MAN). Γ. Έλληνας, Διάλεξη 15-16, σελ. 50 Page 25

26 WDM Spectral windows in single-mode fiber offer phenomenal bandwidths: Γ. Έλληνας, Διάλεξη 15-16, σελ. 51 WDM Present-day optical devices have bandwidths well below this (< 100 GHz), so to take advantage of the available fiber bandwidth, we can use many wavelengths in the 1.55 μm window (where we have the advantage of optical amplification): Loss, db/km λ 1 λ 2 λ n μm 1.55μm λ Γ. Έλληνας, Διάλεξη 15-16, σελ. 52 Page 26

27 WDM ITU (International Telecommunication Union) have set a standard spacing of 100 GHz for WDM systems (originates from FDM technology). For the 1550 nm window, this is 0.8 nm spacing. Therefore in our example of 5 THz bandwidth, we have 50 wavelength channels available. If each channel supports 10 Gb/s bit rate for example, then the aggregate bit rate would be 500 Gb/s or 0.5 Tb/s. It s estimated that with 1 Tb/s we could transmit all the world s TV station output simultaneously. Γ. Έλληνας, Διάλεξη 15-16, σελ. 53 US Fiber-Optic Backbone Γ. Έλληνας, Διάλεξη 15-16, σελ. 54 Page 27

28 BW Requirements Γ. Έλληνας, Διάλεξη 15-16, σελ. 55 Advantages of WDM: Capacity upgrades. If each wavelength can support a bit rate of a few Gb/s (40 Gb/s in state-of-the-art), then system capacity is increased massively by using many wavelengths. Transparency. Each optical channel (i.e. wavelength) can support any signal format (e.g. digital or analogue, TDM etc.) Wavelength rerouting and switching. Can switch wavelengths and route signals by wavelength, adding an extra dimension to network design. Γ. Έλληνας, Διάλεξη 15-16, σελ. 56 Page 28

29 WDM Components: MUX WDM multiplexer: used to combine several different wavelengths onto one fiber: λ 1 λ λ λ λ λ 1 2, 3, 4 2 MUX λ 3 λ 4 Should have low insertion loss. Γ. Έλληνας, Διάλεξη 15-16, σελ. 57 WDM Components: DMUX WDM demultiplexer: used to remove several different wavelengths from one fiber: λ 1 λ 1 λ 2, λ 3, λ 4 DEMUX λ 2 λ 3 λ 4 Should have low insertion loss, high selectivity Γ. Έλληνας, Διάλεξη 15-16, σελ. 58 Page 29

30 WDM Components: EDFAs and Filters Optical amplifier (EDFA): used to provide gain to wavelengths in the 1.55 μm band. Tuneable optical filter: used to filter out a single wavelength for a photodetector to produce a tuneable receiver: Input Passband tuned to third wavelength Output Γ. Έλληνας, Διάλεξη 15-16, σελ. 59 WDM Components: Tunable lasers, add/drop MUX Tuneable laser diodes (figures of merit are large wavelength tuning range, high-speed tunability, high data rate transmission, rigid wavelength stability and repeatability). Add/drop multiplexers for selective wavelength routing/extraction: Add λ add Input λ add Γ. Έλληνας, Διάλεξη 15-16, σελ. 60 Page 30

31 Components for WDM Tuneable laser isolator N x N star coupler EDFA Photodiode Tuneable optical filter Wavelength router Γ. Έλληνας, Διάλεξη 15-16, σελ. 61 Passive N N star coupler P 1 P 2 P N N N Power split out equally amongst all output fibers; power in any one output is: (P 1 + P P N ) N N/B. All input wavelengths are multiplexed onto each output Γ. Έλληνας, Διάλεξη 15-16, σελ. 62 Page 31

32 Application: Wavelength-selective WDM λ 1 Provides fixed wavelength links for N transmitter/receiver pairs over a single fiber: λ 1 λ λ λ λ λ 1 2, 3, 4 2 MUX DEMUX λ 3 λ 4 λ 2 λ 3 λ 4 Γ. Έλληνας, Διάλεξη 15-16, σελ. 63 Application: Broadband WDM More flexible: offers broadcast and select: λ 1 Power combiner EDFA Power splitter Filter λ 1 λ 2 N x 1 1 x N λ 3 λ n λ 1 Receivers can tune in to any of the broadcast wavelengths Power splitter/combiner has 10 log N db loss: need EDFA Γ. Έλληνας, Διάλεξη 15-16, σελ. 64 Page 32

33 WDM Local Area Networks Network hierarchy: LAN e.g. School ECE MAN e.g. Univ. of Cyprus LAN: Local area network MAN: Metropolitan area network WAN: Wide area network WAN e.g. Cyprus Γ. Έλληνας, Διάλεξη 15-16, σελ. 65 WDM LANs: Basic Architectures Dual rail (bus) configuration fiber λ 1 λ 2 λ N TX TX TX RX RX RX fiber coupler Γ. Έλληνας, Διάλεξη 15-16, σελ. 66 Page 33

34 WDM LANs: Basic Architectures Passive star configuration TX RX λ 1 λ 2 TX RX TX RX λ N Star Coupler λ 3 TX RX Γ. Έλληνας, Διάλεξη 15-16, σελ. 67 Experimental WDM Local Area Networks (i) LAMBDANET (developed by Bellcore). Node Node 2 λ 2 λ 1 λ 16 Node 16 STAR COUPLER λ 3 λ4 λ 5 Node 3 Node 4 Node 5 Γ. Έλληνας, Διάλεξη 15-16, σελ. 68 Page 34

35 LAMBDANET Individual LAMBDANET node: Electronics interface Laser λ 1 Photoreceivers WDM DMUX Γ. Έλληνας, Διάλεξη 15-16, σελ. 69 LAMBDANET In LAMBDANET, each node is equipped with one fixed transmitter (DFB laser) emitting a unique wavelength and N fixed receivers. (N = no. of nodes in the network). Incoming wavelengths are separated using a wavelength demultiplexer, and each individual wavelength is sent to a photoreceiver. Each node s transmitter is fixed on that node s home wavelength. Γ. Έλληνας, Διάλεξη 15-16, σελ. 70 Page 35

36 LAMBDANET No tuneable components needed: relatively simple system to build. Other advantage is contention-free broadcast capability and support for one-to-one links as well as multicasting. Disadvantage: not easily scaleable, needs N data wavelengths for N nodes cost per node is high. 16-node system demonstrated with 2 Gb/s per channel. Γ. Έλληνας, Διάλεξη 15-16, σελ. 71 Experimental WDM Local Area Networks (ii) Rainbow (developed by IBM) NODE 1 λ 1 LASER TX. TUNABLE FILTER RX. STAR COUPLER λ 2 NODE 2 λ 1,λ 2. λ N λ 1,λ 2. λ N λ N NODE N λ 1,λ 2. λ N Γ. Έλληνας, Διάλεξη 15-16, σελ. 72 Page 36

37 Rainbow Broadcast and select architecture. Each node broadcasts a unique wavelength and is able to select any one of the wavelengths present in the network via a tuneable filter. Originally developed to network IBM PS/2 computers. Total capacity: 9.6 Gb/s, 32 nodes. Γ. Έλληνας, Διάλεξη 15-16, σελ. 73 Rainbow Protocol used to set up connections is as follows: (a) Idle receivers continually scan across all wavelengths. (b) If node wishes to transmit to node, then it continually sends a request (using λ 1 ) to for a connection. (c) When detects the request from, it locks its filter onto λ 1. (d) Node then sends a connection accept (using λ 2 ) to node. (e) When detects s acceptance, it locks its filter to λ 2, and a full duplex connection is established. Γ. Έλληνας, Διάλεξη 15-16, σελ. 74 Page 37

38 Experimental WDM Local Area Networks LAMBDANET and Rainbow are star topologies with N wavelengths assigned to N nodes (i.e. no wavelength re-use). Alternative topologies are possible, e.g. chain and ring. The following diagram shows a four-node ring network where add-drop multiplexers (ADM) are employed to allow wavelength re-use. Γ. Έλληνας, Διάλεξη 15-16, σελ. 75 Ring Network λ 1 λ 2 λ 3 λ 1 λ 2 λ 3 ADM λ 1 λ 4 λ 5 λ1 λ 4 λ 5 λ 4,λ 5,λ 6 NODE 1 λ 2,λ 3,λ λ 1,λ 2,λ 4 6 RING NODE 2 NETWORK NODE 4 NODE 3 λ 1,λ 3,λ 5 λ 3 λ 5 λ 6 λ 3 λ 5 λ 6 λ 2 λ 4 λ 6 λ 2 λ 4 λ 6 Γ. Έλληνας, Διάλεξη 15-16, σελ. 76 Page 38

39 Wavelength assignment table Alternative assignments are possible, as long as wavelengths are not in contention with one another; e.g. next diagram Γ. Έλληνας, Διάλεξη 15-16, σελ. 77 Wavelength assignment λ 2 λ 4 λ 6 λ 2 λ 4 λ 6 λ 3 λ 5 λ 6 λ3 λ 5 λ 6 λ 1,λ 3,λ 5 NODE 1 λ 1,λ 2,λ λ 2,λ 3,λ 6 4 NODE 2 NODE 4 NODE 3 λ 4,λ 5,λ 6 λ 1 λ 4 λ 5 λ 1 λ 4 λ 5 λ 1 λ 2 λ 3 λ 1 λ 2 λ 3 Γ. Έλληνας, Διάλεξη 15-16, σελ. 78 Page 39

40 Ring Networks Number of wavelengths added at each node equals the number that are received: all add/drop multiplexers are the same. Advantages: full interconnection between nodes is possible, i.e. any node can talk to any other. One might expect N 2 wavelengths would be needed to achieve this, but by re-using wavelengths as shown above, need far fewer. (e.g. for N = 4, only need 6, not 16). Γ. Έλληνας, Διάλεξη 15-16, σελ. 79 Broadcast & Select Multihop Networks Disadvantage of single-hop networks such as Rainbow is the need for rapidly tuneable lasers or receiver filters. Multi-hop networks overcome this problem by not having a direct connection between all node pairs. This allows each node to have a small number of fixed wavelength transmitters and receivers, i.e. node complexity is reduced. Γ. Έλληνας, Διάλεξη 15-16, σελ. 80 Page 40

41 Example: Shufflenet Multihop Network Passive star configuration λ 1 λ 2 λ 6 λ 8 Node 1 Node 2 Node 4 λ 5 λ 7 λ 7 λ 8 Star Coupler λ 3 λ 4 λ 3 λ 1 Node 3 λ 2 λ 4 λ 5 λ 6 Γ. Έλληνας, Διάλεξη 15-16, σελ. 81 Example: Shufflenet Multihop Network Dual rail configuration λ 1 λ 2 λ 3 λ 4 λ 5 λ 6 λ 7 λ 8 TX RX Node TX RX TX RX TX RX λ 5 λ 7 λ 6 λ 8 λ 1 λ 3 λ 2 λ 4 Γ. Έλληνας, Διάλεξη 15-16, σελ. 82 Page 41

42 Shufflenet Logical interconnection pattern and wavelength assignment: λ λ 2 λ 5 λ 6 2 λ 3 λ λ 4 λ 8 Γ. Έλληνας, Διάλεξη 15-16, σελ. 83 Shufflenet In general: k columns each have p k nodes, where p is the number of fixed transceiver pairs per node. The total number of nodes is then N = kp k The total number of wavelengths is N λ = pn = kp k + 1 The maximum number of hops needed to reach a given node is H max = 2k -1 Γ. Έλληνας, Διάλεξη 15-16, σελ. 84 Page 42

43 Shufflenet For example, for p = 2, k =2, we have: 1 λ 1 λ 2 5 λ 9 λ λ 3 λ 4 6 λ 11 λ λ 5 λ6 λ7 7 λ 13 λ 14 λ λ 8 λ 16 Γ. Έλληνας, Διάλεξη 15-16, σελ. 85 Shufflenet Total number of nodes is N = kp k = = 8 Total number of wavelengths is N λ = pn = kp k + 1 = 16 The maximum number of hops needed to reach a given node is H max = 2k - 1 = = 3 Γ. Έλληνας, Διάλεξη 15-16, σελ. 86 Page 43

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Monolithic Crystal Filters (M.C.F.)

Monolithic Crystal Filters (M.C.F.) Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications

Διαβάστε περισσότερα

Block Ciphers Modes. Ramki Thurimella

Block Ciphers Modes. Ramki Thurimella Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

CMOS Technology for Computer Architects

CMOS Technology for Computer Architects CMOS Technology for Computer Architects Iakovos Mavroidis Giorgos Passas Manolis Katevenis Lecture 13: On chip SRAM Technology FORTH ICS / EURECCA & UoC GREECE ABC A A E F A BCDAECF A AB C DE ABCDAECF

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Modbus basic setup notes for IO-Link AL1xxx Master Block

Modbus basic setup notes for IO-Link AL1xxx Master Block n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that

Διαβάστε περισσότερα

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System Typical and guaranteed specifications vary versus frequency; see detailed data sheets for specification

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

First Sensor Quad APD Data Sheet Part Description QA TO Order #

First Sensor Quad APD Data Sheet Part Description QA TO Order # Responsivity (/W) First Sensor Quad PD Data Sheet Features Description pplication Pulsed 16 nm laser detection RoHS 211/65/EU Light source positioning Laser alignment ø mm total active area Segmented in

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost

Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης & Τεχνολογίας Τηλεπικοινωνιών Ευάγγελος Α. Κοσμάτος Basic OSPF Configuration Υλοποίηση Δικτυακών Υποδομών

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors (Large Can Type)

Aluminum Electrolytic Capacitors (Large Can Type) Aluminum Electrolytic Capacitors (Large Can Type) Snap-In, 85 C TS-U ECE-S (U) Series: TS-U Features General purpose Wide CV value range (33 ~ 47,000 µf/16 4V) Various case sizes Top vent construction

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications: UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences EECS 150 Fall 2001 Prof. Subramanian Midterm II 1) You are implementing an 4:1 Multiplexer that has the following specifications:

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ. Surface Mount Monolithic Amplifiers High Directivity, 50Ω, 0.5 to 5.9 GHz Features 3V & 5V operation micro-miniature size.1"x.1" no external biasing circuit required internal DC blocking at RF input &

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater. Low Impedance, For Switching Power Supplies Low impedance and high reliability withstanding 5000 hours load life at +05 C (3000 / 2000 hours for smaller case sizes as specified below). Capacitance ranges

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes

Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes Tunable Diode Lasers Turning Laser Diodes into Diode Lasers Laser diodes Mode selection FP diodes high power at low cost AR diodes for best performance Compact and robust Littrow setup Highest power from

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* PART NUMBER SYSTEM

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

TaxiCounter Android App. Περδίκης Ανδρέας ME10069

TaxiCounter Android App. Περδίκης Ανδρέας ME10069 TaxiCounter Android App Περδίκης Ανδρέας ME10069 Content Android Operating System Development Tools Taxi Counter Algorithm Design Development Process Android Operating System Android is a Linux-based operating

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* Temperature Coefficient

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors

Aluminum Electrolytic Capacitors Aluminum Electrolytic Capacitors Snap-In, Mini., 105 C, High Ripple APS TS-NH ECE-S (G) Series: TS-NH Features Long life: 105 C 2,000 hours; high ripple current handling ability Wide CV value range (47

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

1) Formulation of the Problem as a Linear Programming Model

1) Formulation of the Problem as a Linear Programming Model 1) Formulation of the Problem as a Linear Programming Model Let xi = the amount of money invested in each of the potential investments in, where (i=1,2, ) x1 = the amount of money invested in Savings Account

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC Metallized Polyester Film Capacitor Type: ECQE(F) Non-inductive construction using metallized Polyester film with flame retardant epoxy resin coating Features Self-healing property Excellent electrical

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Type 947D Polypropylene, High Energy Density, DC Link Capacitors

Type 947D Polypropylene, High Energy Density, DC Link Capacitors Type 947D series uses the most advanced metallized film technology for long life and high reliability in DC Link applications. This series combines high capacitance and very high ripple current capability

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Δίκτυα Καθοριζόμενα από Λογισμικό

Δίκτυα Καθοριζόμενα από Λογισμικό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δίκτυα Καθοριζόμενα από Λογισμικό Exercise Session 4: Familiarization with GNU Radio Τμήμα Επιστήμης Υπολογιστών SDR Assignment using GNU Radio Manolis Surligas

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ "VIDEO ΚΑΤΟΠΙΝ ΖΗΤΗΣΗΣ" ΑΝΝΑ ΜΟΣΧΑ Μ 11 / 99

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ VIDEO ΚΑΤΟΠΙΝ ΖΗΤΗΣΗΣ ΑΝΝΑ ΜΟΣΧΑ Μ 11 / 99 ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ "VIDEO ΚΑΤΟΠΙΝ ΖΗΤΗΣΗΣ" ΑΝΝΑ ΜΟΣΧΑ Μ 11 / 99 ΠΕΡΙΕΧΟΜΕΝΑ Παραγρ. Σελ. Θέµα 3 Σύνοψη 4 Abstract 5 1 Εισαγωγή 6 2 Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Precision Metal Film Fixed Resistor Axial Leaded

Precision Metal Film Fixed Resistor Axial Leaded Features EIA standard colour-coding Non-Flame type available Low noise and voltage coefficient Low temperature coefficient range Wide precision range in small package Too low or too high ohmic value can

Διαβάστε περισσότερα

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Πολυτεχνική Σχολή Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

Πανεπιστήμιο Πατρών Πολυτεχνική Σχολή Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πανεπιστήμιο Πατρών Πολυτεχνική Σχολή Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Διπλωματική Εργασία Στα πλαίσια του μεταπτυχιακού προγράμματος ειδίκευσης: Επιστήμη και Τεχνολογία Των Υπολογιστών

Διαβάστε περισσότερα

Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration

Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration Δρ. Απόστολος Γκάμας Διδάσκων 407/80 gkamas@uop.gr Δίκτυα Επικοινωνιών ΙΙ Διαφάνεια 1 1 Dynamic Routing Configuration Router (config) # router protocol [ keyword

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ:ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων

Διαβάστε περισσότερα

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC ~ A File Name:IDLV65SPEC 07050 SPECIFICATION MODEL OUTPUT OTHERS NOTE DC VOLTAGE RATED CURRENT RATED POWER DIMMING RANGE VOLTAGE TOLERANCE PWM FREQUENCY (Typ.) SETUP TIME Note. AUXILIARY DC OUTPUT Note.

Διαβάστε περισσότερα

Ερευνητικά πεδία στη φωτονική τεχνολογία. Φωτονική ολοκλήρωση Optical Computing Βιοϊατρική Αισθητήρες Τηλεπικοινωνίες

Ερευνητικά πεδία στη φωτονική τεχνολογία. Φωτονική ολοκλήρωση Optical Computing Βιοϊατρική Αισθητήρες Τηλεπικοινωνίες Ερευνητικά πεδία στη φωτονική τεχνολογία Φωτονική ολοκλήρωση Optical Computing Βιοϊατρική Αισθητήρες Τηλεπικοινωνίες Που βρίσκεται η φωτονική τεχνολογία ΕΦΑΡΜΟΓΗ & ΤΕΛΙΚΟΣ ΧΡΗΣΤΗΣ σήμερα; Σχεδίαση συστήματος

Διαβάστε περισσότερα

Προσομοίωση BP με το Bizagi Modeler

Προσομοίωση BP με το Bizagi Modeler Προσομοίωση BP με το Bizagi Modeler Α. Τσαλγατίδου - Γ.-Δ. Κάπος Πρόγραμμα Μεταπτυχιακών Σπουδών Τεχνολογία Διοίκησης Επιχειρησιακών Διαδικασιών 2017-2018 BPMN Simulation with Bizagi Modeler: 4 Levels

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΔΕΙΚΤΩΝ ΠΟΙΟΤΗΤΑΣ ΕΔΑΦΟΥΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΔΕΙΚΤΩΝ ΠΟΙΟΤΗΤΑΣ ΕΔΑΦΟΥΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΔΕΙΚΤΩΝ ΠΟΙΟΤΗΤΑΣ ΕΔΑΦΟΥΣ [Μαρία Μαρκουλλή] Λεμεσός 2015 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Firm Behavior GOAL: Firms choose the maximum possible output (technological

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα