Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Revisiting the S-matrix approach to the open superstring low energy eective lagrangian"

Transcript

1 Revisiting the S-matrix approach to the open superstring low energy eective lagrangian IX Simposio Latino Americano de Altas Energías Memorial da América Latina, São Paulo. Diciembre de L. A. Barreiro (UNESP, Rio Claro - Brasil) R. Medina (UNIFEI, Itajubá - Brasil) 1

2 Revisiting the S-matrix approach to the open superstring low energy eective lagrangian JHEP10 (2012) 108 arxiv: L. A. Barreiro (UNESP, Rio Claro - Brasil) R. Medina (UNIFEI, Itajubá - Brasil) 2

3 Revisiting the S-matrix approach to the open superstring low energy eective lagrangian JHEP10 (2012) 108 arxiv: (... and work in progress...) L. A. Barreiro (UNESP, Rio Claro - Brasil) R. Medina (UNIFEI, Itajubá - Brasil) 3

4 A. (Extremely) Brief review of the tree level open string scattering amplitudes 4

5 (Tree level) N-point amplitude of gauge bosons 5

6 (Tree level) N-point amplitude of gauge bosons A N = i(2π) D δ D (k k N ) [ tr(λ a 1 λ a 2... λ a N ) A(1, 2,..., N) + ( non-cyclic permutations ) ] 6

7 (Tree level) N-point amplitude of gauge bosons A N = i(2π) D δ D (k k N ) [ tr(λ a 1 λ a 2... λ a N ) A(1, 2,..., N) + ( non-cyclic permutations ) ] A(1, 2,..., N) = g N 2 dµ(z) < ˆV 1 (z 1, k 1 ) ˆV 2 (z 2, k 2 )... ˆV N (z N, k N ) >, 7

8 (Tree level) N-point amplitude of gauge bosons A N = i(2π) D δ D (k k N ) [ tr(λ a 1 λ a 2... λ a N ) A(1, 2,..., N) + ( non-cyclic permutations ) ] A(1, 2,..., N) = g N 2 dµ(z) < ˆV 1 (z 1, k 1 ) ˆV 2 (z 2, k 2 )... ˆV N (z N, k N ) >, ˆV j (z j, k j ) Open string vertex operator. 8

9 For the BOSONIC open string: A(1, 2,..., N) = 1 xn 2 g N 2 dx N 2 dx N exp N i<j x3 0 dx 2 2α ζ i ζ j (x j x i ) N 2 i j N i<j (x j x i ) 2α k i k j 2α k j ζ i (x j x i ) linear 9

10 For the BOSONIC open string: A(1, 2,..., N) = 1 xn 2 g N 2 dx N 2 dx N exp N i<j x3 0 dx 2 2α ζ i ζ j (x j x i ) N 2 i j N i<j (x j x i ) 2α k i k j 2α k j ζ i (x j x i ) linear For the SUPERSYMMETRIC open string: A(1, 2,..., N) = 2 gn 2 (2α ) 2(x N 1 x 1 )(x N x 1 ) exp xn 1 0 N i j xn 2 dx N 2 dx N 3... dθ 1... dθ N 2 0 N i<j x3 0 dx 2 (x j x i θ j θ i ) 2α k i k j dφ 1... dφ N (2α ) 1 (θ j θ i )φ j (ζ j k i ) 1/2 (2α ) 1 φ j φ i (ζ j ζ i ) x j x i θ j θ i 10

11 Example 1 : 3-point amplitude 11

12 Example 1 : 3-point amplitude i) Open BOSONIC string A b (1, [ 2, 3) = 2g (ζ 1 k 2 )(ζ 2 ζ 3 ) + (ζ 2 k 3 )(ζ 3 ζ 1 ) + (ζ 3 k 1 )(ζ 1 ζ 2 ) ] + + 2g (2α ) (ζ 1 k 2 )(ζ 2 k 3 )(ζ 3 k 1 ) 12

13 Example 1 : 3-point amplitude i) Open BOSONIC string A b (1, [ 2, 3) = 2g (ζ 1 k 2 )(ζ 2 ζ 3 ) + (ζ 2 k 3 )(ζ 3 ζ 1 ) + (ζ 3 k 1 )(ζ 1 ζ 2 ) ] + + 2g (2α ) (ζ 1 k 2 )(ζ 2 k 3 )(ζ 3 k 1 ) ii) Open SUPERSYMMETRIC string A s (1, [ 2, 3) = 2g (ζ 1 k 2 )(ζ 2 ζ 3 ) + (ζ 2 k 3 )(ζ 3 ζ 1 ) + (ζ 3 k 1 )(ζ 1 ζ 2 ) ] 13

14 Example 2 : 4-point amplitude 14

15 Example 2 : 4-point amplitude i) Open BOSONIC string A b (1, 2, 3, 4) = 8 g 2 α 2 Γ( 1 α s)γ( 1 α t) Γ(2 α s α t) K b (ζ 1, k 1 ; ζ 2, k 2 ; ζ 3, k 3 ; ζ 4, k 4 ; α ) 15

16 Example 2 : 4-point amplitude i) Open BOSONIC string A b (1, 2, 3, 4) = 8 g 2 α 2 Γ( 1 α s)γ( 1 α t) Γ(2 α s α t) K b (ζ 1, k 1 ; ζ 2, k 2 ; ζ 3, k 3 ; ζ 4, k 4 ; α ) ii) Open SUPERSYMMETRIC string A s (1, 2, 3, 4) = 8 g 2 α 2Γ( α s)γ( α t) Γ(1 α s α t) K s (ζ 1, k 1 ; ζ 2, k 2 ; ζ 3, k 3 ; ζ 4, k 4 ), 16

17 where s = (k 1 + k 2 ) 2, t = (k 1 + k 4 ) 2, u = (k 1 + k 3 ) 2 are the Mandelstam variables 17

18 where s = (k 1 + k 2 ) 2, t = (k 1 + k 4 ) 2, u = (k 1 + k 3 ) 2 are the Mandelstam variables and K s = 1 4 [ ts(ζ 1 ζ 3 )(ζ 2 ζ 4 ) + ] +su(ζ 2 ζ 3 )(ζ 1 ζ 4 ) + ut(ζ 1 ζ 2 )(ζ 3 ζ 4 ) [(ζ 2 s 1 k 4 )(ζ 3 k 2 )(ζ 2 ζ 4 ) + (ζ 2 k 3 )(ζ 4 k 1 )(ζ 1 ζ 3 ) + ] +(ζ 1 k 3 )(ζ 4 k 2 )(ζ 2 ζ 3 ) + (ζ 2 k 4 )(ζ 3 k 1 )(ζ 1 ζ 4 ) [(ζ 2 t 2 k 1 )(ζ 4 k 3 )(ζ 3 ζ 1 ) + (ζ 3 k 4 )(ζ 1 k 2 )(ζ 2 ζ 4 ) + ] +(ζ 2 k 4 )(ζ 1 k 3 )(ζ 3 ζ 4 ) + (ζ 3 k 1 )(ζ 4 k 2 )(ζ 2 ζ 1 ) [(ζ 2 u 1 k 2 )(ζ 4 k 3 )(ζ 3 ζ 2 ) + (ζ 3 k 4 )(ζ 2 k 1 )(ζ 1 ζ 4 ) + ] +(ζ 1 k 4 )(ζ 2 k 3 )(ζ 3 ζ 4 ) + (ζ 3 k 2 )(ζ 4 k 1 )(ζ 1 ζ 2 ). 18

19 α expansion of the 4-point momentum factor: α 2Γ( α s)γ( α t) Γ(1 α s α t) = 19

20 α expansion of the 4-point momentum factor: α 2Γ( α s)γ( α t) Γ(1 α s α t) = 1 st π2 6 α 2 ζ(3)(s + t) α 3 π4 360 (4s2 + st + 4t 2 ) α 4 + [ ] π ζ(3) st(s + t) ζ(5)(s3 + 2s 2 t + 2st 2 + t 3 ) α 5 + [ ζ(3)2 st(s + t) 2 ] π (16s4 + 12s 3 t + 23s 2 t st t 4 ) α O(α 7 ). 20

21 B. (Extremely) Brief review of the low energy eective lagrangian 21

22 General Structure L e = 1 [ g 2 tr F 2 + (2α )F 3 + (2α ) 2 F 4 + (2α ) 3( F 5 + D 2 F 4) + +(2α ) 4( F 6 + D 2 F 5 + D 4 F 4) + O ( (2α ) 4) ] 22

23 General Structure L e = 1 [ g 2 tr F 2 + (2α )F 3 + (2α ) 2 F 4 + (2α ) 3( F 5 + D 2 F 4) + +(2α ) 4( F 6 + D 2 F 5 + D 4 F 4) + O ( (2α ) 4) ] + (fermions) 23

24 General Structure L e = 1 g 2 tr [ F 2 + (2α )F 3 + (2α ) 2 F 4 + (2α ) 3( F 5 + D 2 F 4) + +(2α ) 4( F 6 + D 2 F 5 + D 4 F 4) + O ( (2α ) 4) ] + + (fermions) i) Low energy eective lagrangian up to α 2 terms L e = 1 g 2tr [ 1 4 F µν F µν + (2α ) 1 a 1 F λ µ F ν λ F µ ν + + (2α ) 2 ( a 3 F µλ F ν λf ρ µ F νρ + a 4 F µ λ F λ ν F νρ F µρ + ) + a 5 F µν F µν F λρ F λρ + a 6 F µν F λρ F µν F λρ + ] + O((2α ) 3 ). 24

25 General Structure L e = 1 g 2 tr [ F 2 + (2α )F 3 + (2α ) 2 F 4 + (2α ) 3( F 5 + D 2 F 4) + +(2α ) 4( F 6 + D 2 F 5 + D 4 F 4) + O ( (2α ) 4) ] + + (fermions) i) Low energy eective lagrangian up to α 2 terms L e = 1 g 2tr [ 1 4 F µν F µν + (2α ) 1 a 1 F λ µ F ν λ F µ ν + + (2α ) 2 ( a 3 F µλ F ν λf ρ µ F νρ + a 4 F µ λ F λ ν F νρ F µρ + ) + a 5 F µν F µν F λρ F λρ + a 6 F µν F λρ F µν F λρ + ] + O((2α ) 3 ). 1 coecient at α 1 order : a 1 25

26 General Structure L e = 1 g 2 tr [ F 2 + (2α )F 3 + (2α ) 2 F 4 + (2α ) 3( F 5 + D 2 F 4) + +(2α ) 4( F 6 + D 2 F 5 + D 4 F 4) + O ( (2α ) 4) ] + + (fermions) i) Low energy eective lagrangian up to α 2 terms L e = 1 g 2tr [ 1 4 F µν F µν + (2α ) 1 a 1 F λ µ F ν λ F µ ν + + (2α ) 2 ( a 3 F µλ F ν λf ρ µ F νρ + a 4 F µ λ F λ ν F νρ F µρ + ) + a 5 F µν F µν F λρ F λρ + a 6 F µν F λρ F µν F λρ + ] + O((2α ) 3 ). 1 coecient at α 1 order : a 1 4 coecients at α 2 order: a 3, a 4, a 5, a 6. 26

27 ii) Low energy eective lagrangian at α 3 order [ tr a 10 F ν µ Fν λ L e (3) = (2α ) 3 F ρ λ F ρ σ F σ µ + a 12 Fµ ν Fν λ F σ µ F ρ λ F ρ σ + a 14 F ν µ F λ ν F µ λ F ρ σ g 2 + a 11 F ν µ Fν λ + a 13 F ν F ρ λ F µ σ F σ ρ + F λ ν F µ σ F ρ λ µ Fρ σ µ Fν λ Fρ σ F µ λ F σ ρ + ρ + Fσ ρ + a 15 F ν ( ) + a 16 Dµ Fν λ (D µ F ρ λ ) F σ ν F σ ( ) + a 17 Dµ Fν λ F ν σ (D µ F ρ λ ) F ρ σ + ( ) + a 18 Dµ Fν λ (D µ Fλ ν ) Fρ σ Fσ ρ + ( ) + a 19 Dµ Fν λ F σ ρ (D µ Fλ ν Fσ ρ + ( ) + a 20 Dσ Fµ ν F ρ ( ) λ D µ Fν λ F σ ρ + ( ) + a 21 Fµ ν D µ Fν λ F σ ρ (D σ F ρ λ ) + + a 22 Fµ ν (D µ F ρ λ ) ( ) ] D σ Fν λ F σ ρ 27

28 ii) Low energy eective lagrangian at α 3 order [ tr a 10 F ν µ Fν λ L e (3) = (2α ) 3 F ρ λ F ρ σ F σ µ + a 12 Fµ ν Fν λ F σ µ F ρ λ F ρ σ + a 14 F ν µ F λ ν F µ λ F ρ σ g 2 + a 11 F ν µ Fν λ + a 13 F ν F ρ λ F µ σ F σ ρ + F λ ν F µ σ F ρ λ µ Fρ σ µ Fν λ Fρ σ F µ λ F σ ρ + ρ + Fσ ρ + a 15 F ν ( ) + a 16 Dµ Fν λ (D µ F ρ λ ) F σ ν F σ ( ) + a 17 Dµ Fν λ F ν σ (D µ F ρ λ ) F ρ σ + ( ) + a 18 Dµ Fν λ (D µ Fλ ν ) Fρ σ Fσ ρ + ( ) + a 19 Dµ Fν λ F σ ρ (D µ Fλ ν Fσ ρ + ( ) + a 20 Dσ Fµ ν F ρ ( ) λ D µ Fν λ F σ ρ + ( ) + a 21 Fµ ν D µ Fν λ F σ ρ (D σ F ρ λ ) + + a 22 Fµ ν (D µ F ρ λ ) ( ) ] D σ Fν λ F σ ρ 13 coecients at α 3 order 28

29 C. Basics of the S-matrix approach to the (tree level) open string low energy eective lagrangian 29

30 Matching the open string amplitudes with the ones from the LEL: 30

31 Matching the open string amplitudes with the ones from the LEL: i) Case of the 3-point amplitude: Bosonic string: a 1 = i/3. Supersymmetric string: a 1 = 0. 31

32 Matching the open string amplitudes with the ones from the LEL: i) Case of the 3-point amplitude: Bosonic string: a 1 = i/3. Supersymmetric string: a 1 = 0. ii) Case of the 4-point amplitude: Coecient Bosonic Supersymmetric open string theory open string theory a 3 π 2 /12 π 2 /12 a 4 π 2 /24 π 2 /24 a 5 π 2 /48 1/8 π 2 /48 a 6 π 2 /96 + 1/8 π 2 /96 32

33 Matching the open string amplitudes with the ones from the LEL: i) Case of the 3-point amplitude: Bosonic string: a 1 = i/3. Supersymmetric string: a 1 = 0. ii) Case of the 4-point amplitude: Coecient Bosonic Supersymmetric open string theory open string theory a 3 π 2 /12 π 2 /12 a 4 π 2 /24 π 2 /24 a 5 π 2 /48 1/8 π 2 /48 a 6 π 2 /96 + 1/8 π 2 /96 It is exactly 33

34 Matching the open string amplitudes with the ones from the LEL: i) Case of the 3-point amplitude: Bosonic string: a 1 = i/3. Supersymmetric string: a 1 = 0. ii) Case of the 4-point amplitude: Coecient Bosonic Supersymmetric open string theory open string theory a 3 π 2 /12 π 2 /12 a 4 π 2 /24 π 2 /24 a 5 π 2 /48 1/8 π 2 /48 a 6 π 2 /96 + 1/8 π 2 /96 It is exactly the SAME method 34

35 Matching the open string amplitudes with the ones from the LEL: i) Case of the 3-point amplitude: Bosonic string: a 1 = i/3. Supersymmetric string: a 1 = 0. ii) Case of the 4-point amplitude: Coecient Bosonic Supersymmetric open string theory open string theory a 3 π 2 /12 π 2 /12 a 4 π 2 /24 π 2 /24 a 5 π 2 /48 1/8 π 2 /48 a 6 π 2 /96 + 1/8 π 2 /96 It is exactly the SAME method applied to two dierent expressions for A(1, 2,..., N). 35

36 D. Our revisited S-matrix approach to the (tree level) open string low energy eective lagrangian 36

37 Main observation 37

38 Main observation In the case of the superstring 38

39 Main observation In the case of the superstring A(1,..., N) does not contain (ζ k) N terms 39

40 Main observation In the case of the superstring A(1,..., N) does not contain (ζ k) N terms This is probably due to D=10 Supersymmetry 40

41 i) α 2 calculation 41

42 i) α 2 calculation a 3 = 8 a 6, a 4 = 4 a 6, a 5 = 2 a 6. 42

43 i) α 2 calculation a 3 = 8 a 6, a 4 = 4 a 6, a 5 = 2 a 6. L e = 1 g 2tr [ 1 4 F µν F µν + a 6 (2α ) 2 ( 8 F µλ F ν λf ρ µ F νρ ) 4 F µ λ F ν λ F νρ F µρ + 2 F µν F µν F λρ F λρ + F µν F λρ F µν F λρ + ] +O((2α ) 3 ). 43

44 i) α 2 calculation a 3 = 8 a 6, a 4 = 4 a 6, a 5 = 2 a 6. L e = 1 g 2tr [ 1 4 F µν F µν + a 6 (2α ) 2 ( 8 F µλ F ν λf ρ µ F νρ ) 4 F µ λ F ν λ F νρ F µρ + 2 F µν F µν F λρ F λρ + F µν F λρ F µν F λρ + ] +O((2α ) 3 ). At α 2 order there is only 1 coecient: a6. 44

45 i) α 2 calculation a 3 = 8 a 6, a 4 = 4 a 6, a 5 = 2 a 6. L e = 1 g 2tr [ 1 4 F µν F µν + a 6 (2α ) 2 ( 8 F µλ F ν λf ρ µ F νρ ) 4 F µ λ F ν λ F νρ F µρ + 2 F µν F µν F λρ F λρ + F µν F λρ F µν F λρ + ] +O((2α ) 3 ). At α 2 order there is only 1 coecient: a6. a 6 = π

46 ii) α 3 calculation 46

47 ii) α 3 calculation 2a 16 = 2a 17 = 8a 19 = a 20 = a 22, a 18 = a 21 = 0. a 11 = a 13 = 2a 15 = i a 22, a 10 = a 12 = a 14 = 0. 47

48 ii) α 3 calculation 2a 16 = 2a 17 = 8a 19 = a 20 = a 22, a 18 = a 21 = 0. a 11 = a 13 = 2a 15 = i a 22, a 10 = a 12 = a 14 = 0. L (3) e = (2α ) 3 a 22 [ g 2 tr i Fµ ν Fν λ F ρ λ F σ µ Fρ σ + i F ν i 2 F ν µ Fν λ ( ) Dµ Fν λ F ν σ + ( ) D σ Fµ ν F ρ λ F σ ρ F µ λ F ρ σ (D µ F ρ λ ) F σ ( ) D µ Fν λ F σ ρ ρ 1 8 µ Fρ σ F λ ν F µ σ F ρ λ ( ) Dµ Fν λ (D µ F ρ λ ) F σ ν Fρ σ ( ) Dµ Fν λ F σ ρ (D µ Fλ ν ) Fσ ρ Fµ ν (D µ F ρ λ ) ( ) D σ Fν λ F σ ρ ] 48

49 ii) α 3 calculation 2a 16 = 2a 17 = 8a 19 = a 20 = a 22, a 18 = a 21 = 0. a 11 = a 13 = 2a 15 = i a 22, a 10 = a 12 = a 14 = 0. L (3) e = (2α ) 3 a 22 [ g 2 tr i Fµ ν Fν λ F ρ λ F σ µ Fρ σ + i F ν i 2 F ν µ Fν λ ( ) Dµ Fν λ F ν σ + ( ) D σ Fµ ν F ρ λ F σ ρ F µ λ F ρ σ (D µ F ρ λ ) F σ ( ) D µ Fν λ F σ ρ ρ 1 8 µ Fρ σ F λ ν F µ σ F ρ λ ( ) Dµ Fν λ (D µ F ρ λ ) F σ ν Fρ σ ( ) Dµ Fν λ F σ ρ (D µ Fλ ν ) Fσ ρ Fµ ν (D µ F ρ λ ) ( ) D σ Fν λ F σ ρ At α 3 order there is only 1 coecient: a22. ] 49

50 ii) α 3 calculation 2a 16 = 2a 17 = 8a 19 = a 20 = a 22, a 18 = a 21 = 0. a 11 = a 13 = 2a 15 = i a 22, a 10 = a 12 = a 14 = 0. L (3) e = (2α ) 3 a 22 [ g 2 tr i Fµ ν Fν λ F ρ λ F σ µ Fρ σ + i F ν i 2 F ν µ Fν λ ( ) Dµ Fν λ F ν σ + ( ) D σ Fµ ν F ρ λ F σ ρ F µ λ F ρ σ (D µ F ρ λ ) F σ ( ) D µ Fν λ F σ ρ ρ 1 8 µ Fρ σ F λ ν F µ σ F ρ λ ( ) Dµ Fν λ (D µ F ρ λ ) F σ ν Fρ σ ( ) Dµ Fν λ F σ ρ (D µ Fλ ν ) Fσ ρ Fµ ν (D µ F ρ λ ) ( ) D σ Fν λ F σ ρ At α 3 order there is only 1 coecient: a22. ] a 22 = 2ζ(3) 50

51 iii) α 4 calculation: 51

52 iii) α 4 calculation: L e (4) = (2α ) 4 π 4 g 2 ( LF 6 + L D 2 F 5 + L D 4 F 4 ), where 52

53 L F 6 = t µ 1ν 1 µ 2 ν 2 µ 3 ν 3 µ 4 ν 4 µ 5 ν 5 µ 6 ν 6 (12) tr ( F µ1 ν 1 F µ2 ν 2 F µ3 ν 3 F µ4 ν 4 F µ5 ν 5 F µ6 ν 6 ), L D 2 F 5 = 56 i tµ 1ν 1 µ 2 ν 2 µ 3 ν 3 µ 4 ν 4 µ 5 ν 5 (10) tr ( F µ1 ν 1 F µ2 ν 2 F µ3 ν 3 D α F µ4 ν 4 D α F µ5 ν 5 ) + + i (η t (8)) µ 1ν 1 µ 2 ν 2 µ 3 ν 3 µ 4 ν 4 µ 5 ν 5 tr ( 169 D α F µ1 ν 1 F µ2 ν 2 F µ3 ν 3 F µ4 ν 4 D α F µ5 ν D α F µ1 ν 1 D α F µ2 ν 2 F µ3 ν 3 F µ4 ν 4 F µ5 ν F µ1 ν 1 D α F µ2 ν 2 D α F µ3 ν 3 F µ4 ν 4 F µ5 ν F µ1 ν 1 D α F µ2 ν 2 F µ3 ν 3 D α F µ4 ν 4 F µ5 ν F µ1 ν 1 F µ2 ν 2 D α F µ3 ν 3 D α F µ4 ν 4 F µ5 ν 5 + ) +16 F µ1 ν 1 F µ2 ν 2 F µ3 ν 3 D α F µ4 ν 4 D α F µ5 ν 5 i 5760 tµ 1ν 1 µ 2 ν 2 µ 3 ν 3 µ 4 ν 4 (8) { 17 ( ) tr D µ 5 F µ1 ν 1 F µ2 ν 2 F µ3 ν 3 D ν 5 F µ4 ν 4 F µ5 ν tr ( F µ1 ν 1 D µ 5 F µ2 ν 2 D ν 5 F µ3 ν 3 F µ4 ν 4 F µ5 ν 5 ) }, L D 4 F 4 = tµ 1ν 1 µ 2 ν 2 µ 3 ν 3 µ 4 ν 4 (8) tr ( D α F µ1 ν 1 D (α D β) F µ2 ν 2 D β F µ3 ν 3 F µ4 ν D α F µ1 ν 1 D α F µ2 ν 2 D β F µ3 ν 3 D β F µ4 ν 4 ). 53

54 E. Summary of our revisited S-matrix method 54

55 1. There now is an improved (revisited) version of the S-matrix approach to the Open Superstring low energy eective lagrangian, L e. 55

56 1. There now is an improved (revisited) version of the S-matrix approach to the Open Superstring low energy eective lagrangian, L e. 2. It incorporates a kinematic requiremenent in the gauge boson scattering amplitudes, (presumably) due to Supersymmetry. 56

57 1. There now is an improved (revisited) version of the S-matrix approach to the Open Superstring low energy eective lagrangian, L e. 2. It incorporates a kinematic requiremenent in the gauge boson scattering amplitudes, (presumably) due to Supersymmetry. 3. It has been successfully used to obtain the bosonic terms of L e up to α 4 order. 57

58 4. Our revisited S-matrix method suggests that, demanding: I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude 58

59 4. Our revisited S-matrix method suggests that, demanding: I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude are enough requirements to obtain COMPLETELY L e (order by order in α ). 59

60 4. Our revisited S-matrix method suggests that, demanding: I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude are enough requirements to obtain COMPLETELY L e (order by order in α ). JHEP10 (2012)

61 5. Important remark: 61

62 5. Important remark: In the literature there already exists another method which only uses the open superstring 4-point amplitude and that succeeds in nding the α terms of L e up to α 4 order: 62

63 5. Important remark: In the literature there already exists another method which only uses the open superstring 4-point amplitude and that succeeds in nding the α terms of L e up to α 4 order: The method of BPS congurations 63

64 5. Important remark: In the literature there already exists another method which only uses the open superstring 4-point amplitude and that succeeds in nding the α terms of L e up to α 4 order: The method of BPS congurations It is due to Koerber and Sevrin ( ). 64

65 5. Important remark: In the literature there already exists another method which only uses the open superstring 4-point amplitude and that succeeds in nding the α terms of L e up to α 4 order: The method of BPS congurations It is due to Koerber and Sevrin ( ). Our results agree with the ones of Koerber and Sevrin up to α 3 order and probably also agree at α 4 order. 65

66 F.... As for the scattering amplitudes... 66

67 F.... As for the scattering amplitudes... (Work in progress) 67

68 F.... As for the scattering amplitudes... (Work in progress, to be soon sent to the hep-th ArXiv) 68

69 Interesting question: 69

70 Interesting question: Does the (tree level) N-point formula, in Open Superstring Theory, 70

71 Interesting question: Does the (tree level) N-point formula, in Open Superstring Theory, A(1, 2,..., N) = 2 gn 2 (2α ) 2(x N 1 x 1 )(x N x 1 ) exp xn 1 0 N i j xn 2 dx N 2 dx N 3... dθ 1... dθ N 2 0 N i<j x3 0 dx 2 (x j x i θ j θ i ) 2α k i k j dφ 1... dφ N (2α ) 1 (θ j θ i )φ j (ζ j k i ) 1/2 (2α ) 1 φ j φ i (ζ j ζ i ) x j x i θ j θ i 71

72 Interesting question: Does the (tree level) N-point formula, in Open Superstring Theory, A(1, 2,..., N) = 2 gn 2 (2α ) 2(x N 1 x 1 )(x N x 1 ) exp xn 1 0 N i j xn 2 dx N 2 dx N 3... dθ 1... dθ N 2 0 N i<j x3 0 dx 2 (x j x i θ j θ i ) 2α k i k j dφ 1... dφ N (2α ) 1 (θ j θ i )φ j (ζ j k i ) 1/2 (2α ) 1 φ j φ i (ζ j ζ i ) x j x i θ j θ i admit a closed expression for any N? 72

73 Interesting question: Does the (tree level) N-point formula, in Open Superstring Theory, A(1, 2,..., N) = 2 gn 2 (2α ) 2(x N 1 x 1 )(x N x 1 ) exp xn 1 0 N i j xn 2 dx N 2 dx N 3... dθ 1... dθ N 2 0 N i<j x3 0 dx 2 (x j x i θ j θ i ) 2α k i k j dφ 1... dφ N (2α ) 1 (θ j θ i )φ j (ζ j k i ) 1/2 (2α ) 1 φ j φ i (ζ j ζ i ) x j x i θ j θ i admit a closed expression for any N? Answer: 73

74 Interesting question: Does the (tree level) N-point formula, in Open Superstring Theory, A(1, 2,..., N) = 2 gn 2 (2α ) 2(x N 1 x 1 )(x N x 1 ) exp xn 1 0 N i j xn 2 dx N 2 dx N 3... dθ 1... dθ N 2 0 N i<j x3 0 dx 2 (x j x i θ j θ i ) 2α k i k j dφ 1... dφ N (2α ) 1 (θ j θ i )φ j (ζ j k i ) 1/2 (2α ) 1 φ j φ i (ζ j ζ i ) x j x i θ j θ i admit a closed expression for any N? Answer: Yes! 74

75 Interesting question: Does the (tree level) N-point formula, in Open Superstring Theory, A(1, 2,..., N) = 2 gn 2 (2α ) 2(x N 1 x 1 )(x N x 1 ) exp xn 1 0 N i j xn 2 dx N 2 dx N 3... dθ 1... dθ N 2 0 N i<j x3 0 dx 2 (x j x i θ j θ i ) 2α k i k j dφ 1... dφ N (2α ) 1 (θ j θ i )φ j (ζ j k i ) 1/2 (2α ) 1 φ j φ i (ζ j ζ i ) x j x i θ j θ i admit a closed expression for any N? Answer: Yes! Mafra, Schlotterer, Stieberger, arxiv:

76 Mafra, Schlotterer and Stieberger's result: 76

77 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N), 77

78 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N), where F (N) 1,..., F (N) are the momentum (N 3)! factors, which contain the α dependence. 78

79 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N), where F (N) 1,..., F (N) are the momentum (N 3)! factors, which contain the α dependence. Examples: 79

80 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N), where F (N) 1,..., F (N) are the momentum (N 3)! factors, which contain the α dependence. Examples: i) N=4 : 80

81 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N), where F (N) 1,..., F (N) are the momentum (N 3)! factors, which contain the α dependence. Examples: i) N=4 : where A(1, 2, 3, 4) = F (4) 1 A Y M (1, 2, 3, 4), F (4) 1 = α dx 2 x 2 2α α 12 1 (1 x 2 ) 2α α 23, 81

82 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N), where F (N) 1,..., F (N) are the momentum (N 3)! factors, which contain the α dependence. Examples: i) N=4 : where A(1, 2, 3, 4) = F (4) 1 A Y M (1, 2, 3, 4), F (4) 1 = α dx 2 x 2 2α α 12 1 (1 x 2 ) 2α α 23, F (4) 1 = Γ(1 + 2α α 12 )Γ(1 + 2α α 23 ) Γ(1 + 2α α α α 23 ), 82

83 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N), where F (N) 1,..., F (N) are the momentum (N 3)! factors, which contain the α dependence. Examples: i) N=4 : where A(1, 2, 3, 4) = F (4) 1 A Y M (1, 2, 3, 4), F (4) 1 = α dx 2 x 2 2α α 12 1 (1 x 2 ) 2α α 23, F (4) 1 = Γ(1 + 2α α 12 )Γ(1 + 2α α 23 ) Γ(1 + 2α α α α 23 ), F (4) 1 = 1 (2α ) 2 ζ(2)α 12 α 23 (2α ) 3 ζ(3)α 12 α 23 (α 12 + α 23 ) + +O((2α ) 4 ) 83

84 A(1, 2, 3, 4) = F (4) 1 A Y M (1, 2, 3, 4) vs A s (1, 2, 3, 4) = 8 g 2 α 2Γ( α s)γ( α t) Γ(1 α s α t) K s (ζ 1, k 1 ; ζ 2, k 2 ; ζ 3, k 3 ; ζ 4, k 4 ), 84

85 A(1, 2, 3, 4) = F (4) 1 A Y M (1, 2, 3, 4) vs A s (1, 2, 3, 4) = 8 g 2 α 2Γ( α s)γ( α t) Γ(1 α s α t) K s (ζ 1, k 1 ; ζ 2, k 2 ; ζ 3, k 3 ; ζ 4, k 4 ), (Both expressions are equivalent) 85

86 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N), where F (N) 1,..., F (N) are the momentum (N 3)! factors, which contain the α dependence. Examples: i) N=4 : where A(1, 2, 3, 4) = F (4) 1 A Y M (1, 2, 3, 4), F (4) 1 = α dx 2 x 2 2α α 12 1 (1 x 2 ) 2α α 23, F (4) 1 = Γ(1 + 2α α 12 )Γ(1 + 2α α 23 ) Γ(1 + 2α α α α 23 ), F (4) 1 = 1 (2α ) 2 ζ(2)α 12 α 23 (2α ) 3 ζ(3)α 12 α 23 (α 12 + α 23 ) + +O((2α ) 4 ) 86

87 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N). 87

88 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N). Examples: ii) N=5 : A(1, 2, 3, 4, 5) = = F (5) 1 A Y M (1, 2, 3, 4, 5) + F (5) 2 A Y M (1, 3, 2, 4, 5), 88

89 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N). Examples: ii) N=5 : A(1, 2, 3, 4, 5) = = F (5) 1 A Y M (1, 2, 3, 4, 5) + F (5) 2 A Y M (1, 3, 2, 4, 5), where F (5) 1 = α 12 α dx 3 x3 0 dx 2 x 2 2α α 12 1 x 3 2α α 13 (1 x 2 ) 2α α 24 (1 x 3 ) 2α α 34 1 (x 3 x 2 ) 2α α 23 89

90 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N). Examples: ii) N=5 : A(1, 2, 3, 4, 5) = = F (5) 1 A Y M (1, 2, 3, 4, 5) + F (5) 2 A Y M (1, 3, 2, 4, 5), where F (5) 1 = α 12 α dx 3 x3 0 dx 2 x 2 2α α 12 1 x 3 2α α 13 (1 x 2 ) 2α α 24 (1 x 3 ) 2α α 34 1 (x 3 x 2 ) 2α α 23 F (5) 1 = 1 (2α ) 2 ζ(2) ( (α 12 α 34 α 34 α 45 α 12 α 51 ) (2α ) 3 ζ(3) α12 2 α α 12 α 23 α 34 + α 12 α O((2α ) 4 ) α 2 34 α 45 α 34 α 2 45 α 2 12 α 51 α 12 α 2 51 ) 90

91 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N). 91

92 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N). Examples: iii) N=6 : A(1, 2, 3, 4, 5, 6) = = F (6) 1 A Y M (1, 2, 3, 4, 5, 6) + F (6) 2 A Y M (1, 3, 2, 4, 5, 6) + + F (6) 3 A Y M (1, 2, 4, 3, 5, 6) + F (6) 4 A Y M (1, 3, 4, 2, 5, 6) + + F (6) 5 A Y M (1, 4, 2, 3, 5, 6) + F (6) 6 A Y M (1, 4, 3, 2, 5, 6) 92

93 Mafra, Schlotterer and Stieberger's result: A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N). Examples: iii) N=6 : A(1, 2, 3, 4, 5, 6) = = F (6) 1 A Y M (1, 2, 3, 4, 5, 6) + F (6) 2 A Y M (1, 3, 2, 4, 5, 6) + where + F (6) 3 A Y M (1, 2, 4, 3, 5, 6) + F (6) 4 A Y M (1, 3, 4, 2, 5, 6) + + F (6) 5 A Y M (1, 4, 2, 3, 5, 6) + F (6) 6 A Y M (1, 4, 3, 2, 5, 6) F (6) 1 = α 12 α x4 x3 2α dx 4 dx 3 dx 2 x α α 2 x α x 4 2α α 14 (1 x 2 ) 2α α 25 (1 x 3 ) 2α α 35 (1 x 4 ) 2α α 45 1 (x 3 x 2 ) 2α α 23 (x 4 x 2 ) 2α α 24 (x 4 x 3 ) 2α α 34 [ α13 + α ] 23. x 3 x 3 x 2 93

94 F (6) 1 = α 12 α x4 x3 2α dx 4 dx 3 dx 2 x α α 2 x α x 4 2α α 14 (1 x 2 ) 2α α 25 (1 x 3 ) 2α α 35 (1 x 4 ) 2α α 45 1 (x 3 x 2 ) 2α α 23 (x 4 x 2 ) 2α α 24 (x 4 x 3 ) 2α α 34 [ α13 + α ] 23. x 3 x 3 x 2 94

95 F (6) 1 = α 12 α 45 1 F (6) 1 = 1 (2α ) 2 ζ(2) 0 + (2α ) 3 ζ(3) x4 x3 2α dx 4 dx 3 dx 2 x α α 2 x α 13 3 ( 0 0 x 4 2α α 14 (1 x 2 ) 2α α 25 (1 x 3 ) 2α α 35 (1 x 4 ) 2α α 45 1 (x 3 x 2 ) 2α α 23 (x 4 x 2 ) 2α α 24 (x 4 x 3 ) 2α α 34 [ α13 + α ] 23. x 3 x 3 x 2 ( α 45 α 56 + α 12 α 61 α 45 t 123 α 12 t t 123 t 345 ) + 2 α 12 α 23 α α 12 α 34 α α 2 45 α 56 + α 45 α α 2 12 α 61 + α 12 α α 34 α 45 t 123 α 2 45 t 123 α 45 t O((2α ) 4 ), 2 α 12 α 45 t 234 α12 2 t α ) 12 α 23 t t t 345 α 12 t t 123 t where α ij = k i k j and t mnp = α mn + α mp + α np. 95

96 Another interesting question: 96

97 Another interesting question: What can the revisited S-matrix method say about Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N)??? 97

98 Another interesting question: What can the revisited S-matrix method say about Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N)??? Answer: 98

99 Another interesting question: What can the revisited S-matrix method say about Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N)??? Answer: It can be re-derived from it! 99

100 Yes, 100

101 Yes, demanding: I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude 101

102 Yes, demanding: I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude + 102

103 Yes, demanding: I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude + III. (on-shell) Gauge invariance + IV. Cyclic symmetry + V. Unitarity 103

104 Yes, demanding: I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude + III. (on-shell) Gauge invariance + IV. Cyclic symmetry + V. Unitarity Properties of gauge boson amplitudes 104

105 Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N), can be re-derived. 105

106 Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N), can be re-derived. At least we have succeeded in the cases of N=5 and N=6 : 106

107 Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N), can be re-derived. At least we have succeeded in the cases of N=5 and N=6 (also N=7?) : 107

108 Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N), can be re-derived. At least we have succeeded in the cases of N=5 and N=6 (also N=7?) : F (5) 1 = 1 (2α ) 2 ζ(2) (α 12 α 34 α 34 α 45 α 12 α 51 ) ( (2α ) 3 ζ(3) α12 2 α α 12 α 23 α 34 + α 12 α34 2 ) α34 2 α 45 α 34 α45 2 α12 2 α 51 α 12 α O((2α ) 4 ), 108

109 Mafra-Schlotterer-Stieberger's result, A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N), can be re-derived. At least we have succeeded in the cases of N=5 and N=6 (also N=7?) : F (5) 1 = 1 (2α ) 2 ζ(2) (α 12 α 34 α 34 α 45 α 12 α 51 ) ( (2α ) 3 ζ(3) α12 2 α α 12 α 23 α 34 + α 12 α34 2 ) α34 2 α 45 α 34 α45 2 α12 2 α 51 α 12 α O((2α ) 4 ), F (6) 1 = 1 (2α ) 2 ζ(2) + (2α ) 3 ζ(3) + O((2α ) 4 ). ( ( α 45 α 56 + α 12 α 61 α 45 t 123 α 12 t t 123 t 345 ) + 2 α 12 α 23 α α 12 α 34 α α 2 45 α 56 + α 45 α α 2 12 α 61 + α 12 α α 34 α 45 t 123 α 2 45 t 123 α 45 t α 12 α 45 t 234 α12 2 t α 12 α 23 t ) + t t 345 α 12 t t 123 t

110 G. Global summary 110

111 1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: 111

112 1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. 112

113 1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. L e = 1 [ g 2 tr F 2 + (2α )F 3 + (2α ) 2 F 4 + (2α ) 3( F 5 + D 2 F 4) + +(2α ) 4( F 6 + D 2 F 5 + D 4 F 4) + O ( (2α ) 4) ] 113

114 1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. 114

115 1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. ii) The construction of the (tree level) N-point amplitude of gauge bosons, A(1, 2,..., N). 115

116 1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. ii) The construction of the (tree level) N-point amplitude of gauge bosons, A(1, 2,..., N). A(1, 2,..., N) = F (N) 1 A Y M (1, 2,..., N 1, N) F (N) (N 3)! A Y M(1, N 2,..., N 1, N), 116

117 1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. ii) The construction of the (tree level) N-point amplitude of gauge bosons, A(1, 2,..., N). 117

118 1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. ii) The construction of the (tree level) N-point amplitude of gauge bosons, A(1, 2,..., N). This is acheived by using 118

119 1. Our revisited S-matrix approach, which deals with the RNS description of the open superstring, proposes a CONCRETE SHORTCUT to: i) The construction of the LEL, L e. ii) The construction of the (tree level) N-point amplitude of gauge bosons, A(1, 2,..., N). This is acheived by using I. The kinematical constraints (absence of (ζ k) N terms) + II. The Open Superstring 4-point amplitude 119

120 2. Although at this moment, 120

121 2. Although at this moment, neither L e 121

122 2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), 122

123 2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, 123

124 2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, our revisited S-matrix method suggests an explicit construction of both of them, 124

125 2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, our revisited S-matrix method suggests an explicit construction of both of them, bypassing the computation of α expansion of worldsheet integrals that arise in N 5 point amplitudes, 125

126 2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, our revisited S-matrix method suggests an explicit construction of both of them, bypassing the computation of α expansion of worldsheet integrals that arise in N 5 point amplitudes, like, for example, for N=6 : 1 0 x4 x3 2α dx 4 dx 3 dx 2 x α 12 2α 2 x α 13 2α 3 x α (x 3 x 2 ) 2α α (x 4 x 2 ) 2α α 24 (x 4 x 3 ) 2α α 34 1 (1 x 2 ) 2α α 25 1 (1 x 3 ) 2α α 35 (1 x 4 ) 2α α

127 1 0 x4 x3 2α dx 4 dx 3 dx 2 x α 12 2α 2 x α 13 2α 3 x α (x 3 x 2 ) 2α α (x 4 x 2 ) 2α α 24 (x 4 x 3 ) 2α α 34 1 (1 x 2 ) 2α α 25 1 (1 x 3 ) 2α α 35 (1 x 4 ) 2α α 45 [( (2α ) 3 α 23 α 16 t ζ(2) [ ( α16 + α 56 (2α ) 1 α 23 t O((2α ) 0 ) ( 1 + α α 34 = ) ( )] α 34 α 56 t 234 α 34 α 16 t 234 α 23 α 56 t 234 ) ( ) ( α23 + α ) 34 + t 234 α 34 α 56 α 16 t 234 α 56 t 234 α ) ( 16 α23 + α ) ( 34 α12 + α ) 45 t 234 α 16 t 234 α 56 α 56 α 34 α 23 α ( 16 α56 + α ) ( 16 t345 + t )] α 23 t 234 t 234 α 34 α 34 α 16 α 23 α 56 where α ij = k i k j and t mnp = α mn + α mp + α np. 127

128 2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, our revisited S-matrix method suggests an explicit construction of both of them, bypassing the computation of α expansion of worldsheet integrals that arise in N 5 point amplitudes. 128

129 2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, our revisited S-matrix method suggests an explicit construction of both of them, bypassing the computation of α expansion of worldsheet integrals that arise in N 5 point amplitudes. 3. Our revisited S-matrix method, also has a version for the fermionic terms of L e. 129

130 2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, our revisited S-matrix method suggests an explicit construction of both of them, bypassing the computation of α expansion of worldsheet integrals that arise in N 5 point amplitudes. 3. Our revisited S-matrix method, also has a version for the fermionic terms of L e. This result will appear on a forthcoming work. 130

131 2. Although at this moment, neither L e nor the momentum factors F (N) j, of A(1, 2,..., N), are known at any α order, our revisited S-matrix method suggests an explicit construction of both of them, bypassing the computation of α expansion of worldsheet integrals that arise in N 5 point amplitudes. 3. Our revisited S-matrix method, also has a version for the fermionic terms of L e. This result will appear on a forthcoming work. Obrigado! 131

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

A Hierarchy of Theta Bodies for Polynomial Systems

A Hierarchy of Theta Bodies for Polynomial Systems A Hierarchy of Theta Bodies for Polynomial Systems Rekha Thomas, U Washington, Seattle Joint work with João Gouveia (U Washington) Monique Laurent (CWI) Pablo Parrilo (MIT) The Theta Body of a Graph G

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Περίληψη (Executive Summary)

Περίληψη (Executive Summary) 1 Περίληψη (Executive Summary) Η παρούσα διπλωματική εργασία έχει ως αντικείμενο την "Αγοραστική/ καταναλωτική συμπεριφορά. Η περίπτωση των Σπετσών" Κύριος σκοπός της διπλωματικής εργασίας είναι η διερεύνηση

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Π.Μ.Σ. «ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ» «Εφαρμογή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Distances in Sierpiński Triangle Graphs

Distances in Sierpiński Triangle Graphs Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation

Διαβάστε περισσότερα

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories

Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories Hiroshi Kunitomo YITP 215/3/5 @Nara Women s U. Nara arxiv:1412.5281, 153.xxxx Y TP YUKAWA INSTITUTE FOR THEORETICAL

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ» I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

(Biomass utilization for electric energy production)

(Biomass utilization for electric energy production) ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ T.Ε.I. ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ Επιβλέπων: ΠΕΤΡΟΣ Γ. ΒΕΡΝΑΔΟΣ, Ομότιμος Καθηγητής Συνεπιβλέπουσα: ΕΡΙΕΤΤΑ Ι. ΖΟΥΝΤΟΥΡΙΔΟΥ, Παν. Υπότροφος

Διαβάστε περισσότερα

Ερώτηση και Αίτηση Κατάθεσης Εγγράφων Προς τον κ. Υπουργό Ανάπτυξης και Ανταγωνιστικότητας

Ερώτηση και Αίτηση Κατάθεσης Εγγράφων Προς τον κ. Υπουργό Ανάπτυξης και Ανταγωνιστικότητας Αθήνα, 24 Ιουλίου 2013 Ερώτηση και Αίτηση Κατάθεσης Εγγράφων Προς τον κ. Υπουργό Ανάπτυξης και Ανταγωνιστικότητας Θέμα: Επίκληση εκ μέρους του Υπουργού Ανάπτυξης και Ανταγωνιστικότητας, κ. Κωστή Χατζηδάκη,

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

Additional Results for the Pareto/NBD Model

Additional Results for the Pareto/NBD Model Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior

Διαβάστε περισσότερα