A note on Poisson-Lie algebroids (I)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A note on Poisson-Lie algebroids (I)"

Transcript

1 A note on Poisson-Lie algebroids I Liviu Popescu Abstract. In this paper we generalize the linear contravariant connection on Poisson manifolds to Lie algebroids and study its tensors of torsion and curvature. A Poisson connection which depends only on the Poisson bivector and structural functions of the Lie algebroid is given. The notions of complete and horizontal lifts are introduced and their compatibility conditions are pointed out. M.S.C. 2000: 53D17, 17B66, 53C05. Key words: Poisson manifolds, Lie algebroids, contravariant connection, complete and horizontal lifts. 1 Introduction Poisson manifolds were introduced by A. Lichnerowicz in his famous paper [11] and their properties were later investigated by A. Weinstein [19]. The Poisson manifolds are the smooth manifolds equipped with a Poisson bracket on their ring of functions. The Lie algebroid [12] is a generalization of a Lie algebra and integrable distribution. In fact, a Lie algebroid is a vector bundle with a Lie bracket on his space of sections whose properties are very similar to those of a tangent bundle. We remark that the cotangent bundle of a Poisson manifold has a natural structure of a Lie algebroid [18]. In the last years the various aspects of these subjects have been studied in the different directions of research [18], [15], [3], [4] [13], [10], [1], [9], [2]. In [16] the author has investigated the properties of connections on a Lie algebroid and together with D. Hrimiuc [8] studied the nonlinear connections of its dual. In [3] the linear contravariant Poisson connections on vector bundle are pointed out. The purpose of this paper is to study some aspects of the geometry of the Lie algebroids endowed with a Poisson structure, which generalize some results on Poisson manifolds to Lie algebroids. The paper is organized as follows. In the section 2 we recall the Cartan calculus and the Schouten-Nijenhuis bracket to the level of a Lie algebroids and introduce the Poisson structure on Lie algebroid. We investigate the properties of linear contravariant connection and its tensors of torsion and curvature. In the last part of this section we find a Poisson connection which depends only on the Poisson bivector and structural functions of Lie algebroid which generalize the Balkan Journal of Geometry and Its Applications, Vol.14, No.2, 2009, pp c Balkan Society of Geometers, Geometry Balkan Press 2009.

2 80 Liviu Popescu results of R. Fernandes from [3]. The section 3 deals with the prolongation of Lie algebroid [7] over the vector bundle projection. We study the properties of the complete lift of a Poisson bivector and introduce the notion of horizontal lift. The compatibility conditions of these bivectors are investigated. We remark that in the particular case of the Lie algebroid E = T M, σ = Id some results of G. Mitric and I. Vaisman [15] are obtained. 2 Lie algebroids Let us consider a differentiable, n-dimensional manifold M and T M, π M, M its tangent bundle. A Lie algebroid over the manifold M is the triple E, [, ], σ where π : E M is a vector bundle of rank m over M, whose C M-module of sections ΓE is equipped with a Lie algebra structure [, ] and σ : E T M is a bundle map called the anchor which induces a Lie algebra homomorphism also denoted σ from ΓE to χm, satisfying the Leibnitz rule [s 1, fs 2 ] = f[s 1, s 2 ] + σs 1 fs 2, for every f C M and s 1, s 2 ΓE. Therefore, we get [σs 1, σs 2 ] = σ[s 1, s 2 ], [s 1, [s 2, s 3 ]] + [s 2, [s 3, s 1 ]] + [s 3, [s 1, s 2 ]] = 0. If ω k E then the exterior derivative d E ω k+1 E is given by the formula d E ωs 1,..., s k+1 = k+1 1 i+1 σs i ωs 1,..., ŝi,..., s k+1 + i=1 + 1 i<j k+1 1 i+j ω[s i, s j ], s 1,..., ŝi,..., ˆ s j,...s k+1. where s i ΓE, i = 1, k + 1, and it results that d E 2 = 0. Also, for ξ ΓE one can define the Lie derivative with respect to ξ by L ξ = i ξ d E + d E i ξ, where i ξ is the contraction with ξ. If we take the local coordinates x i on an open U M, a local basis {s α } of sections of the bundle π 1 U U generates local coordinates x i, y α on E. The local functions σαx, i L αβ x on M given by σs α = σα i x i, [s α, s β ] = L αβ s, i = 1, n, α, β, = 1, m, are called the structure functions of the Lie algebroid and satisfy the structure equations on Lie algebroid σα j σβ i x j σ i σj α β x j = σi L αβ, σα i L δ β x i + L δ αηl η β = 0. α,β,

3 A note on Poisson-Lie algebroids I 81 Locally, if f C M then d E f = f x i σ i αs α, where {s α } is the dual basis of {s α } and if θ ΓE, θ = θ α s α then Particularly, we get d E θ = σα i θ β x i 1 2 θ L αβ sα s β, d E x i = σ i αs α, d E s α = 1 2 Lα βs β s. The Schouten-Nijenhuis bracket on E is given by [18] [X 1... X p, Y 1... Y q ] = 1 p+1 p where X i, Y j ΓE. i=1 j=1 2.1 Poisson structures on Lie algebroids q 1 i+j [X i, Y j ] X 1... ˆ X i... X p Y 1... Y ˆ j... Y q Let us consider the bivector i.e. contravariant, skew-symmetric, 2-section Π Γ 2 E given by the expression 2.1 Π = 1 2 παβ xs α s β. Definition 2.1 The bivector Π is a Poisson bivector on E if and only if the relation [Π, Π] = 0, is fulfilled. Proposition 2.1 Locally, the condition [Π, Π] = 0 is expressed as 2.2 α,ε,δ π αβ σβ i π εδ x i + π αβ π δ L ε β = 0 If Π is a Poisson bivector then the pair E, Π is called a Lie algebroid with Poisson structure. A corresponding Poisson bracket on M is given by {f 1, f 2 } = Πd E f 1, d E f 2, f 1, f 2 C M. We also have the bundle map π # : E E defined by Let us consider the bracket π # ρ = i ρ Π, ρ ΓE. [ρ, θ] π = L π # ρθ L π # θρ d E Πρ, θ,

4 82 Liviu Popescu where L is Lie derivative and ρ, θ ΓE. With respect to this bracket and the usual Lie bracket on vector fields, the map σ : E T M given by is a Lie algebra homomorphism σ = σ π #, σ[ρ, θ] π = [ σρ, σθ]. The bracket [.,.] π satisfies also the Leibnitz rule [ρ, fθ] π = f[ρ, θ] π + σρfθ, and it results that E, [.,.] π, σ is a Lie algebroid [13]. Next, we can define the contravariant exterior differential d π : k E k+1 E by d π ωs 1,..., s k+1 = k+1 1 i+1 σs i ωs 1,..., ŝi,..., s k+1 + i=1 + 1 i<j k+1 1 i+j ω[s i, s j ] π, s 1,..., ŝi,..., ˆ s j,...s k+1. Accordingly, we get the cohomology of Lie algebroid E with the anchor σ and the bracket [.,.] π which generalize the Poisson cohomology of Lichnerowicz for Poisson manifolds [11]. In the following we deal with the notion of contravariant connection on Lie algebroids, which generalize the similar notion on Poisson manifolds [18], [3]. Definition 2.2 If ρ, θ ΓE and Φ, Ψ ΓE then the linear contravariant connection on a Lie algebroid is an application D : ΓE ΓE ΓE which satisfies the relations: i D ρ+θ Φ = D ρ Φ + D θ Φ, ii D ρ Φ + Ψ = D ρ Φ + D ρ Ψ, iii D fρ Φ = fd ρ Φ, iv D ρ fφ = fd ρ Φ + σρfφ, f C M. Definition 2.3 The torsion and curvature of the linear contravariant connection are given by T ρ, θ = D ρ θ D θ ρ [ρ, θ] π, where ρ, θ, µ ΓE. Rρ, θµ = D ρ D θ µ D θ D ρ µ D [ρ,θ]π θ, In the local coordinates we define the Christoffel symbols Γ αβ considering D s αs β = Γ αβ s, and under a change of coordinates x i = x i x i, i, i = 1, n on M, and y α = A α α y α, α, α = 1, m on E, corresponding to a new base s α = A α α s α, these symbols transform according to

5 A note on Poisson-Lie algebroids I Γ α β = Aα α A β β A Γαβ + A α α A A β σi ε x i παε. Proposition 2.2 The local components of the torsion and curvature of the linear contravariant connection on a Lie algebroid have the expressions T αβ ε = Γ αβ ε Γ βα ε π α L β ε + π β L α ε σε x i, R αβ δ = Γ αε δ Γ β ε Γ βε δ Γα ε +π αε σε i Γ β δ x i πβε σε i Γ α δ x i +πβν L α νε π αν L β νε σε x i Γε δ. The contravariant connection induces a contravariant derivative D α : ΓE ΓE such that the following relations are fulfilled D f1 α 1 +f 2 α 2 = f 1 D α1 + f 2 D α2, f i C M, α i ΓE, D ρ fφ = fd ρ Φ + σρfφ, f C M, ρ, θ ΓE. Let T be a tensor of type r, s with the components T i 1...i r j 1...j s and θ = θ α s α a section of E. The local coordinates expression of the contravariant derivative is given by D θ T = θ α T i1...ir j 1...j s / α s i1 s ir s j 1 s j s, where T i1...ir j 1...j s / α = π αε σε i T i 1...i r j 1...j s x i + r Γ i a s α ε T i1...ε...ir j 1...j s Γ εα jb T i1...ir j 1...ε...j s, a=1 b=1 and / denote the contravariat derivative operator. We recall that a tensor field T on E is called parallel if and only if DT = 0. Definition 2.4 A contravariant connection D is called a Poisson connection if the Poisson bivector is parallel with respect to D. Let us consider a contravariant connection D with the Cristoffel symbols Γ αβ associated contravariant derivative. We obtain: and Proposition 2.3 The contravariant connection D with the coefficients given by 2.4 Γ αβ is a Poisson connection. = Γ αβ 1 2 π επ αε / β, Proof. Considering / the contravariant derivative operator with respect to the contravariant connection D, we get π β / α = π αε σε i π β x i + Γ βα ε π ε + Γ α ε π βε =

6 84 Liviu Popescu = π αε σε i π β x i + Γ βα ε 1 2 π ετ π βτ / α π ε + Γ α ε 1 2 π ετ π τ / α π βε = 0, which concludes the proof. Remark 2.1 Considering the expression 2.5 Γ αβ = σ x i, in 2.4 we obtain a Poisson connection D with the coefficients Γ αβ = σ x i 1 2 π επ αε / β, which depends only on the Poisson bivector and structural functions of the Lie algebroid. Proof. Under a change of coordinates, the structure functions σα i change by the rule [17], [14] σα i Aα α = xi x i σi α, and, by direct computation, follows that the coefficients 2.5 satisfy the transformation law 2.3. Theorem 2.1 If the following relation π αβ π δ L ε β = 0, α,ε,δ is true, then the connection D with the coefficients Γ αβ is a Poisson connection on Lie algebroid. = σ x i, Proof. Using relation 2.2 we obtain that π β / α = 0 if and only if the required relation is fulfilled. Proposition 2.4 The set of Poisson connections on Lie algebroid is given by Γ αβ = Γ αβ + Ω αε νx νβ ε, where Ω αε ν = 1 δ α 2 ν δ ε π ν π αε, and DΓ αβ is a Poisson connection with Xε δβ an arbitrary tensor. Proof. By straightforward computation it results

7 A note on Poisson-Lie algebroids I 85 π β / α = π αε σε i π β x i π β / α πε δ β ν δ θ ε π εν π βθ X να θ π β / α πθ X βα θ 1 2 πβθ X α θ + Γ βα ε π ε + Γ α ε π βε = πβε δ ν δ θ ε π εν π θ X να θ = πβθ X α θ 1 2 πθ X βα θ = 0, because π β / α = 0, which ends the proof. 3 The prolongation of Lie algebroid over the vector bundle projection Let E, π, M be a vector bundle. For the projection π : E M we can construct the prolongation of E see [7], [14], [10], [16]. The associated vector bundle is T E, π 2, E where T E = w E T w E with T w E = {u x, v w E x T w E σu x = T w πv w, πw = x M}, and the projection π 2 u x, v w = π E v w = w, where π E : T E E is the tangent projection. The canonical projection π 1 : T E E is given by π 1 u, v = u. The projection onto the second factor σ 1 : T E T E, σ 1 u, v = v will be the anchor of a new Lie algebroid over manifold E. An element of T E is said to be vertical if it is in the kernel of the projection π 1. We will denote V T E, π 2 V T E, E the vertical bundle of T E, π 2, E. If f C M we will denote by f c and f v the complete and vertical lift to E of f defined by f c u = σuf, f v u = fπu, u E. For s ΓE we can consider the vertical lift of s given by s v u = ϕsπu, for u E, where ϕ : E πu T u E πu is the canonical isomorphism. There exists a unique vector field s c on E, the complete lift of s satisfying the two following conditions: i s c is π-projectable on σs, ii s c α = L s α, for all α ΓE, where αu = απuu, u E see [5] [6]. Considering the prolongation T E of E over the projection π, we may introduce the vertical lift s v and the complete lift s c of a section s ΓE as the sections of T E E given by see [14] s v u = 0, s v u, s c u = sπu, s c u, u E. Another canonical object on T E is the Euler section C, which is the section of T E E defined by Cu = 0, ϕu for all u E. The local basis of ΓT E is given by {X α, V α }, where X α u = s α πu, σα i x i, V α u = 0, u y α, u

8 86 Liviu Popescu and / x i, / y α is the local basis on T E. The structure functions of T E are given by the following formulas σ 1 X α = σα i x i, σ1 V α = y α, [X α, X β ] = L αβ X, [X α, V β ] = 0, [V α, V β ] = 0. The vertical lift of a section ρ = ρ α s α and the corresponding vector field are ρ v = ρ α V α and σ 1 ρ v = ρ α y. The expression of the complete lift of a section ρ is α and therefore In particular ρ c = ρ α X α + ρ α L α βρ β y V α, σ 1 ρ c = ρ α σα i x i + ρ α σi x i Lα βρ β y y α. s v α = V α, s c α = X α L β αy V β. The coordinate expressions of C and σ 1 C are C = y α V α, σ 1 C = y α y α. The local expression of the differential of a function L on T E is d E L = σα i L x X α + i L y V α, where{x α, V α } denotes the corresponding dual basis of {X α α, V α } and therefore, we have d E x i = σαx i α and d E y α = V α. The differential of sections of T E is determined by d E X α = 1 2 Lα βx β X, d E V α = 0. A nonlinear connection N on T E [17] is an m dimensional distribution called horizontal distribution N : u E HT u E T E that is supplementary to the vertical distribution. This means that we have the following decomposition T u E = HT u E V T u E, for u E. A connection N on T E induces two projectors h, v : T E T E such that hρ = ρ h and vρ = ρ v for every ρ ΓT E. We have The sections h = 1 id + N, 2 v = 1 id N. 2 δ α = X α h = X α N β α V β, generate a basis of HT E, where Nα β are the coefficients of nonlinear connection. The frame {δ α, V α } is a local basis of T E called adapted. The dual adapted basis is {X α, δv α } where δv α = V α Nβ αx β. The Lie brackets of the adapted basis {δ α, V α } are [16] where [δ α, δ β ] = L αβ δ + R αβ V, [δ α, V β ] = N α y β V, [V α, V β ] = 0,

9 A note on Poisson-Lie algebroids I R αβ = δ βn α δ α N β + Lε αβn ε. The curvature of a connection N on T E is given by Ω = N h where h is horizontal projector and N h is the Nijenhuis tensor of h. In the local coordinates we have Ω = 1 2 R αβ X α X β V, where R αβ are given by 3.1 and represent the local coordinate functions of the curvature tensor Ω in the frame 2 T E T E induced by {X α, V α }. 3.1 Compatible Poisson structures Let us consider the Poisson bivector on Lie algebroid given by relation 2.1. We obtain: Proposition 3.1 The complete lift of Π on T E is given by Π c = π αβ π αβ X α V β + 2 σi x i π δβ L α δ y V α V β. Proof. Using the properties of vertical and complete lifts we obtain Π c = 1 2 παβ s α s β c = 1 2 παβ c s α s β v παβ v s α s β c = = 1 2 π αβ s v α s v β παβ s c α s v β + sv α s c β = 1 2π αβ V α V β παβ X α L δ αy V δ V β + V α X β L δ β y V δ = = π αβ 1 X α V β + 2 σi παβ x π δβ L α i δ y V α V β. Proposition 3.2 The complete lift Π c is a Poisson bivector on T E. Proof. Using the relations 3.2 and 2.2, by straightforward computation, we obtain that [Π c, Π c ] = 0, which ends the proof. Proposition 3.3 The Poisson structure Π c has the following property Π c = L C Π c, which means that T E, Π c is a homogeneous Poisson manifold. Proof. A direct computation in local coordinates yields L C Π c = L y ε V ε π αβ X α V β σi παβ x i π δβ L α δ y V α V β = L y ε V ε π αβ X α V β π αβ X α V β + L y ε V ε 1 2 σi παβ x y V i α V β y V α V β L y ε V ε π δβ L α δ y V α V β + π δβ L α δ y V α V β 1 2 σi παβ x i = π αβ X α V β 1 2 σi παβ x y V i α V β + π δβ L α δ y V α V β = Π c

10 88 Liviu Popescu Definition 3.1 Let us consider a Poisson bivector on E given by 2.1 then the horizontal lift of Π to T E is the bivector defined by Π H = 1 2 παβ xδ α δ β. Proposition 3.4 The horizontal lift Π H is a Poisson bivector if and only if Π is a Poisson bivector on E and the following relation is fulfilled. π αβ π δ R ε β = 0, Proof. The Poisson condition [Π, Π] = 0 leads to the relation 2.2 and equation [Π H, Π H ] = 0 yields ε,δ,α π αβ π δ L ε β + π αβ σ i β π εδ x i δ ε δ α δ δ + π αβ π δ R ε βv ε δ α δ = 0, which ends the proof. We recall that two Poisson structures are called compatible if the bivectors ω 1 and ω 2 satisfy the condition [ω 1, ω 2 ] = 0. By straightforward computation in local coordinates we get: Proposition 3.5 The Poisson bivector Π H Π c if and only if the following relations hold is compatible with the complete lift where we have denoted π rβ π αs N r y s π rs δ r a αβ a lα N β r y l N s y r πr π sα L β sr = 0, + a lβ N α r y l π θβ R α rθ + π εβ L θ ε π εθ L β εy N α r y θ + + σr i π εβ x i y L α ε + π εβ L α εnr π εβ σr i L α ε x i y a αβ = σε x i yε + Nε α π εβ Nε β π εα. = 0. Acknowledgements. The author wishes to express his thanks to the organizers of the International Conference DGDS-2008 and MENP-5, August 28 - September 2, 2008, where this paper has presented. Also, many thanks to the referee for useful remarks concerning this paper.

11 A note on Poisson-Lie algebroids I 89 References [1] M. Anastasiei, Geometry of Lagrangians and semisprays on Lie algebroids, Proc. Conf. Balkan Society of Geometers, Mangalia, 2005, BSGP, 2006, [2] Carlo Cattani, Harmonic wavelet solution of Poisson s problem, Balkan Journal of Geometry and Its Applications, 13, , [3] R. L. Fernandes, Connections in Poisson geometry I: holonomy and invariants, J. Differential Geometry, , [4] R. L. Fernandes, Lie algebroids, holonomy and characteristic classes, Advances in Mathematics, , [5] J. Grabowski, P. Urbanski, Tangent and cotangent lift and graded Lie algebra associated with Lie algebroids, Ann. Global Anal. Geom. 15, 1997, [6] J. Grabowski, P. Urbanski, Lie algebroids and Poisson-Nijenhuis structures, Rep. Math. Phys., , [7] P. J. Higgins, K. Mackenzie, Algebraic constructions in the category of Lie algebroids, Journal of Algebra , [8] D. Hrimiuc, L. Popescu, Nonlinear connections on dual Lie algebroids, Balkan Journal of Geometry and Its Applications, 11, , [9] M. Ivan, Gh. Ivan, D. Opris, The Maxwell-Block equations on fractional Leibniz algebroids, Balkan Journal of Geometry and Its Applications, 13, , [10] M. de Leon, J. C. Marrero, E. Martinez, Lagrangian submanifolds and dynamics on Lie algebroids J. Phys. A: Math. Gen , [11] A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry, , [12] K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note Series, Cambridge, 124, [13] K. Mackenzie, Ping Xu, Lie bialgebroids and Poisson groupoids, Duke Math. Journal, 73, , [14] E. Martinez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67, 2001, [15] G. Mitric, I. Vaisman, Poisson structures on tangent bundles, Diff. Geom. and Appl., , [16] L. Popescu, Geometrical structures on Lie algebroids, Publ. Math. Debrecen 72, , [17] P. Popescu, On the geometry of relative tangent spaces, Rev. Roumain Math. Pures and Applications, 37, , [18] I. Vaisman, Lectures on the geometry of Poisson manifolds, Progress in Math., 118, Birkhäuser, Berlin, [19] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geometry, , Author s address: Liviu Popescu University of Craiova, Dept. of Applied Mathematics in Economy 13 A.I.Cuza st., , Craiova, Romania liviupopescu@central.ucv.ro, liviunew@yahoo.com

POISSON STRUCTURES ON LIE ALGEBROIDS

POISSON STRUCTURES ON LIE ALGEBROIDS POISSON STRUCTURES ON LIE ALGEBROIDS LIVIU POPESCU University of Craiova, Dept. of Applied Mathematics in Economy 13 A.I.Cuza st., 200585, Craiova, Romania e-mail: liviupopescu@central.ucv.ro, liviunew@yahoo.com

Διαβάστε περισσότερα

On the inverse problem of Lagrangian dynamics on Lie algebroids

On the inverse problem of Lagrangian dynamics on Lie algebroids On the inverse problem of Lagrangian dynamics on Lie algebroids Liviu Popescu Abstract. In the present paper we start the study of the inverse problem of Lagrangian dynamics on Lie algebroids. Using the

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Minimal Surfaces PDE as a Monge Ampère Type Equation

Minimal Surfaces PDE as a Monge Ampère Type Equation Minimal Surfaces PDE as a Monge Ampère Type Equation Dmitri Tseluiko Abstract In the recent Bîlă s paper [1] it was determined the symmetry group of the minimal surfaces PDE (using classical methods).

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Annales Mathematicae et Informaticae 43 (2014) pp. 13 17 http://ami.ektf.hu On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Sándor Bácsó a, Robert Tornai a, Zoltán Horváth b a University

Διαβάστε περισσότερα

de Rham Theorem May 10, 2016

de Rham Theorem May 10, 2016 de Rham Theorem May 10, 2016 Stokes formula and the integration morphism: Let M = σ Σ σ be a smooth triangulated manifold. Fact: Stokes formula σ ω = σ dω holds, e.g. for simplices. It can be used to define

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

THE BIGRADED RUMIN COMPLEX. 1. Introduction

THE BIGRADED RUMIN COMPLEX. 1. Introduction THE BIGRADED RUMIN COMPLEX JEFFREY S. CASE Abstract. We give a detailed description of the bigraded Rumin complex in dimensions three and five, including formulae for all of its constituent operators.

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Note on the cross-section in the semi-tensor bundle

Note on the cross-section in the semi-tensor bundle NTMSCI 5, No. 2, 212-221 217 212 New Trends in Mathematical Sciences http://dx.doi.org/1.2852/ntmsci.217.171 Note on the cross-section in the semi-tensor bundle Furkan Yildirim Narman Vocational Training

Διαβάστε περισσότερα

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ) IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

On the conformal change of five-dimensional Finsler spaces

On the conformal change of five-dimensional Finsler spaces On the conformal change of five-dimensional Finsler spaces Gauree Shanker 1 2 3 4 5 6 7 8 Abstract. The purpose of the present paper is to deal with the theory of conformal change in five-dimensional Finsler

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ON THE GROUP OF TRANSFORMATIONS OF SYMMETRIC CONFORMAL METRICAL N-LINEAR CONNECTIONS ON A HAMILTON SPACE OF ORDER K.

ON THE GROUP OF TRANSFORMATIONS OF SYMMETRIC CONFORMAL METRICAL N-LINEAR CONNECTIONS ON A HAMILTON SPACE OF ORDER K. Bulletin of the Transilvania University of Braşov Vol 756 No. 1-2014 eries III: Mathematics Informatics Physics 57-72 ON THE GROUP OF TRANFORMATION OF YMMETRI ONFORMAL METRIAL N-LINEAR ONNETION ON A HAMILTON

Διαβάστε περισσότερα

dim(u) = n 1 and {v j } j i

dim(u) = n 1 and {v j } j i SOLUTIONS Math B4900 Homework 1 2/7/2018 Unless otherwise specified, U, V, and W denote vector spaces over a common field F ; ϕ and ψ denote linear transformations; A, B, and C denote bases; A, B, and

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

arxiv: v1 [math.ra] 19 Dec 2017

arxiv: v1 [math.ra] 19 Dec 2017 TWO-DIMENSIONAL LEFT RIGHT UNITAL ALGEBRAS OVER ALGEBRAICALLY CLOSED FIELDS AND R HAHMED UBEKBAEV IRAKHIMOV 3 arxiv:7673v [mathra] 9 Dec 7 Department of Math Faculty of Science UPM Selangor Malaysia &

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Iterated trilinear fourier integrals with arbitrary symbols

Iterated trilinear fourier integrals with arbitrary symbols Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Lecture Notes Introduction to Cluster Algebra

Lecture Notes Introduction to Cluster Algebra Lecture Notes Introduction to Cluster Algebra Ivan C.H. Ip Update: May 29, 2017 7.2 Properties of Exchangeable roots The notion of exchangeable is explained as follows Proposition 7.20. If C and C = C

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα