Ψηφιακές Τηλεπικοινωνίες
|
|
- Ἡσαΐας Κακριδής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Ψηφιακές Τηλεπικοινωνίες Ενότητα: Ασκήσεις Αυτοαξιολόγησης Καθηγητής Κώστας Μπερμπερίδης Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Τμήμα Μηχανικών Η/Υ και Πληροφορικής
2 Περιεχόμενα Σκοπός Ενότητας 3 Θεωρία Πληροφορίας 4 3 Χωρητικότητα Διαύλου 4 Δειγματοληψία - Κβαντισμός - Πολυπλεξία 9 5 Μετάδοση Βασικής Ζώνης 7 6 Μετάδοση Ευρείας Ζώνης 3 7 Σημειώματα 34
3 Σκοπός Ενότητας Σε αυτή την ενότητα υπάρχουν ασκήσεις αυτοαξιολόγησης και, συγκεκριμένα, εκφωνήσεις ασκήσεων, που καλύπτουν την βασική ύλη του μαθήματος των Ψηφιακών Τηλεπικοινωνιών, συνοδευόμενες από τις αντίστοιχες λύσεις. Ο ενδιαφερόμενος φοιτητής καλείται να επιλύσει τις ασκήσεις αυτές και να συμβουλευτεί τις διαθέσιμες λύσεις μόνο όταν έχει ολοκληρώσει την προσπάθειά του. 3
4 Θεωρία Πληροφορίας Άσκηση Θεωρούμε μια πηγή τριών διακριτών συμβόλων χωρίς μνήμη (discrete memoryless source, dms με αλφάβητο Φ = {S 0, S, S } όπου οι πιθανότητες εμφάνισης των συμβόλων είναι p(s 0 = p 0 = 0.4, p(s = p = 0.3, p(s = p = 0.3 Ακόμα, γνωρίζουμε πως η πηγή αυτή παράγει σύμβολα με ρυθμό r s = 000 σύμβολα/sec. Να υπολογίσετε την εντροπία της πηγής και το μέσο ρυθμό πληροφορίας στην έξοδο της πηγής. Η εντροπία μιας διακριτής πηγής χωρίς μνήμη δίνεται από τον τύπο H(Φ = ( p(s log p(s s Φ έτσι θα έχουμε: H(Φ = p 0 log ( p 0 + p log ( p + p log ( p + p log ( p ( + p log p ( = p 0 log p 0 = p 0 log (p 0 p log (p p log (p = 0.4 log ( log ( log ( bits/σύμβολο Έτσι, ο μέσος ρυθμός πληροφορίας της πηγής θα είναι R Φ = H(Φ r s.57 bits/σύμβολο 000 σύμβολα/sec = 57 bits/sec 4
5 Άσκηση Για την πηγή της άσκησης, να βρεθεί η κωδικοποίηση Huffman, το μέσο μήκος του κώδικα και η απόδοση της κωδικοποίησης Huffman. Ο κώδικας Huffman είναι ένας προθεματικός κώδικας (prefix code ο οποίος προσπαθεί να αντιστοιχίσει κάθε σύμβολο ενός αλφαβήτου σε μια ακολουθία από δυαδικά ψηφία (κωδική λέξη με σκοπό να πετύχει χαμηλό μέσο μήκος κώδικα. Για να υπολογίσουμε την κωδικοποίηση Huffman ενός αλφαβήτου με N σύμβολα ακολουθούμε μια διαδικασία από N φάσεις. Σε κάθε φάση, στα λιγότερο πιθανά σύμβολα ανατίθενται τα δυαδικά ψηφία 0 και ενώ τα σύμβολα αυτά ομαδοποιούνται σε ένα σύμβολο στην επόμενη φάση. Η πιθανότητα εμφάνισης του νέου κάθε φορά συμβόλου είναι το άθροισμα των πιθανοτήτων των συμβόλων που ομαδοποιήθηκαν. Μετά το τέλος της παραπάνω μεθόδου, η κωδική λέξη για κάθε σύμβολο προκύπτει από τις αναθέσεις δυαδικών ψηφίων που κάναμε σε κάθε φάση, με αντίθετη όμως σειρά. Έτσι, θα έχουμε: S S S 0.3 και έτσι έχουμε την αντιστοίχιση και το μέσο μήκος κώδικα θα είναι Σύμβολο Κωδική λέξη Μήκος κωδικής λέξης (l(s S 0 S 00 S 0 L = s Φ p(sl(s = =.6 bits και η απόδοση του κώδικα Huffman θα είναι n = H(Φ L =
6 Άσκηση 3 Θεωρούμε τώρα τη δεύτερης τάξης επέκταση της πηγής της άσκησης. Η νέα πηγή θα αποτελείται από 3 = 9 σύμβολα και πιο συγκεκριμένα το νέο αλφάβητο θα είναι το Φ = {S 0 S 0, S 0 S, S 0 S, S S 0,..., S S } = {σ 0, σ,..., σ 8 } Για την πηγή αυτή, να υπολογιστεί η εντροπία και ο μέσος ρυθμός πληροφορίας της. Αρχικά θα υπολογίσουμε τις πιθανότητες των νέων συμβόλων. Ακριβώς επειδή η πηγή πληροφορίας δεν έχει μνήμη (δηλαδή διαδοχικά σύμβολα που εκπέμπονται από την πηγή είναι στατιστικά ανεξάρτητα οι πιθανότητες των ομαδοποιημένων συμβόλων θα δίνονται από το γινόμενο των πιθανοτήτων εμφάνισης των επιμέρους συμβόλων. Έτσι θα έχουμε για τις πιθανότητες των νέων συμβόλων: σ 0 σ σ σ 3 σ 4 σ 5 σ 6 σ 7 σ 8 S 0 S 0 S 0 S S 0 S S S 0 S S S S S S 0 S S S S Η εντροπία της πηγής υπολογίζεται ως: H(Φ = ( p(s log p(s s Φ = 0.6 log ( log( log( = 3.4 Γενικά, η σχέση που συνδέει την εντροπία μιας πηγής H(Φ με την εντροπία της n τάξης επέκτασής της H(Φ n είναι H(Φ n = n H(Φ γεγονός που επιβεβαιώθηκε και με την παραπάνω διαδικασία. Ο ρυθμός συμβόλων της νέας πηγής θα δίνεται από τον τύπο r s = r s = 500 σύμβολα/ sec αφού κάθε σύμβολο της νέας πηγής αντιστοιχεί σε δύο σύμβολα της αρχικής. Τελικά, ο μέσος ρυθμός πληροφορίας της νέας πηγής θα είναι: R Φ = 500 σύμβολα/ sec 3.4 bits/sec = R Φ Δηλαδή, ο ρυθμός παραγωγής πληροφορίας δεν άλλαξε με την δεύτερης τάξης επέκταση της πηγής. 6
7 Άσκηση 4 Για την πηγή της άσκησης 3, να βρεθεί η κωδικοποίηση Huffman και να υπολογιστεί η απόδοση της κωδικοποίησης αυτής. Σύμφωνα με τη μέθοδο που περιγράψαμε στην άσκηση θα έχουμε για την εύρεση της κωδικοποίησης Huffman: 0 σ σ σ σ σ σ σ σ σ Με βάση το παραπάνω σχήμα, βρίσκουμε την ακόλουθη κωδικοποίηση για τα σύμβολα: Σύμβολο (s σ 0 σ σ σ 3 σ 4 σ 5 σ 6 σ 7 σ 8 Κώδικας Μήκος (l(s Έτσι, το μέσο μήκος κώδικα θα δίνεται από τον τύπο: L = s Φ p(sl(s = = 3.8 bits/ σύμβολο Τελικά, η απόδοση της κωδικοποίησης αυτής θα είναι: n = H(Φ L = = Παρατηρούμε εδώ πως με τη δεύτερης τάξης επέκταση της πηγής, ενώ ο μέσος ρυθμός πληροφορίας παραμένει ίδιος, πετυχαίνουμε καλύτερη απόδοση κωδικοποίησης. Αυτό μπορούμε να το δείξουμε γενικά ξεκινώντας από το γνωστό τύπο: H(Φ L < H(Φ + όπου L το μήκος ενός προθεματικού κώδικα. Η εφαρμογή του τύπου αυτού στην n τάξης επέκταση της πηγής δίνει: H(Φ n L n < H(Φ n + n H(Φ L n < n H(Φ + H(Φ L n n < H(Φ + n 7
8 Δηλαδή, καθώς το n αυξάνεται τόσο περισσότερο το μήκος του προθεματικού κώδικα πλησιάζει την εντροπία της πηγής (=βέλτιστο μήκος κώδικα και η απόδοση της κωδικοποίησης τείνει στο καθώς το n τείνει στο άπειρο. Σημείωση: Στο σημείο αυτό θα πρέπει να σημειωθεί ότι η διαδικασία κωδικοποίησης Huffman δεν είναι μοναδική. Συγκεκριμένα, υπάρχουν αρκετά σημεία του αλγορίθμου που μπορούν να υλοποιηθούν με διαφορετικό τρόπο, καταλήγοντας σε άλλη κωδικοποίηση. Ως τέτοια αναφέρουμε: (α Αν δύο σύμβολα έχουν την ίδια πιθανότητα εμφάνισης υπάρχουν τρόποι αρχικής διάταξής τους. (β Η ανάθεση των ψηφίων 0 και μπορεί να γίνει από πάνω προς τα κάτω ή από κάτω προς τα πάνω. (γ Αμφιβολία συναντάμε όταν ένα σύμβολο που προκύπτει από συνδυασμό δύο άλλων έχει την ίδια πιθανότητα με κάποιο ήδη υπάρχον. Στην περίπτωση αυτή μπορεί να τοποθετηθεί όσο ψηλότερα ή όσο χαμηλότερα γίνεται. Γενικά, είναι προτιμότερο να τοποθετείται όσο ψηλότερα γίνεται. Εφαρμόζοντας τη μια ή την άλλη διαφοροποίηση του αλγορίθμου ενδεχομένως να οδηγηθούμε σε περιπτώσεις όπου ένα σύμβολο έχει διαφορετικό κώδικα ή ακόμα και διαφορετικό μήκος κώδικα (διαφορετικό αριθμό bits. Ωστόσο, σε όλες τις περιπτώσεις το μέσο μήκος κώδικα L διατηρείται σταθερό. 8
9 Άσκηση 5 Η έξοδος μιας έγχρωμης ψηφιακής κάμερας η οποία έχει ανάλυση εικονοστοιχεία κωδικοποιείται με χρήση παλέττας 56 χρωμάτων. Αν υποθέσουμε πως οι τιμές γειτονικών pixels είναι μεταξύ τους στατιστικά ανεξάρτητες και ότι σε κάθε pixel τα 56 επίπεδα εμφανίζονται με τις εξής πιθανότητες: Περιοχή Επιπέδων Πιθανότητα Εμφάνισης Υποθέτουμε ακόμα πως στα πλαίσια κάθε περιοχής τα χρώματα εμφανίζονται ισοπίθανα. Να υπολογιστούν: (α Το μέσο πληροφοριακό περιεχόμενο κάθε pixel. (β Το ολικό πληροφοριακό περιεχόμενο μιας εικόνας. (γ Ο μέσος ρυθμός πληροφορίας στην έξοδο της κάμερας αν γνωρίζουμε πως αυτή δίνει r = 5 frames/sec. Το μέσο πληροφοριακό περιεχόμενο ενός pixel είναι ίσο με την εντροπία της πηγής. Για να υπολογίσουμε την εντροπία της πηγής διαπιστώνουμε πως τα σύμβολα της πηγής είναι οι αριθμοί από 0 έως 55 (56 σύμβολα και απομένει να υπολογίσουμε τις πιθανότητες κάθε συμβόλου. Δεδομένου ότι σε κάθε περιοχή επιπέδων τα χρώματα εμφανίζονται ισοπίθανα, η πιθανότητα ενός pixel να λάβει μια (συγκεκριμένη τιμή στην πρώτη περιοχή θα είναι p 0 = 0. = αφού η περιοχή αποτελείται από 00 σύμβολα. Όμοια, για τις άλλες περιοχές θα έχουμε: και Έτσι, η εντροπία της πηγής θα είναι: H = = 55 i=0 99 i= p(s i log ( p(s i p 0 log ( p 0 + i=0 p 3 log ( p 3 p = 0.5 = p = 0.3 = p 3 = i=00 0. = p log ( p + 09 i=50 ( ( = log log ( log ( log 0. p log ( p = 0. log ( log ( log ( log (46 0 = 0.3 log (0 + log ( log ( log ( 3 0 = 0.3 log (0 + log ( log ( log (3 +0. log (0 = log ( log ( bits/pixel 9
10 Κάθε εικόνα (frame αποτελείται από: = = pixels Επειδή τα pixels θεωρούνται στατιστικά ανεξάρτητα μεταξύ τους, το ολικό πληροφοριακό περιεχόμενο μιας εικόνας θα είναι: = H = pixels bits/pixel = bits/frame Τέλος, ο ρυθμός πληροφορίας της κάμερας θα δίνεται από τον τύπο R = I r = bits/sec 0
11 Άσκηση 6 Ο διεθνής κώδικας Morse χρησιμοποιεί μια ακολουθία από τελείες και παύλες για τη μετάδοση γραμμάτων του αγγλικού αλφαβήτου. Η παύλα παριστάνεται με ένα παλμό ρεύματος διάρκειας 3 μονάδων και η τελεία με έναν παλμό ρεύματος διάρκειας μονάδας. Η πιθανότητα εμφάνισης της παύλας είναι το /3 της πιθανότητας εμφάνισης της τελείας. (α Υπολογίστε το πληροφοριακό περιεχόμενο της τελείας και της παύλας. (β Υπολογίστε τη μέση πληροφορία των συμβόλων του κώδικα αυτού. (γ Δεχθείτε ότι η τελεία κρατάει msec, όσο είναι και το χρονικό διάστημα παύσης μεταξύ δυο συμβόλων, και βρείτε το μέσο ρυθμό μετάδοσης πληροφορίας. (α Ας συμβολίσουμε με S 0 το σύμβολο της παύλας και με S το σύμβολο της τελείας. Έστω ακόμα πως τα σύμβολα αυτά έχουν πιθανότητες εμφάνισης p 0 και p αντίστοιχα. Από τα δεδομένα της εκφώνησης μπορούμε τότε να υπολογίσουμε τις πιθανότητες αυτές: p 0 + p = p 0 = 3 p p 0 = 4 p = 3 4 Έτσι, μπορούμε να υπολογίσουμε το πληροφοριακό περιεχόμενο της τελείας και της παύλας: I(S 0 = log p 0 = bits I(S = log p (β Η μέση πληροφορία των συμβόλων του κώδικα είναι η εντροπία της πηγής που τον παράγει και δίνεται από τον τύπο: bits H = p 0 I(S 0 + p I(S = 0.88 bits/σύμβολο (γ Τώρα, για να υπολογίσουμε το μέσο ρυθμό μετάδοσης της πληροφορίας υπολογίζουμε αρχικά το μέσο ρυθμό μετάδοσης συμβόλων. Με δεδομένο πως η τελεία κρατάει msec, η παύλα θα κρατάει 3 msec. Αν τώρα συνυπολογίσουμε για κάθε ένα σύμβολο και το χρονικό διάστημα του msec το οποίο μεσολαβεί ανάμεσα στα σύμβολα, ο συνολικός χρόνος μετάδοσης για κάθε σύμβολο θα είναι t 0 = 4 msec και t = msec Ο μέσος χρόνος για τη μετάδοση ενός συμβόλου θα είναι t = p 0 t 0 + p t =.5 msec και ο μέσος ρυθμός συμβόλων r = t =.5 σύμβολα/msec = 400 σύμβολα/sec Τελικά, ο μέσος ρυθμός πληροφορίας υπολογίζεται ως: R = r H = 34.5 bits/sec
12 3 Χωρητικότητα Διαύλου Άσκηση 7 Σε ένα δυαδικό συμμετρικό κανάλι εισέρχονται σύμβολα με ρυθμό r s = 000 σύμβολα ανά δευτερόλεπτο. Αν γνωρίζουμε πως τα σύμβολα 0 και είναι ισοπίθανα, να υπολογιστεί ο ρυθμός μετάδοσης πληροφορίας μέσα από το κανάλι αυτό για κάθε μια από τις περιπτώσεις p = 0.9, p = 0.8 και p = 0.6, όπου p η πιθανότητα σωστής μετάδοσης. Το δυαδικό συμμετρικό κανάλι το οποίο εξετάζουμε μπορεί να παρασταθεί από το ακόλουθο σχήμα: x 0 = 0 p y 0 = 0 p X Y p x = p y = Ο ζητούμενος ρυθμός μετάδοσης πληροφορίας δίνεται από τον τύπο D t = I(X, Y r s όπου I(X, Y η αμοιβαία πληροφορία (η πληροφορία που τελικά μεταδίδεται από το κανάλι. Την αμοιβαία πληροφορία θα την υπολογίσουμε από τον τύπο I(X, Y = H(X H(X Y όπου H(X = log + log = bit/sec η εντροπία της πηγής πληροφορίας (πρίν το κανάλι και H(X Y = i=0 j=0 p(x i, y j log p(x i y j η υπό συνθήκη εντροπία (η απώλεια πληροφορίας κατά τη μετάδοση. Απομένει λοιπόν ο υπολογισμός των από κοινού (joint πιθανοτήτων p(x i, y j καθώς και των υπο συνθήκη (conditional πιθανοτήτων p(x i y j. Για τις απο κοινού πιθανότητες θα κάνουμε χρήση του τύπου p(x i, y j = p(x i p(y j x i και έτσι βρίσκουμε άμεσα p(x 0, y 0 = p(x 0 p(y 0 x 0 = p p(x 0, y = p(x 0 p(y x 0 = ( p p(x, y 0 = p(x p(y 0 x = ( p και p(x, y = p(x p(y x = p
13 Απομένει ο υπολογισμός των υπό συνθήκη πιθανοτήτων. Για τις πιθανότητες αυτές θα κάνουμε χρήση του τύπου: p(x i y j = p(x i, y j p(y j επομένως αρκεί να υπολογίσουμε τις πιθανότητες p(y 0 και p(y. Σύμφωνα με μια γνωστή ιδιότητα, είναι: p(y j = = p(x i, y j i=0 p(x i p(y j x i i=0 = p(x 0 p(y j x 0 + p(x p(y j x οπότε για j = 0 p(y 0 = p(x 0 p(y 0 x 0 + p(x p(y 0 x = p + ( p = Επομένως και τα σύμβολα y 0 και y είναι ισοπίθανα. Έτσι, μπορούμε τώρα να υπολογίσουμε και τις τέσσερις υπό συνθήκη πιθανότητες: Η υπό συνθήκη εντροπία θα είναι H(X Y = p(x 0 y 0 = p(x 0, y 0 p(y 0 p(x 0 y = p(x 0, y p(y p(x y 0 = p(x, y 0 p(y 0 = = p(x y = p(x, y p(y i=0 j=0 = p = p ( p = p ( p = p = p(x i, y j log p(x i y j = p log p + ( p log + p log p = p log p + ( p log p p = p p + ( p log p και τελικά D t = ( p log p ( p log r s p και για τις περιπτώσεις που πρέπει να εξετάσουμε είναι p = 0.9 D t = 53 bits/sec p = 0.8 D t = 78 bits/sec p = 0.6 D t = 9 bits/sec από όπου παρατηρούμε ότι ο ρυθμός μετάδοσης πληροφορίας μειώνεται πολύ γρήγορα καθώς αυξάνεται η πιθανότητα σφάλματος ( p. Μάλιστα, παρατηρούμε ότι για ( p = / έχουμε D t = 0. 3
14 Άσκηση 8 Να υπολογιστεί η χωρητικότητα C ενός διακριτού συμμετρικού καναλιού χωρίς μνήμη (Binary Symetric Channel, BSC. Η χωρητικότητα ενός διακριτού καναλιού χωρίς μνήμη ορίζεται ως η μέγιστη δυνατή μέση μεταδιδόμενη πληροφορία ανά χρήση του καναλιού (π.χ. διάστημα συμβόλου. Η μεγιστοποίηση αυτή γίνεται ως προς όλες τις δυνατές κατανομές εισόδου. C = max I(X Y p(x Δηλαδή, η χωρητικότητα του καναλιού επιτυγχάνεται όταν στην είσοδο εφαρμόζεται πηγή προσαρμοσμένη στο κανάλι. Λόγω συμμετρίας, σε ένα BSC η χωρητικότητα επιτυγχάνεται όταν τα σύμβολα εισόδου είναι ισοπίθανα, δηλαδή όταν p(x 0 = p(x = Στη συνέχεια θα αποδείξουμε και μαθηματικά τον ισχυρισμό αυτό. Έστω ότι έχουμε τη γενική περίπτωση όπου η κατανομή εισόδου είναι: p(x 0 = p 0 και p(x = p 0 και η πιθανότητα σωστής μετάδοσης του καναλιού είναι p. Αν ακολουθήσουμε τη διαδικασία υπολογισμού της αμοιβαίας πληροφορίας I(X Y όπως έγινε στην άσκηση 7 χρησιμοποιώντας τη μεταβλητή p 0 αντί της τιμής /, τότε I(p 0 = p 0 p log p p 0 p + ( p 0 ( p +p 0 ( p log p p 0 ( p + ( p 0 p +( p 0 ( p log p p 0 p + ( p 0 ( p +( p 0 p log p p 0 ( p + ( p 0 p Η πρώτη παράγωγος της παραπάνω συνάρτησης ως προς τη μεταβλητή p 0 είναι και μπορεί να δειχθεί πως: Για p 0 < /, ϑi(p 0 ϑp 0 Για p 0 > /, ϑi(p 0 ϑp 0 Για p 0 = /, ϑi(p 0 ϑp 0 Αποδείξαμε έτσι τον αρχικό μας ισχυρισμό. ϑi(p 0 p p 0 + p 0 p = ( p log ϑp 0 p + p 0 p 0 p ( p p 0 ( p = ( p log p + p 0 ( p > 0 και έτσι η I(p 0 είναι γνησίως αύξουσα. < 0 και έτσι η I(p 0 είναι γνησίως φθίνουσα. = 0 και έτσι στο σημείο αυτό έχουμε ολικό μέγιστο. 4
15 Άσκηση 9 Ένα τερματικό CRT χρησιμοποιείται για την αποστολή αλφαριθμητικών δεδομένων σε έναν υπολογιστή. Το CRT είναι συνδεδεμένο με τον υπολογιστή με μια τηλεφωνική γραμμή που έχει εύρος ζώνης 3000 Hz και S/N εξόδου 0 db. Δεχόμαστε πως το τερματικό έχει 8 χαρακτήρες και ότι η αποστολή δεδομένων από το τερματικό αποτελείται από ακολουθίες ανεξάρτητων ισοπίθανων χαρακτήρων. (α Βρείτε τη χωρητικότητα του καναλιού. (β Βρείτε το μέγιστο (θεωρητικό ρυθμό με τον οποίο μπορούμε να μεταδώσουμε δεδομένα από το τερματικό στον υπολογιστή χωρίς σφάλματα. (α Η χωρητικότητα του ενθόρυβου καναλιού δίνεται από το θεώρημα Shannon-Hartley με τον τύπο: ( C = B log + S N όπου B είναι το εύρος ζώνης του καναλιού και S/N είναι ο λόγος ισχύος σήματος προς θόρυβο στην έξοδο του καναλιού. Αφού ο λόγος σήματος προς θόρυβο είναι εκφρασμένος σε db θα έχουμε: 0 log 0 S N = 0 S N = 0 και έτσι C = 3000 log 0378 bits/sec (β Για να υπολογίσουμε το μέγιστο θεωρητικό ρυθμό με τον οποίο μπορούμε να μεταδώσουμε δεδομένα υπολογίζουμε αρχικά την εντροπία της πηγής (CRT: 8 H = i= 8 p i log = p i i= 8 log 8 = 8 8 log 8 = 7 bits/σύμβολο Ο περιορισμός που τίθεται από το θεώρημα κωδικοποίησης καναλιού του Shannon είναι H r s C r s C H = 48 symbols/sec 5
16 Άσκηση 0 Ένα Gaussian κανάλι έχει εύρος ζώνης 4 khz και δίπλευρη φασματική πυκνότητα ισχύος του θορύβου N 0 / ίση με 0 4 Watt/Hz. Η ισχύς του σήματος στη λήψη πρέπει να τηρείται σε μια στάθμη μικρότερη ή ίση του /0 του mwatt. Υπολογίστε τη χωρητικότητα του καναλιού αυτού. Αρχικά, μπορούμε να υπολογίσουμε την ισχύ του θορύβου ( N0 N = (B = 8 0 Watt Η χωρητικότητα του καναλιού θα δίνεται από τον τύπο ( C = B log + S N Ο περιορισμός που έχουμε εδώ είναι S 0 4 Έτσι, διαπιστώνουμε πως η χωρητικότητα του καναλιού θα δίνεται για τη μέγιστη τιμή της ισχύος του σήματος και θα είναι: ( C = 4000 log Watt = 4000 log ( bits/sec 6
17 Άσκηση Ένας φίλος σου διατείνεται ότι μπορεί να σχεδιάσει ένα σύστημα για τη διαβίβαση της εξόδου ενός μίνι υπολογιστή σε έναν εκτυπωτή γραμμών που λειτουργεί με ταχύτητα 30 γραμμών ανά λεπτό μέσω μιας κοινής τηλεφωνικής γραμμής εύρους ζώνης 3.5 khz με λόγο σήματος προς θόρυβο S/N=30 db. Ας δεχθείτε ότι ο εκτυπωτής αυτός χρειάζεται δεδομένα των 8 bits ανά χαρακτήρα και τυπώνει γραμμές των 80 χαρακτήρων. Τον πιστεύεις? Ας υπολογίσουμε αρχικά τη χωρητικότητα του καναλιού S N = 30 db 0 log S 0 N = 30 S N = 03 και έτσι ( C = B log + S N = 3500 log ( bits/sec Ο ρυθμός δεδομένων του εκτυπωτή τώρα θα είναι: 30γραμμές λεπτό 80χαρακτ. γραμμή 8bits χαρακτ. }{{} εντροπία = 900bits λεπτό = 30 bits sec ο οποίος είναι μικρότερος από τη χωρητικότητα του καναλιού και άρα η μετάδοση είναι δυνατή. 7
18 Άσκηση Η έξοδος της ψηφιακής κάμερας της άσκησης (5 διοχετεύεται σε τηλεπικοινωνιακό κανάλι με θόρυβο τέτοιας ισχύος ώστε να έχουμε SNR=0dB. Να υπολογιστεί το ελάχιστο απαιτούμενο εύρος ζώνης ώστε να μεταδοθεί η πληροφορία χωρίς σφάλματα. Αρχικά, μετατρέπουμε το λόγο σήματος προς θόρυβο ο οποίος είναι εκφρασμένος σε db: S N = 0dB 0 log S 0 N = 0 S N = 00 Έστω τώρα πως το χρησιμοποιούμενο κανάλι έχει εύρος ζώνης. Χρησιμοποιώντας το μέσο ρυθμό πληροφορίας R της κάμερας ο οποίος υπολογίστηκε στην άσκηση (5 θα έχουμε: R C ( R B log + S N R B ( log + S N και με αντικατάσταση βρίσκουμε B 5.63 MHz 8
19 4 Δειγματοληψία - Κβαντισμός - Πολυπλεξία Άσκηση 3 Ένα σήμα χαμηλών συχνοτήτων x(t έχει φάσμα που δίνεται από την f 00, f < 00 X(f = 0, παντού αλλού (α Δεχθείτε ότι το x(t δειγματοληπτείται ιδανικά (με άπειρη αριθμητική ακρίβεια χρησιμοποιώντας συχνότητα δειγματοληψίας f s = 300 Hz. Σχεδιάστε το φάσμα του δειγματοληπτημένου σήματος. (β Επαναλάβετε το προηγούμενο ερώτημα για f s = 400 Hz. Σχεδιάζουμε το φάσμα του αρχικού σήματος X(f f Γενικά, στην περίπτωση της ιδανική δειγματοληψίας, το φάσμα του δειγματοληπτημένου σήματος X δ (f σχετίζεται με το φάσμα του αρχικού σήματος με τη σχέση: X δ (f = T s n= X (f nts όπου T s = /f s η περίοδος δειγματοληψίας. Στην περίπτωση που εξετάζουμε, όπου f s = 300 Hz, το φάσμα του δειγματοληπτημένου σήματος θα είναι η περιοδική επανάληψη του φάσματος του αρχικού σήματος με περίοδο 300 Hz και επειδή το εύρος του φάσματος του αρχικού σήματος είναι 400 Hz (από -00 έως 00 θα έχουμε περιοχές επικάλυψης εύρους 00 Hz. Με άλλα λόγια, δεν πληρείται το κριτήριο του Nyquist (f s f max για δειγματοληψία χωρίς απώλεια πληροφορίας. Έτσι, σχεδιάζουμε το φάσμα X δ (f. 300 X δ (f f Αντίθετα, στην περίπτωση όπου f s = 400 Hz, το κριτήριο Nyquist πληρείται έστω και οριακά, οπότε δεν έχουμε περιοχές επικάλυψης. Το φάσμα του δειγματοληπτημένου σήματος τότε θα είναι: 9
20 400 X δ (f f 0
21 Άσκηση 4 Το αναλογικό σήμα x(t = cos(400πt+6 cos(640πt δειγματοληπτείται ιδανικά με συχνότητα δειγματοληψίας f s = 500 Hz και δίνει έτσι το σήμα διακριτού χρόνου x n. Να υπολογιστεί το συχνοτικό περιεχόμενο X(e jω του σήματος x n. Ένα από τα γνωστά ζεύγη Fourier δίνεται από τη σχέση F cos(πf 0 t (δ(f f 0 + δ(f + f 0 Το σήμα x(t γράφεται έτσι: x(t = cos(400πt + 6 cos(640πt και έτσι το φάσμα του θα δίνεται από τον τύπο = cos(π00t + 6 cos(π30t X(f = (δ(f 00 + δ(f (δ(f 30 + δ(f + 30 = δ(f 00 + δ(f δ(f δ(f + 30 Παρατηρούμε στο σημείο αυτό πως η συχνότητα δειγματοληψίας που έχει επιλεγεί βρίσκεται κάτω από το όριο Nyquist το οποίο στην περίπτωσή μας είναι η συχνότητα 640 Hz. Έτσι, θα έχουμε αναδίπλωση συχνοτήτων. Η αναδίπλωση συχνοτήτων γίνεται με τους ακόλουθους κανόνες: Συχνότητες οι οποίες στο αρχικό σήμα είναι μεγαλύτερες από τη συχνότητα δειγματοληψίας χάνουν ακέραια πολλαπλάσια της συχνότητας δειγματοληψίας και εμφανίζονται στο διάστημα [0, f s. Αν για παράδειγμα μια συχνότητα f a στο αρχικό σήμα είναι ίση με f a = k f s + f a τότε αυτή θα αναδιπλωθεί στη συχνότητα f a η οποία ανήκει στο διάστημα [0, f s και έχει χάσει k ακέραια πολλαπλάσια. Επιπρόσθετα, αν η συχνότητα f a ανήκει στο διάστημα ( f s, f s τότε αυτή υφίσταται επιπλέον αναδίπλωση και μάλιστα αντικατοπτρίζεται στη συμμετρική της ως προς f s συχνότητα. Τέλος, το δειγματοληπτημένο σήμα θα παρουσιάζει περιοδικό φάσμα με περίοδο f s. Με βάση τους παραπάνω κανόνες, η συχνότητα 00 Hz θα παραμείνει ανεπηρέαστη από το φαινόμενο της αναδίπλωσης αφού είναι μικρότερη από F s =50 Hz. Αντίθετα, η συχνότητα 30 Hz είναι μεγαλύτερη από 50 Hz και άρα θα αντικατοπτριστεί στη συμμετρική της ως προς F s συχνότητα, δηλαδή στη συχνότητα 80 Hz. Στο ακόλουθο σχήμα έχουμε σχεδιάσει το συχνοτικό περιεχόμενο του σήματος x n όπου οι συναρτήσεις δέλτα που εμφανίζονται εκτός των διακεκομμένων γραμμών αντιστοιχούν σε περιοδικές επαναλήψεις του βασικού φάσματος. Το ύψος των δέλτα συναρτήσεων υπολογίζεται ως /T s επί το ύψος των αντίστοιχων δέλτα συναρτήσεων του φάσματος του αναλογικού σήματος
22
23 Άσκηση 5 Η συνάρτηση πυκνότητας πιθανότητας f s ( των τιμών ενός αναλογικού σήματος παρουσιάζεται στο ακόλουθο σχήμα f s (S S + S + S Σχεδιάστε έναν ομοιόμορφο κβαντιστή 4 σταθμών και υπολογίστε το λόγο (ισχύος σήματος προς θόρυβο κβάντισης του δειγματοληπτημένου σήματος. Η δυναμική περιοχή του σήματος είναι το διάστημα [, ] η οποία έχει εύρος. Στην περιοχή αυτή ο κβαντιστής θα πρέπει να εισάγει 4 στάθμες κβάντισης και αφού είναι ομοιόμορφος οι στάθμες αυτές θα πρέπει να ισαπέχουν. Εύκολα βρίσκουμε πως η απόσταση ανάμεσα σε διαδοχικές στάθμες κβάντισης θα είναι = 4 = και έτσι τα άκρα των περιοχών θα είναι τα σημεία x 0 =, x = /, x = 0, x 3 = / και x 4 =. Οι στάθμες κβάντισης θα είναι τα κέντρα των περιοχών αυτών και έτσι θα έχουμε m = 3 4 m = m 3 = m 4 = 3 4 Αν θεωρήσουμε το αρχικό σήμα ως S και το δειγματοληπτημένο ως S q, τότε η μέση ισχύς του θορύβου κβάντισης θα είναι N q = = = = + (S S q f s (SdS xi+ 3 i=0 x i x + (S m i+ f s (SdS x 0 (S m f s (SdS + x + x3 x (S m 3 f s (SdS + x 0 (S m (S + ds + x3 x x x4 x 3 x x (S m 3 ( S + ds + (S m f s (SdS (S m 4 f s (SdS (S m (S + ds x x4 x 3 (S m 4 ( S + ds Υπολογίζουμε τις μορφές των ολοκληρωμάτων που εμφανίζονται b a (x c (x + dx = = = b a b a b a (x + c xc(x + dx (x 3 + c x x c + x + c xcdx (x 3 + ( cx + (c cx + c dx = 4 (b4 a 4 + c (b 3 a c c (b a + c (b a 3
24 και b a (x c ( x + dx = = b a b a ( x 3 c x + x c + x + c xcdx ( x 3 + ( + cx (c + cx + c dx = 4 (b4 a c (b 3 a 3 3 c + c (b a + c (b a Χρησιμοποιώντας τις παραπάνω σχέσεις και αντικαθιστώντας τις κατάλληλες τιμές τελικά υπολογίζουμε πως Για την ισχύ του σήματος τώρα θα έχουμε P = = + 0 = S4 4 = 6 0 N q = 48 S f s (SdS S (S + ds + + S3 3 και τελικά, ο λόγος σήματος προς θόρυβο θα είναι S4 4 P = 48 N q 6 = 8 0 S ( S + ds + S
25 Άσκηση 6 Έξι ανεξάρτητες πηγές με εύρη ζώνης (bandwidth W, W, W, W, 3W και 3W Hertz πρόκειται να μεταδοθούν με πολυπλεξία διαίρεσης χρόνου (TDM σε ένα κοινό τηλεπικοινωνιακό κανάλι. Πως μπορεί να γίνει αυτό και ποιο το απαιτούμενο bandwidth του καναλιού? Σύμφωνα με το κριτήριο Nyquist, οι πηγές με μεγαλύτερο εύρος ζώνης χρειάζονται πιο πυκνή δειγματοληψία. Συγκεκριμένα οι πηγές με εύρος ζώνης W θα πρέπει να δειγματοληπτηθούν με συχνότητα τουλάχιστον W. Ένας απλός τρόπος να τις πολυπλέξουμε είναι να δειγματοληπτούμε όλες τις πηγές με τη μεγαλύτερη συχνότητα δειγματοληψίας 6W (ή να παρεμβάλουμε μηδενικά. Έτσι, σε κάθε περίοδο διάρκειας /(6W θα υπάρχουν 6 δείγματα, επομένως ο συνολικός ρυθμός θα είναι 36W και το εύρος ζώνης 8W για να μεταδοθεί το σήμα. Ένας πιο αποδοτικός τρόπος είναι ο ακόλουθος: Δειγματοληπτούμε κάθε πηγή στον αντίστοιχο Nyquist ρυθμό της και ρυθμίζουμε τον μεταγωγέα σε κάθε κύκλο να μεταδίδει από δείγμα των πρώτων πηγών, δείγματα των δύο πηγών με εύρος ζώνης W και 3 δείγματα από τις τελευταίες πηγές. (Αφού T s = T s = 3T s. Έτσι, στη χρονική διάρκεια της μεγαλύτερης περιόδου (T s = W έχουμε στην πραγματικότητα = δείγματα, δηλαδή έχουμε ένα δείγμα κάθε r = 4W δευτερόλεπτα ή ο ρυθμός δειγμάτων είναι 4W και το απαιτούμενο εύρος ζώνης είναι τουλάχιστον W. 5
26 Άσκηση 7 4 φωνητικά σήματα δειγματοληπτούνται ομοιόμορφα και κατόπιν πολυπλέκονται με διαίρεση χρόνου. Η δειγματοληψία είναι πρακτική (flat-top δείγματα με διάρκεια μsec. Η πολυπλεξία περιλαμβάνει πρόβλεψη για συγχρονισμό με έναν επιπλέον παλμό ικανού πλάτους και διάρκειας μsec. Για κάθε σήμα η υψηλότερη συχνότητα δεν ξεπερνά τα 3.4 khz. Έστω ότι δειγματοληπτούμε με συχνότητα 8 khz. Να υπολογιστεί η απόσταση μεταξύ δυο διαδοχικών παλμών του πεπλεγμένου σήματος. Αν η δειγματοληψία γίνεται στο ρυθμό Nyquist, ποιά θα είναι η απόσταση? Η περίοδος δειγματοληψίας είναι T s = 8000Hz = 5 και η διάρκεια κάθε παλμού είναι T = μsec. Στο πεπλεγμένο σήμα τώρα, σε μια περίοδο διάρκειας T s θα έχουμε 4 παλμούς το πλάτος των οποίων θα αντιστοιχεί σε δειγματοληπτημένες τιμές των φωνητικών σημάτων (παλμοί δεδομένων, και έναν παλμό συγχρονισμού με κάθε παλμό (είτε είναι δεδομένων ή συγχρονισμού να έχει διάρκεια μsec. Έτσι, από τα 5 μsec της περιόδου T s τα 5 μsec διατίθενται σε παλμούς (4 παλμοί δεδομένων, συγχρονισμού και τα υπόλοιπα 00 μsec αποτελούν διαστήματα χωρίς σήμα. Τα διαστήματα αυτά παρατηρούνται μετά από κάθε παλμό και έτσι κάθε ένα έχει διάρκεια T d = T s N T p N = μsec = 4 μsec όπου T p = μsec η χρονική διάρκεια ενός παλμού και N = 5 το πλήθος όλων των παλμών σε μια περίοδο. Αν η δειγματοληψία γίνεται στο ρυθμό Nyquist, δηλαδή f s = 6800Hz και T s = 47 μsec τότε ο παραπάνω τύπος δίνει T d = 4.88 μsec 6
27 5 Μετάδοση Βασικής Ζώνης Άσκηση 8 Σχεδιάστε ένα δυαδικό σύστημα PAM βασικής ζώνης για τη μετάδοση δεδομένων με ρυθμό r b = 3600 bits/sec. Η απόκριση του καναλιού δίνεται από τη σχέση 0 για f < 400 H c (f = 0 αλλού Στο κανάλι υπεισέρχεται λευκός προσθετικός θόρυβος ο οποίος ακολουθεί την κατανομή Gauss. Από τη σχέση που δίνει την απόκριση του καναλιού διαπιστώνουμε πως το διαθέσιμο εύρος ζώνης είναι W = 400 Hz Θα χρησιμοποιήσουμε τον παλμό ανυψωμένου συνημιτόνου (raised cosine για να σχεδιάσουμε τα φίλτρα πομπού και δέκτη. Το φάσμα του παλμού αυτού δίνεται από τη σχέση B T f < f [ ] X rc (f = 4B T ( + cos π( f f B T f f f B T f 0 f > B T f όπου B T = r b είναι το ελάχιστο απαιτούμενο εύρος ζώνης για τη μετάδοση ενός σήματος με ρυθμό δεδομένων r b, (B T f είναι το χρησιμοποιούμενο εύρος ζώνης από τον παλμό raised cosine και (B T f είναι το πλεονάζον εύρος ζώνης. Στην περίπτωσή μας, για να χρησιμοποιήσουμε όλο το διαθέσιμο εύρος ζώνης W, θέτουμε B T f = W f = 00 Hz και έτσι το φάσμα του παλμού που θα χρησιμοποιήσουμε στο σχεδιασμό του συστήματός μας θα είναι 3600 f < 00Hz ( ] X rc (f = + cos 00 f [ π( f f > 400 και ο συντελεστής αναδίπλωσης (roll-off factor που εκφράζει το ποσοστό του ελάχιστου εύρους ζώνης B T που αποτελεί το πλεονάζον εύρος ζώνης θα είναι ρ = B T f B T = 3 Έτσι, για τα φίλτρα πομπού και δέκτη θα έχουμε G r (f = G t (f = X rc(f / H c (f / = 0 X rc(f / για να ικανοποιείται η σχέση G t (f H c (f G r (f = X rc (f 7
28 Άσκηση 9 Καθορίστε τα βέλτιστα φίλτρα πομπού και δέκτη για ένα δυαδικό τηλεπικοινωνιακό σύστημα που μεταδίδει δεδομένα με ρυθμό r b = 4800 bits/sec σε ένα κανάλι με απόκριση συχνοτήτων C(f = + ( f W, f W όπου W = 4800 Hz. Ο προσθετικός θόρυβος που εισάγει το κανάλι είναι λευκός, γκαουσιανός και έχει μηδενική μέση τιμή. Το ελάχιστο απαιτούμενο εύρος ζώνης για τη μετάδοση των δεδομένων υπολογίζεται ως B T = r b = 400 Hz Εφόσον το διαθέσιμο εύρος ζώνης του καναλιού W = 4800 Hz είναι μεγαλύτερο, μπορούμε να χρησιμοποιήσουμε παλμό μορφοποίησης ανυψωμένου συνημιτόνου. Ο συντελεστής αναδίπλωσής του υπολογίζεται ως: B T ( + p = W p = Όπως είδαμε στην άσκηση 8, το φάσμα του παλμού ανυψωμένου συνημιτόνου αποτελείται από τρία τμήματα που ορίζονται με τη βοήθεια των τιμών B T και f. Στην περίπτωσή μας, η f θα έχει την τιμή: f = B T ( p = 0 άρα για p = εξαφανίζεται το επίπεδο τμήμα της απόκρισης συχνότητας και αυτή απλοποιείται ως: ( cos π f 4800 f < 4800 X rc (f = 0 αλλού Το πλάτος της απόκρισης συχνότητας των φίλτρων πομπού και δέκτη θα πρέπει να ακολουθεί τη σχέση: G t (f = G r (f = X rc(f / C(f / { ( = = 9600 { + + cos π f 4800 ( f 4800 } /4 } / ( + cos π f ( / ( /4 f +, f 4800 Για να απλοποιήσουμε περαιτέρω τη σχέση, μπορούμε να χρησιμοποιήσουμε την ταυτότητα cos θ = cos θ οπότε οπότε τελικά έχουμε ( + cos π f ( = cos π f / = cos π f G r (f = G t (f = ( /4 f ( + cos π f, f
29 Άσκηση 0 Τηλεοπτικό σήμα με εύρος ζώνης 0 MHz οδηγείται σε κύκλωμα δειγματοληψίας που λειτουργεί με ρυθμό ίσο με. φορές το ρυθμό Nyquist. Τα δείγματα που προκύπτουν από τη δειγματοληψία (υποθέτουμε πως είναι στατιστικά ανεξάρτητα κβαντίζονται με τη χρήση ενός κβαντιστή 8 bits. Η δυαδική ακολουθία που προκύπτει, μεταδίδεται δια μέσου ιδανικού χαμηλοπερατού διαύλου με εύρος ζώνης 30 MHz και προσθετικό λευκό θόρυβο με κατανομή Gauss και ισχύ τέτοια ώστε να είναι SNR = 0 db. Είναι δυνατή η χωρίς σφάλματα μετάδοση της δυαδικής ακολουθίας μέσα από το συγκεκριμένο δίαυλο? Σύμφωνα με τα δεδομένα της άσκησης, ο ρυθμός δειγματοληψίας είναι f s = (. 0MHz = 4MHz δηλαδή έχουμε δείγματα ανά δευερόλεπτο. Κάθε δείγμα απαιτεί στη συνέχεια 8 bits για αποθήκευση, και έτσι ο ρυθμός δυαδικών ψηφίων θα είναι r b = bits/sec = bits/sec Ας υπολογίσουμε τώρα τη χωρητικότητα του διαύλου που εξετάζουμε. Σύμφωνα με το νόμο Shannon-Hartley η χωρητικότητα του καναλιού μετάδοσης θα είναι: ( C = B T log + S bits/sec N όπου = 30 MHz και S N = 0dB 0 log S 0 N = 0 S N = 00 Έτσι η χωρητικότητα ή ο μέγιστος δυνατός ρυθμός πληροφορίας από το δοσμένο κανάλι για χωρίς σφάλματα μετάδοση θα είναι C = log ( bits/sec Παρατηρούμε πως C > r b και άρα η μετάδοση διαμέσου του συγκεκριμένου διαύλου είναι δυνατή. 9
30 Άσκηση Δύο σήματα με πεπερασμένα εύρη ζώνης 0 khz και 30 khz αντίστοιχα, δειγματοληπτούνται και πολυπλέκονται χρονικά. Η δειγματοληψία γίνεται κατά τρόπο που για το κάθε σήμα χωριστά να ικανοποιείται το κριτήριο του Nyquist. Τα προκύπτοντα δείγματα κβαντίζονται από έναν ομοιόμορφο κβαντιστή 56 επιπέδων και στη συνέχεια κωδικοποιούνται δυαδικά. Η δυαδική πηγή πληροφορίας μετασχηματίζεται σε Μιαδική (M-ary με M=6. Οι παλμοί των συμβόλων της Μιαδικής πηγής μορφοποιούνται με χρήση συνάρτησης τύπου raised cosine και μεταδίδονται στη βασική ζώνη μέσω ενός καναλιού με εύρος ζώνης Β=0 khz. Ζητούνται τα εξής (α Να υπολογιστεί το ελάχιστο απαιτούμενο εύρος ζώνης (B min. Είναι το διαθέσιμο εύρος ζώνης αρκετό ώστε να γίνει σωστά η μετάδοση? (β Έστω B min < 0 khz. Πως μπορεί να αξιοποιηθεί το πλεονάζον ευρος ζώνης? (Σημείωση: Η προφανής απάντηση για μετάδoση άλλης πηγής δεν θα ληφθεί υπόψη (γ Έστω B min > 0 khz. Ποιο βασικό πρόβλημα θα προκύψει? Σε ποιο σημείο του όλου συστήματος θα επεμβαίνατε ώστε να πετύχετε τελικά σωστή μετάδοση? Και τα δύο σήματα δειγματοληπτούνται στους αντίστοιχους Nyquist ρυθμούς τους. Στη συνέχεια κβαντίζονται με τη χρήση ενός κβαντιστή των 8 bits. Έτσι, υπολογίζουμε τους αντίστοιχους ρυθμούς bits/sec. W = 0kHz F s = 40kHz(δείγματα/sec r b = 30000bits/sec W = 30kHz F s = 60kHz(δείγματα/sec r b = bits/sec Οι δυαδικές ακολουθίες στη συνέχεια μετασχηματίζονται σε ακολουθίες 6-αδικών συμβόλων, άρα έχουμε 4 bits/σύμβολο και προκύπτουν οι ακόλουθοι ρυθμοί συμβόλων: r s = r b 4 = 80000symbols/sec, T s = 80 msec r s = r b 4 = 0000symbols/sec, T s = 0 msec Οι δύο πηγές πολυπλέκονται χρονικά. H μεγαλύτερη περίοδος είναι η T s. Επειδή όμως η T s δεν είναι ακέραιο πολλαπλάσιο της T s, που σημαίνει ότι σε διάρκεια T s δεν παράγεται ακέραιος αριθμός συμβόλων από τη δεύτερη πηγή, κάνουμε το εξής: Βρίσκουμε το ελάχιστο κοινό πολλαπλάσιο των T s και T s, έστω T s, και επιλέγουμε αυτό ως διάρκεια ενός πλαισίου. Στην περίπτωσή μας το ελάχιστο κοινό πολλαπλάσιο είναι το T s = 40 = 80 = 3 0 msec πράγμα που σημαίνει ότι σε μια περίοδο T s του πεπλεγμένου σήματος θα έχουμε δείγματα από την πρώτη πηγή και 3 δείγματα από τη δεύτερη πηγή, δηλαδή συνολικά 5 δείγματα σε χρόνο T s ή ένα δείγμα σε χρόνο r = T s 5 = msec 00 Έτσι, στο πεπλεγμένο σήμα έχουμε τελικά ρυθμό r s = r = 00 khz = σύμβολα/sec και για τη μετάδοση του σήματος αυτού απαιτείται εύρος ζώνης τουλάχιστον B min = r s = 00 khz και έτσι διαπιστώνουμε πως το διαθέσιμο εύρος ζώνης είναι αρκετό. 30
31 6 Μετάδοση Ευρείας Ζώνης Άσκηση Δυαδικά δεδομένα μεταδίδονται μέσω μικροκυματικής ζεύξης με ρυθμό r b = 0 6 bits/sec. Η πυκνότητα φάσματος ισχύος στην είσοδο του δέκτη είναι 0 0 Watt/Hz. Να βρεθεί η μέση ισχύς του φέροντος που απαιτείται για να διατηρηθεί μια μέση πιθανότητα σφάλματος P e 0 4 για ομόδυνη δυαδική FSK και για ομόδυνη δυαδική PSK. Στην ομόδυνη δυαδική FSK ο τύπος που δίνει την πιθανότητα εσφαλμένης μετάδοσης ενός bit είναι: ( P e = erfc Eb N 0 οπότε έχουμε διαδοχικά erfc erf erf ( Eb N 0 ( Eb N 0 ( Eb N 0 P e και προσεγγιστικά και χρησιμοποιώντας την εξίσωση Eb N 0.6 E b N λαμβάνουμε επομένως η ελάχιστη μέση ισχύς είναι N 0 = 0 0 N 0 = 0 0 E b N = E b,min = P F SK b,min = E b,min T b = E b,min r b = Watt/sec Ακριβώς τους ίδιους υπολογισμούς θα κάνουμε στη συνέχεια και για την περίπτωση της ομόδυνης δυαδικής PSK. Στην περίπτωση αυτή η πιθανότητα εσφαλμένης μετάδοσης ενός bit δίνεται από τον τύπο: ( P e = erfc Eb N 0 οπότε καταλήγουμε πως και E b Watt P P SK b,min = E b,min T b = E b,min r b = Watt/Hz = P F SK b,min 3
32 Άσκηση 3 Τηλεπικοινωνιακό σύστημα μεταδίδει δυαδικά δεδομένα με ρυθμό bits/sec. Κατά τη διάρκεια της μετάδοσης, λευκός θόρυβος Gauss, μηδενικής μέσης τιμής και πυκνότητας φάσματος ισχύος 0 0 Watt/Hz προστίθεται στο σήμα. Απουσία θορύβου, το πλάτος της λαμβανόμενης ημιτονικής κυματομορφής για το ψηφίο ή 0 είναι μv. Βρείτε τη μέση πιθανότητα σφάλματος για ομόδυνη δυαδική FSK και PSK σηματοδοσία. Στην ομόδυνη δυαδική FSK διαμόρφωση γνωρίζουμε πως το πλάτος του παλμού των συμβόλων είναι Eb A = Έτσι θα είναι Ακόμα θα έχουμε οπότε τελικά Eb T b T b = 0 6 E b r b = 0 6 E F SK b N 0 = 0 0 N 0 = 0 0 Watt ( Pe F SK = erfc Eb N 0 = erfc ( = erfc( 5 = erf( 5 = 0 9 Watt Στην ομόδυνη δυαδική PSK το πλάτος των παλμών είναι ίσο με αυτό των παλμών της FSK διαμόρφωσης. Έτσι θα είναι Eb P SK = Eb F SK = 0 9 Watt Ο τύπος όμως που δίνει την πιθανότητα σφάλματος είναι διαφορετικός, και πιο συγκεκριμένα έχουμε: ( Pe P SK = erfc Eb N 0 ( = 0 erfc = erfc( 0 = erf( η οποία είναι πολύ μικρότερη. 3
33 Άσκηση 4 Η εκπεμπόμενη κυματομορφή σε ένα σύστημα ομόδυνης δυαδικής PSK σηματοδοσίας ορίζεται ως: S(t = A c k sin(πf c t ± A c k cos(πf c t, 0 t T b όπου το θετικό πρόσημο αντιστοιχεί στο σύμβολο και το αρνητικό στο σύμβολο 0. Ο πρώτος όρος αντιπροσωπεύει μια συνιστώσα φέροντος που χρησιμοποιείται για συγχρονισμό του δέκτη με τον πομπό. Σε αυτό το σύστημα, παρουσία προσθετικού λευκού θορύβου Gauss μηδενικής μέσης τιμής και πυκνότητας φάσματος ισχύος N 0 /, η μέση πιθανότητα σφάλματος είναι ( P e = erfc Eb ( k N όπου E b = 0 A ct b (α Υποθέστε ότι το 0% της ισχύος του μεταδιδόμενου σήματος διατείθεται στη συνιστώσα συγχρονισμού. Βρείτε το λόγο E b /N 0 που απαιτείται για την επίτευξη πιθανότητας σφάλματος ίσης με 0 4. (β Συγκρίνετε αυτή την τιμή E b /N 0 με αυτή που απαιτείται για ένα συμβατικό PSK σύστημα με την ίδια πιθανότητα σφάλματος. (α Είναι γνωστό πως η ισχύς μιας ημιτονικής κυματομορφής πλάτους είναι ίση με /. Άρα, η ισχύς του μεταδιδόμενου σήματος S(t θα είναι ( (A c k Ac k P s = + }{{ }}{{ } συγχρονισμός σήμα = A ck + A c( k Η εκφώνηση της άσκησης μας δίνει την πληροφορία πως η ισχύς της συνιστώσας συγχρονισμού είναι το 0% της συνολικής ισχύος, δηλαδή A ck = A c 0 k = 0 k = 0. = A c Για να πετύχουμε τώρα πιθανότητα λάθους ίση με 0 4, θα έχουμε διαδοχικά και προσεγγιστικά ( erfc Eb ( erfc erf erf ( N 0 ( k ( 0.9 E b N E b N E b N 0 P e = 0 4 = 0 4 = 0 4 = 0 4 = Eb N 0.6 E b N (β Σε ένα συμβατικό PSK σύστημα, για την επίτευξη ίδιας πιθανότητας σφάλματος προκύπτει E b N 0 = 6.76 όπως είδαμε στην άσκηση. Συμπεραίνουμε δηλαδή πως όταν χρησιμοποιούμε και συνιστώσα συγχρονισμού απαιτείται μεγαλύτερη ισχύς για να πετύχουμε την ίδια πιθανότητα σφάλματος. 33
34 7 Σημειώματα Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση.00. Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Πατρών, Κώστας Μπερμπερίδης, 05. «Ψηφιακές Τηλεπικοινωνίες. Ασκήσεις Αυτοαξιολόγησης». Έκδοση:.0. Πάτρα 05. Διαθέσιμο από τη δικτυακή διεύθυνση: https: //eclass.upatras.gr/courses/ceid0/. Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει μαζί με τους συνοδευόμενους υπερσυνδέσμους. 34
35 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο και από εθνικούς πόρους. 35
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 11: Ψηφιακή Διαμόρφωση Μέρος Α Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή διαμόρφωσης παλμών κατά
Διαβάστε περισσότεραΨηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 3: Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μέρος Α 3 Διαμόρφωση βασικής ζώνης (1) H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές
Διαβάστε περισσότεραΕπεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Ψηφιακή Μετάδοση Αναλογικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Μετάδοση Αναλογικών Σημάτων Τα σύγχρονα συστήματα
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 9: Παλμοκωδική Διαμόρφωση (PCM) Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της μεθόδου παλμοκωδικής
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 3: Σύγκριση ψηφιακών Συστημάτων Σαγκριώτης Εμμανουήλ Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σκοποί ενότητας 1. Ανάδειξη τεχνικών για τη σύγκριση των
Διαβάστε περισσότεραΕισαγωγή στη Δικτύωση Υπολογιστών
Εισαγωγή στη Δικτύωση Υπολογιστών Ενότητα 2: Το Φυσικό Επίπεδο Δημήτριος Τσώλης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Στόχοι Μαθήματος
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 10: Ψηφιακή Μετάδοση Βασικής Ζώνης Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση των πινάκων αναζήτησης
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 4: Μετατροπή Αναλογικών Σημάτων σε Ψηφιακά Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Δειγματοληψία: Ιδανική
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 8: Δειγματοληψία - Διαμόρφωση παλμών Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της διαδικασίας
Διαβάστε περισσότεραΕπεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Βέλτιστα γραμμικά χρονικά αναλλοίωτα συστήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Βέλτιστα γραμμικά χρονικά αναλλοίωτα συστήματα
Διαβάστε περισσότεραΑναλογικές και Ψηφιακές Επικοινωνίες
Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα : Βέλτιστος δέκτης για ψηφιακά διαμορφωμένα σήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 7: Απόδοση συστημάτων γωνίας υπό θόρυβο Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της γενικής
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 1: Χωρητικότητα Καναλιών Το θεώρημα Shannon - Hartley Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Δυαδική σηματοδοσία 2. Μορφές δυαδικής σηματοδοσίας 3.
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 6 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 1: Εισαγωγή Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Συστήματα αρίθμησης
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Συστήματα αρίθμησης Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 8 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 12: Ψηφιακή Διαμόρφωση Μέρος B Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της διαμόρφωσης παλμών
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 8: Ορθομοναδιαίοι μετασχηματισμοί Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Ορθομοναδιαίοι μετασχηματισμοί ισοδύναμη
Διαβάστε περισσότεραΕξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης
Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 4: Απόδοση συστημάτων AM υπό θόρυβο Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της γενικής μορφής
Διαβάστε περισσότεραΕισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Ψηφιακή μετάδοση στη βασική ζώνη + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 10: Παλμοκωδική Διαμόρφωση, Διαμόρφωση Δέλτα και Πολύπλεξη Διαίρεσης Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Παλμοκωδική Διαμόρφωση (PCM) Παλμοκωδική Διαμόρφωση
Διαβάστε περισσότεραΣυμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Αναλογικά Ψηφιακά Σήματα Αναλογικό Σήμα x t, t [t min, t max ], x [x min, x max ] Δειγματοληψία t n, x t x n, n = 1,, N Κβάντιση x n x(n) 3 Αλφάβητο
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΕπεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Η Έννοια της τυχαίας Διαδικασίας Η έννοια της τυχαίας διαδικασίας βασίζεται στην επέκταση
Διαβάστε περισσότεραΕισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών
Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 5: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Πλεονεκτήματα-Μειονεκτήματα ψηφιακών επικοινωνιών, Κριτήρια Αξιολόγησης
Διαβάστε περισσότεραΕνδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...
Διαβάστε περισσότεραΜεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Διαβάστε περισσότεραΥπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ
Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 10 Βάσεις Groebner ενός ιδεώδους 10.1 Τρίτο μέρος Επαναλαμβάνουμε
Διαβάστε περισσότεραΜαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 5: Διαμορφώσεις γωνίας Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της διαμόρφωσης συχνότητας και
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 12: Αρχή ελαχίστου του Pontryagin Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Διαβάστε περισσότεραΣυστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 2: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Τυχαίες Διαδικασίες: Ορισμοί, Μέσες τιμές συνόλου (Ensemble averages),
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΧρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά
Διαβάστε περισσότεραΕφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 3: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις μιας μεταβλητής Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 2
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 2 Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Παρουσιάση πλάτους
Διαβάστε περισσότεραΨηφιακή Λογική Σχεδίαση
Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν
Διαβάστε περισσότεραΚβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Διαβάστε περισσότεραΤίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές αποκατάστασης
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Διαβάστε περισσότεραΨηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 4: Ψηφιακές Διαμορφώσεις Υψηλής Φασματικής Αποδοτικότητας Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακές Διαμορφώσεις Υψηλής
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 6: Το γραμμικό τετραγωνικό πρόβλημα βέλτιστης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Διαβάστε περισσότεραΣυστήματα Πολυμέσων Ενότητα 7: Ψηφιοποίηση και ψηφιακή επεξεργασία σήματος.
Συστήματα Πολυμέσων Ενότητα 7: Ψηφιοποίηση και ψηφιακή επεξεργασία σήματος. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΘερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Διαβάστε περισσότεραΘεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 2: Θεωρία Απόφασης του Bayes Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Θεωρία
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Μάθημα ασκήσεων 2: Ηλεκτρικά χαρακτηριστικά γραμμών μεταφοράς Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Δούκας
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους Φροντιστήριο 1
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΜαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων
Διαβάστε περισσότεραΚβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 4: Εισαγωγή στο Γραμμικό Προγραμματισμό (4 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση
Ψηφιακές Τηλεπικοινωνίες Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση Σύνδεση με τα Προηγούμενα Σχεδιάστηκε ο βέλτιστος δέκτης για κανάλι AWGN Επειδή πάντοτε υπάρχει ο θόρυβος, ακόμη κι ο βέλτιστος δέκτης
Διαβάστε περισσότεραΑρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #12: Δειγματοληψία, κβαντοποίηση και κωδικοποίηση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε.
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 9: Αρχή της Βελτιστοποίησης-Θεωρία Hamilton Jacobi Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Διαβάστε περισσότεραΝέες Τεχνολογίες και Καλλιτεχνική Δημιουργία
Παιδαγωγικό Τμήμα Νηπιαγωγών Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία Ενότητα # 9: Ψηφιακός Ήχος - Audacity Θαρρενός Μπράτιτσης Παιδαγωγικό Τμήμα Νηπιαγωγών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΑνοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Διαβάστε περισσότεραΦυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του
Διαβάστε περισσότεραΟρισμός κανονικής τ.μ.
Πιθανότητες και Στατιστική Ενότητα 4: Τυχαίες τυχαίες μεταβλητές Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Ορισμός κανονικής τ.μ. Ορισμός κανονικής τ.μ. Μια συνεχής τ.μ.
Διαβάστε περισσότεραΔιοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διαβάστε περισσότεραΕθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΚΒΑΝΤΙΣΗ Διαδικασία με την
Διαβάστε περισσότεραΨηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 2: Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εισαγωγή (1) Οι Ψηφιακές Επικοινωνίες (Digital Communications) καλύπτουν σήμερα το
Διαβάστε περισσότεραΣτοχαστικά Σήματα και Τηλεπικοινωνιές
Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 9: Συγχρονισμός Συμβόλων Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Στην ενότητα αυτή παρουσιάζεται
Διαβάστε περισσότεραΜάθημα: Εργαστηριακά Συστήματα Τηλεπικοινωνιών
Μάθημα: Εργαστηριακά Συστήματα Τηλεπικοινωνιών Ενότητα 1: Εργαστηριακά Συστήματα Τηλεπικοινωνιών Διδάσκων: Βανδίκας Ιωάννης Ε.ΔΙ.Π. Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΜικροκύματα. Ενότητα 4: Προσαρμογή. Σταύρος Κουλουρίδης Πολυτεχνική Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Μικροκύματα Ενότητα 4: Προσαρμογή Σταύρος Κουλουρίδης Πολυτεχνική Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Αρχές σχεδίασης προσαρμοσμένων (χωρίς ανακλάσεις) δικτύων με τη βοήθεια
Διαβάστε περισσότεραΠαλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
Διαβάστε περισσότεραΕισαγωγή στη Δικτύωση Υπολογιστών
Εισαγωγή στη Δικτύωση Υπολογιστών Ενότητα 3: Το Επίπεδο Συνδέσμου Δεδομένων Δημήτριος Τσώλης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών
Διαβάστε περισσότεραΜαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
Διαβάστε περισσότεραΕφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 1: Το πρόβλημα της βελτιστοποίησης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Διαβάστε περισσότεραΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΑΝΑΛΟΓΙΚΑ - ΨΗΦΙΑΚΑ ΣΗΜΑΤΑ & ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Πληροφορία Επικοινωνία συντελείται με τη μεταβίβαση μηνυμάτων από ένα πομπό σε ένα δέκτη. Μήνυμα
Διαβάστε περισσότεραΜεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές
Διαβάστε περισσότεραΛογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΣτοχαστικά Σήματα και Τηλεπικοινωνιές
Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 4: Βέλτιστα Φίλτρα Wiener Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση βασικών εννοιών των
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 8: Το γραμμικό τετραγωνικό πρόβλημα ρύθμισης (LQ) για συστήματα διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και
Διαβάστε περισσότεραΤμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. L d D F
Ηλεκτρονικά Ισχύος Ι 3 η Θεματική Ενότητα: Μετατροπείς Εναλλασσόμενης Τάσης σε Συνεχή Τάση Δρ. Μηχ. Εμμανουήλ Τατάκης, Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ασκήσεις Προς Επίλυση
Διαβάστε περισσότεραΘεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 10: Προσέγγιση μειωμένου φορτίου
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 0: Προσέγγιση μειωμένου φορτίου Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο: Εκδόσεις : Παπασωτηρίου
Διαβάστε περισσότεραΕισαγωγή στην Πληροφορική
Εισαγωγή στην Πληροφορική Αριθμητικά Συστήματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς Βασικές Έννοιες Ένα Αριθμητικό Σύστημα αποτελείται από ένα
Διαβάστε περισσότεραΗλεκτρονική. Ενότητα 7: Βασικές τοπολογίες ενισχυτών μιας βαθμίδας με διπολικά τρανζίστορ. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Ηλεκτρονική Ενότητα 7: Βασικές τοπολογίες ενισχυτών μιας βαθμίδας με διπολικά τρανζίστορ Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα ενότητας Ενισχυτής κοινού εκπομπού, ενισχυτής
Διαβάστε περισσότεραΑνοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
Διαβάστε περισσότεραΑσκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών»
Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Άσκηση 1 Πρόκειται να µεταδώσουµε δυαδικά δεδοµένα σε RF κανάλι µε. Αν ο θόρυβος του καναλιού είναι Gaussian - λευκός µε φασµατική πυκνότητα W, να βρεθεί
Διαβάστε περισσότεραΛογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΕφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 5: Εφαρμογές Βελτιστοποίησης Βελτιστοποίηση της Απόδοσης Βιομηχανικών Διαδικασιών Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΤι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα
Τι είναι σήμα; Σεραφείμ Καραμπογιάς Ως σήμα ορίζεται ένα φυσικό μέγεθος το οποίο μεταβάλλεται σε σχέση με το χρόνο ή το χώρο ή με οποιαδήποτε άλλη ανεξάρτητη μεταβλητή ή μεταβλητές. Παραδείγματα: Σήμα
Διαβάστε περισσότεραΓενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας
Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις στην Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας... 4 1.1
Διαβάστε περισσότεραΈλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας 5.7. ΔΕΙΓΜΑΤΟΛΗΨΙΑ (1) 5.7.1. Το Εργαστήριο πρέπει να διαθέτει σχέδιο και διαδικασία δειγματοληψίας,
Διαβάστε περισσότεραΑνοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 11: Στοχαστικός βέλτιστος έλεγχος γραμμικών συστημάτων με χρήση τετραγωνικών κριτηρίων (LQG Problem) Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων
Διαβάστε περισσότερα