1 Additional lemmas. Supplementary Material APPENDIX. that N 1 N } E } E { N } E + O(N 3 ), Proof. The results follow by straightforward calculation.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 Additional lemmas. Supplementary Material APPENDIX. that N 1 N } E } E { N } E + O(N 3 ), Proof. The results follow by straightforward calculation."

Transcript

1 1 Additional lemmas Supplementay Mateial APPENDIX Lemma A1. Let (T 1,1, T 2,1, T 3,1, T 4,1 ),..., (T 1,N, T 2,N, T 3,N, T 4,N ) be independent andom vectos of length 4 such that E(T,i ) = 0 (i = 1,..., N, = 1, 2, 3, 4). Assume that N 1 N i=1 E(T,i) 2 = O(1) fo = 1, 2, 3, 4. Then E Ẽ(T1 )Ẽ(T N 2) = N 2 E(T 1,i T 2,i ), i=1 E Ẽ(T1 )Ẽ(T2)Ẽ(T N 3) = N 3 E(T 1,i T 2,i T 3,i ), i=1 E Ẽ(T1 )Ẽ(T2)Ẽ(T3)Ẽ(T 4) = N 4 κ N i=1 E(T κ1,it κ2,i) N =1 E(T κ3,t κ4,) + O(N 3 ), whee κ = (κ 1, κ 2, κ 3, κ 4 ) and κ is taken ove κ = (1, 2, 3, 4), (1, 3, 2, 4), (1, 4, 2, 3). Poof. The esults follow by staightfowad calculation. Lemma A2. Let τ 1, τ 2, τ 3, τ 4 be vaiables taking values τ 1,i, τ 2,i, τ 3,i, τ 4,i (i = 1,..., N) on the finite population. Define T,i = (p 1 i R i 1)τ,i and T,i O = (p 1 i R i 1)τ,i O fo = 1, 2, 3, 4. Assume that (10) holds, lim inf N Ẽp(1 p) > 0, and Ẽ(τ 2 ) = O(1) fo = 1, 2, 3, 4. Then the following esults hold. (i) E Re Ẽ(T1 )Ẽ(T O 2) = E P ois Ẽ(T )Ẽ(T O 1 2 ) + o(n 1 ). (ii) Ẽ(T1 )Ẽ(T 2), Ẽ(T 3 )Ẽ(T O 4) = cov P ois Ẽ(T )Ẽ(T O 1 2 ), Ẽ(T3 O )Ẽ(T 4 O ) + o(n 2 ). (iii) Ẽ(T1 ), Ẽ(T 2 )Ẽ(T O 3) = cov P ois Ẽ(T 1 ), Ẽ(T2 O )Ẽ(T 3 O ) + σ 1 Ẽp(1 p)τ1 O O E P ois Ẽ(T )Ẽ(T O 2 3 ) + o(n 2 ). (iv) Ẽ(T1 ), Ẽ(T 2 )Ẽ(T3)Ẽ(T O 4) = cov P ois Ẽ(T 1 ), Ẽ(T2 O )Ẽ(T 3 O )Ẽ(T 4 O ) + o(n 2 ). Thoughout, E Re and ae computed unde eective sampling and E P ois and cov P ois ae computed unde Poisson sampling. 1

2 Poof. We show esult (iii) in detail. The othe esults can be shown similaly. By simple manipulation, [Ẽ(p 1 R 1)τ 1, Ẽ(p 1 R 1)τ 2 Ẽ(p 1 R 1)τ 3, = 1 E N 3 Re (R i π i )(R p )(R k p k ) p 1 i τ 1,i p 1 τ 2, p 1 k i,,k τ 3,k. By Haek (1981, Chapte 14), conside the egession pedicto ˆπ i p i )σ 1 (K n), whee K = N i=1 R i and n = N i=1 p i. Then = p i p i (1 E Re (Ri π i ) 2 = E P ois (Ri ˆπ i ) 2 + o(σ 1 ), E Re (R i π i )(R π ) = E P ois (R i ˆπ i )(R ˆπ ) + o(σ 1 ) (i ), whee σ o(σ 1 ) 0 as σ unifomly in i,. Futhemoe, conside the quadatic egession pedicto ˆπ iq = p i p i (1 p i )σ 1 (K n) p i (1 p i )( p p i )σ 1, whee p is defined as befoe in (18). Then E Re (Ri π i ) 3 = E P ois (Ri ˆπ iq ) 3 + o(σ 1 ) E Re (Ri π i ) 2 (R π ) = E P ois (Ri ˆπ iq ) 2 (R ˆπ Q ) + o(σ 1 ) (i ), E Re (R i π i )(R π )(R k π k ) = E P ois (R i ˆπ iq )(R ˆπ Q )(R k ˆπ kq ) + o(σ 2 ) (i k), whee σ o(σ 1 ) 0 and σ 2 o(σ 2 ) 0 as σ unifomly in i,, k. By using these elations and (18) and appoximating R p R ˆπ = (R ˆπ Q ) + (ˆπ Q ˆπ ), we find that [Ẽ(p 1 R 1)τ 1, Ẽ(p 1 R 1)τ 2 Ẽ(p 1 R 1)τ 3, ( 1 = 1 + o(1) N 3 i,,k [ 1 1 (1 p i )( p p i )τ 1,i Nσ N 2 i E P ois (R i ˆπ i )(R ˆπ )(R k ˆπ k ) p 1 i,k = (R π ) + (π p ) by τ 1,i p 1 τ 2, p 1 k τ 3,k E P ois (R ˆπ )(R k ˆπ k ) p 1 τ 2, p 1 k τ 3,k The esult follows because N 1 (R i ˆπ i )p 1 i τ 1,i = Ẽ(p 1 R 1)τ1 O, etc. The tem Ẽ(1 p)( p p)τ 1 equals Ẽ(1 p)( p p)τ O 1 because Ẽ(1 p)( p p)p = 0 and hence equals Ẽp(1 p)τ O 1 because Ẽ(1 p)τ O 1 = 0. ). 2

3 Lemma A3. In the setup of Lemma A2, define S,i = (π 1 i R i 1)τ,i fo = 1, 2, 3, 4. Unde the assumptions in Lemma A1, the following esults hold. (i) E Re Ẽ(S1 )Ẽ(S O 2) = E P ois Ẽ(T )Ẽ(T O 1 2 ) + o(n 1 ). (ii) Ẽ(S1 )Ẽ(S 2), Ẽ(S 3 )Ẽ(S O 4) = cov P ois Ẽ(T )Ẽ(T O 1 2 ), Ẽ(T3 O )Ẽ(T 4 O ) + o(n 2 ). (iii) Ẽ(S1 ), Ẽ(S 2 )Ẽ(S O 3) = cov P ois Ẽ(T 1 ), Ẽ(T2 O )Ẽ(T 3 O ) + σ 1 Ẽp(1 p)τ1 O O E P ois Ẽ(T )Ẽ(T O 2 3 ) + σ 1 Ẽp(1 p)τ2 O O E P ois Ẽ(T )Ẽ(T O 1 3 ) + σ 1 Ẽp(1 p)τ3 O O E P ois Ẽ(T )Ẽ(T O 1 2 ) + o(n 2 ). (iv) Ẽ(S1 ), Ẽ(S 2 )Ẽ(S3)Ẽ(S O 4) = cov P ois Ẽ(T 1 ), Ẽ(T2 O )Ẽ(T 3 O )Ẽ(T 4 O ) + o(n 2 ). Poof. We show esult (iii) in detail. By simple manipulation, [Ẽ(π 1 R 1)τ 1, Ẽ(π 1 R 1)τ 2 Ẽ(π 1 R 1)τ 3, = 1 E N 3 Re (R i π i )(R π )(R k π k ) π 1 i τ 1,i π 1 τ 2, π 1 k τ 3,k i,,k = 1 N 3 i,,k E Re (R i π i )(R p )(R k p k ) p 1 i i,,k τ 1,i p 1 τ 2, p 1 k τ 3,k + 1 E N 3 Re (R i π i )(p π )(R k p k ) p 1 i τ 1,i p 1 τ 2, p E N 3 Re (R i π i )(R π )(p k π k ) p 1 i i,,k τ 1,i p 1 k τ 3,k τ 2, p 1 k τ 3,k + o(n 2 ). Result (ii) follows by simila calculations to those fo Lemma A2 using the appoximation of p i π i by ˆπ i ˆπ iq. 2 Poofs Poof of Poposition 1. (i) Diect calculation shows that ˆα eg = g 1 + g 2 (ˆα eg ) Ẽ(eξT ) Ẽ 1 (ξξ T ) V 1 Ẽ(ξ). 3

4 Expansion (4) holds because Ẽ 1 (ξξ T ) V 1 = Ẽ 1 (ξξ T )Ẽ(ξξT ) V V 1 = V 1 Ẽ(ξξT ) V V 1 + o p (N 1/2 ) by the assumption E( ξ 4 ) <. the expansion of ˆα egc holds because Similaly, ˆα egc = g 1 + g 2 (ˆα egc ) + Ẽ(e 0)Ẽ(ξT )Ẽ 1 (ξξ T )Ẽ(ξ) Ẽ(e 0ξ T ) Ẽ 1 (ξξ T ) V 1 Ẽ(ξ). (ii) By Owen (2001, Chapte 11), max i ξ i = o p (N 1/2 ) and ˆλ = O p (N 1/2 ) povided that E( ξ 2 ) <. A Taylo expansion of (3) gives [ 0 = Ẽ(ξ) )ˆλ + Ẽ(ξ Ẽ(ξξT ξξ T )ˆλ ˆλ 1 ξ ξ k ξξ T Ẽ 2 (1 + λ ˆλ ˆλk ˆλ, T ξ) 4 whee λ is on the line oining 0 and ˆλ. By the Cauchy-Schwatz and tiangle inequalities, the diffeence between the last tem and k Ẽ(ξ ξ k ξξ T )ˆλ ˆλk ˆλ/2 is bounded in absolute value by [ 1 Ẽ ξ ξ k ξξ T max (1 + 2 λ T ξ i ) 4 1 ˆλ ˆλk ˆλ = o p (N 3/2 ) i k because max i λ T ξ i = o p (1) and E( ξ 4 ) <. By eaanging the expansion of (3) and solving fo ˆλ as in Newey and Smith (2004, Lemma A4), we find ˆλ = h 1 +h 2 (ˆλ)+ h 3 (ˆλ) + o p (N 3/2 ), whee h 1 = V 1 Ẽ(ξ) and h 2 (ˆλ) = V Ẽ(ξξT 1 ) V V 1 Ẽ(ξ) + V Ẽ(ξT 1 )V 1 E(ξ ξξ T ) V 1 Ẽ(ξ), h 3 (ˆλ) = V Ẽ(ξξT 1 ) V V Ẽ(ξξT 1 ) V V 1 Ẽ(ξ) V Ẽ(ξξT 1 ) V V Ẽ(ξT 1 )V 1 E(ξ ξξ T ) V 1 Ẽ(ξ) V [Ẽ(ξT 1 )V Ẽ(ξξT 1 ) V V 1 E(ξ ξξ T ) V 1 Ẽ(ξ) + V [Ẽ(ξT 1 )V Ẽ(ξT 1 )V 1 E(ξ ξξ T ) V 1 E(ξ ξξ T ) V 1 Ẽ(ξ) V Ẽ(ξT 1 )V 1 E(ξ ξξ T ) V Ẽ(ξξT 1 ) V V 1 Ẽ(ξ) + V Ẽ(ξT 1 )V 1 E(ξ ξξ T ) V ẼT 1 (ξ)v 1 E(ξ ξξ T ) V 1 Ẽ(ξ) + V [Ẽ(ξT 1 )V Ẽ(ξ 1 ξξt ) E(ξ ξξ T ) V 1 Ẽ(ξ) [ 1 2 V 1 E(ξ ξ k ξξ T ) V 1 Ẽ(ξ) V 1 Ẽ(ξ) V 1 Ẽ(ξ) k k Thoughout, each expession of the fom ẼT (ϕ T )UE(ψ ξξ T ), enclosed by culy backets, is defined as k Ẽ(ϕ k)u k E(ψ ξξ T ). Similaly, Ẽ T (ϕ T )UẼ(ψ ξξt ) is defined 4 k

5 as k Ẽ(ϕ k)u k Ẽ(ψ ξξ T ). Futhe, a Taylo expansion of ˆα lik gives [ ˆα lik = Ẽ(η) Ẽ(ηξT )ˆλ + ˆλ T Ẽ(ηξξ T )ˆλ 1 2 ˆλ ηξ ξξ T T Ẽ (1 + λ ˆλ T ξ) 4 ˆλ, whee λ is on the line oining 0 and ˆλ. The last tem is ˆλ T Ẽ(ηξ ξξ T )ˆλ ˆλ/2 + o p (N 3/2 ) similaly as in the expansion of (3). Wite h 2 = h 2 (ˆλ) and h 3 = h 3 (ˆλ). By substituting the expansion of ˆλ into that of ˆα lik, we find ˆα lik = Ẽ(η) E(ηξT )(h 1 + h 2 + h 3 ) Ẽ(ηξT ) E(ηξ T ) (h 1 + h 2 ) + h T 1E(ηξξ T )(h 1 + h 2 ) + h T 2E(ηξξ T )h 1 + h T 1 Ẽ(ηξξT ) E(ηξξ T ) 1 2 ht 1 E(ηξ ξξ T )(h 1 ) h 1 + O p (N 3/2 ). By eaanging the tems, we have g 2 (ˆα lik ) = E(ηξ T )h 2 Ẽ(ηξT ) E(ηξ T ) h 1 + h T 1E(ηξξ T )h 1, g 3 (ˆα lik ) = E(ηξ T )h 3 Ẽ(ηξT ) E(ηξ T ) h 2 + h T 1E(ηξξ T )h 2 + h T 2E(ηξξ T )h 1 + h T 1 Ẽ(ηξξT ) E(ηξξ T ) 1 2 ht 1 E(ηξ ξξ T )(h 1 ) h 1. Finally, by diect calculation, the g 2 tem is simplified to that in Poposition 1, and the g 3 tem is simplified to g 3 (ˆα lik ) = Ẽ(eξT )V Ẽ(ξξT 1 ) V V 1 Ẽ(ξ) Ẽ(eξT )V Ẽ(ξT 1 )V 1 E(ξ ξξ T ) V 1 Ẽ(ξ) Ẽ(ξT )V Ẽ(ξξT 1 ) V V 1 E(eξξ T )V 1 Ẽ(ξ) + Ẽ(ξT )V Ẽ(ξT 1 )V 1 E(ξ ξξ T ) V 1 E(eξξ T )V 1 Ẽ(ξ) Ẽ(ξT )V 1 E(eξξ T )V Ẽ(ξξT 1 ) V V 1 Ẽ(ξ) + Ẽ(ξT )V 1 E(eξξ T )V Ẽ(ξT 1 )V 1 E(ξ ξξ T ) V 1 Ẽ(ξ) + Ẽ(ξT )V Ẽ(eξξT 1 ) E(eξξ T ) V 1 Ẽ(ξ) 1 )V Ẽ(ξT 1 )V 1 E(eξ ξξ T ) V 1 Ẽ(ξ). 2Ẽ(ξT h 1 h 1 5

6 Poofs of Popositions 2 3. Poposition 2 follows by simple calculation. To show V(ˆα lik ), wite g 2 = g 2 (ˆα lik ), g 3 = g 3 (ˆα lik ), and the 8 tems of g 3 as g 31, g 32 and so on. By diect but tedious calculation using Lemma A1, va(g 2 ) = N 2 t(v 1 Σ eξ:eξ ) t(v 1 Σ eξξ V 1 Σ eξξ ), cov(g 1, g 21 ) = N 2 t(v 1 Σ e0 eξξ), cov(g 1, g 22 ) = N 2 t(v 1 Σ e0 ξξv 1 Σ eξξ ), cov(g 1, g 31 ) = N 2 t(v 1 Σ e0 ξξv 1 Σ eξξ ) + N 2 u, cov(g 1, g 32 ) = N 2 u, cov(g 1, g 33 ) = cov(g 1, g 35 ) = N 2 t(v 1 Σ e0 ξξv 1 Σ eξξ ), cov(g 1, g 37 ) = N 2 t(v 1 Σ e0 eξξ), up to tems of ode O(N 2 ) and cov(g 2, g 3l ) = o(n 2 ) fo l = 4, 6, 8, whee Σ eξ:eξ = E(e 2 ξξ T ), Σ eξξ = E(eξξ T ), and Σ e0 ξξ = E(e 0 ξξ T ) as defined in Popositions 2 3, Σ e0 eξξ = E(e 0 eξξ T ), and u = t E(e 0 eξ T )V 1 E(ξ ξξ T )V 1 = E(e 0 eξ T )V 1 E(ξξ T V 1 ξ). The fomula follows by substituting these expessions into the definition of V(ˆα lik ). To show V(ˆα eg,bc ), decompose the bias coection tem as (η ˆβ T ξ)ξ T Ẽ 1 (ξξ T )ξ N 1 Ẽ = N 1 Ẽ(eξ T V 1 ξ) + N Ẽ(eξT 1 V 1 ξ) E(eξ T V 1 ξ) N 1 Ẽ ( ˆβ β) T ξξ T V 1 ξ + N 1 Ẽ [eξ T Ẽ 1 (ξξ T ) V 1 ξ Substituting the fist-ode expansions fo ˆβ and Ẽ 1 (ξξ T ) above leads to thid-ode expansion (4) fo ˆα eg,bc, whee g 2 (ˆα eg,bc ) = Ẽ(eξT )V 1 Ẽ(ξ) + N 1 E(eξ T V 1 ξ), g 3 (ˆα eg,bc ) = Ẽ(eξT )V Ẽ(ξξT 1 ) V V 1 Ẽ(ξ) + N Ẽ(eξT 1 V 1 ξ) E(eξ T V 1 ξ). N 1 E(ξ T V 1 ξξ T )V 1 Ẽ(eξ) [ N 1 t V Ẽ(ξξT 1 ) V V 1 E(eξξ T ). 6

7 Wite g 2 = g 2 (ˆα eg,bc ), g 3 = g 3 (ˆα eg,bc ), and the 4 tems of g 3 as g 31, g 32 and so on. The fomula fo V(ˆα eg,bc ) follows by diect calculation: va(g 2 ) = N 2 t(v 1 Σ eξ:eξ ) + t(v 1 Σ eξξ V 1 Σ eξξ ), cov(g 1, g 2 ) = N 2 t(v 1 Σ e0 eξξ), cov(g 1, g 31 ) = N 2 t(v 1 Σ e0 ξξv 1 Σ eξξ ) + N 2 u, cov(g 1, g 32 ) = N 2 t(v 1 Σ e0 eξξ), cov(g 1, g 33 ) = N 2 u, cov(g 1, g 34 ) = N 2 t(v 1 Σ e0 ξξv 1 Σ eξξ ), up to tems of ode O(N 2 ). It is inteesting to mention that without bias coection, V(ˆα eg ) is equal to va(g 2 ) + 2cov(g 1, g 2 ) + 2cov(g 1, g 31 ). V(ˆα egc,bc ) can be poved by simila calculation. Poof of Poposition 4. Finally, the fomula fo (i) The expansion of α eg holds similaly to that of ˆα eg because α eg = g 1 +g 2 ( α eg ) Ẽ(εξT ) Ẽ 1 (ξζ T ) V 1 Ẽ(ξ) and Ẽ 1 (ξζ T ) V 1 = V 1 Ẽ(ξζ T ) V V 1 + o p (N 1/2 ). (ii) By Tan (2013), max i=1,...,n p 1 (X i ) 1X i = o p (N 1/2 ) and λ = O p (N 1/2 ). A Taylo expansion of (8) gives [ 0 = Ẽ(ξ) Ẽ(ζξT ) λ + Ẽ(ζ ξξ T ) λ λ 1 ζ ξ k ξξ T Ẽ 2 (1 + λ λ λk λ, T ξ) 4 k whee λ is on the line oining 0 and λ. The last tem is k Ẽ(ζ ξ k ξξ T )ˆλ ˆλk ˆλ/2+ o p (N 3/2 ) similaly as in the expansion of (3). By solving fo λ fom the expansion of (8), we find λ = h 1 + h 2 ( λ) + h 3 ( λ) + o p (N 3/2 ), whee h 2 ( λ) and h 3 ( λ) ae defined as h 2 (ˆλ) and h 3 (ˆλ) with ξξ T eplaced by ζξ T, ξ ξξ T by ζ ξξ T, and ξ ξ k ξξ T by ζ ξ k ξξ T thoughout. Futhe, a Taylo expansion of α lik gives α lik = Ẽ(η) Ẽ(ηξT ) λ + λ T Ẽ(ηξξ T ) λ 1 2 λ T [ ηξ ξξ T Ẽ (1 + λ λ T ξ) 4 λ, whee λ is on the line oining 0 and λ. The last tem is λ T Ẽ(ηξ ξξ T ) λ λ/2+ o p (N 3/2 ) similaly as in the expansion of (3). By substituting the expansion of λ into that of α lik and by simila calculation as in the poof of Poposition 1, we obtain 7

8 g 2 ( α lik ) as shown in Poposition 1 and g 3 ( α lik ) = Ẽ(εξT )V Ẽ(ζξT 1 ) V V 1 Ẽ(ξ) Ẽ(εξT )V Ẽ(ξT 1 )V 1 E(ζ ξξ T ) V 1 Ẽ(ξ) Ẽ(ξT )V Ẽ(ζξT 1 ) V V 1 E(εξξ T )V 1 Ẽ(ξ) + Ẽ(ξT )V Ẽ(ξT 1 )V 1 E(ζ ξξ T ) V 1 E(εξξ T )V 1 Ẽ(ξ) Ẽ(ξT )V 1 E(εξξ T )V Ẽ(ζξT 1 ) V V 1 Ẽ(ξ) + Ẽ(ξT )V 1 E(εξξ T )V Ẽ(ξT 1 )V 1 E(ζ ξξ T ) V 1 Ẽ(ξ) + Ẽ(ξT )V Ẽ(εξξT 1 ) E(εξξ T ) V 1 Ẽ(ξ) 1 )V Ẽ(ξT 1 )V 1 E(εξ ξξ T ) V 1 Ẽ(ξ). 2Ẽ(ξT Poofs of Popositions 5 6. Poposition 5 follows by simple calculation. To show V( α lik ), wite g 2 = g 2 ( α lik ), g 3 = g 3 ( α lik ), and the 8 tems of g 3 as g 31, g 32 and so on. By diect but tedious calculation using Lemma A1, va(g 2 ) = N 2 t(v 1 Σ εξ:εξ ) t(v 1 Σ εξξ V 1 Σ εξξ ), cov(g 1, g 21 ) = N 2 t(v 1 Σ e0 εξξ), cov(g 1, g 22 ) = N 2 t(v 1 Σ e0 ξξv 1 Σ εξξ ), cov(g 1, g 31 ) = N 2 t(v 1 Σ e0 ζξv 1 Σ εξξ ) + ν, cov(g 1, g 32 ) = N 2 ν, cov(g 1, g 33 ) = cov(g 1, g 35 ) = N 2 t(v 1 Σ e0 ζξv 1 Σ εξξ ), cov(g 1, g 37 ) = N 2 t(v 1 Σ e0 εξξ), up to tems of ode O(N 2 ) and cov(g 2, g 3l ) = o(n 2 ) fo l = 4, 6, 8, whee Σ εξ:εξ = E(ε 2 ξξ T ) and Σ εξξ = E(εξξ T ) as in Popositions 5 6, Σ e0 ξξ = E(e 0 ξξ T ) as in Poposition 2, Σ e0 ζξ = E(e 0 ζξ T ), Σ e0 εξξ = E(e 0 εξξ T ), and ν = t E(e 0 εξ T )V 1 E(ζ ξξ T )V 1 = E(e 0 εξ T )V 1 E(ζξ T V 1 ξ). The fomula fo V( α lik ) follows because Σ e0 ξξ = Σ e0 ζξ A. To show V( α eg,bc ), we 8

9 find that α eg,bc admits expansion (4) similaly to ˆα eg,bc, whee g 2 ( α eg,bc ) = Ẽ(εξT )V 1 Ẽ(ξ) + N 1 E(εξ T V 1 ξ), g 3 ( α eg,bc ) = Ẽ(εξT )V Ẽ(ζξT 1 ) V V 1 Ẽ(ξ) + N Ẽ(εξT 1 V 1 ξ) E(εξ T V 1 ξ) N 1 E(ξ T V 1 ξζ T )V 1 Ẽ(εξ) [ N 1 t V Ẽ(ζξT 1 ) V V 1 E(εξξ T ). Wite g 2 = g 2 ( α eg,bc ), g 3 = g 3 ( α eg,bc ), and the 4 tems of g 3 as g 31, g 32 and so on. The fomula fo V( α eg,bc ) follows by diect calculation: va(g 2 ) = N 2 t(v 1 Σ εξ:εξ ) + t(v 1 Σ εξξ V 1 Σ εξξ ), cov(g 1, g 2 ) = N 2 t(v 1 Σ e0 εξξ), cov(g 1, g 31 ) = N 2 t(v 1 Σ e0 ζξv 1 Σ eξξ ) + N 2 ν, cov(g 1, g 32 ) = N 2 t(v 1 Σ e0 εξξ), cov(g 1, g 33 ) = N 2 ν, cov(g 1, g 34 ) = N 2 t(v 1 Σ e0 ζξv 1 Σ eξξ ), up to tems of ode O(N 2 ). It is inteesting to mention that without bias coection, V( α eg ) is equal to va(g 2 ) + 2cov(g 1, g 2 ) + 2cov(g 1, g 31 ). Poof of Coollay 1. Assume that E(Y X) = β T X. Then A = 0 and Σ εξξ = 0. Theefoe, V( α eg,bc ) = V( α lik ) = N 2 t(v 1 Σ εξ:εξ ). By diect calculation, Σ εξ:εξ = E(ε 2 ξξ T ) = E (p 1 1) 2 p 1 (Y β T X) 2 XX T, Σ eξ:eξ = E(e 2 ξξ T ) = E (p 1 1) 2 (Y β T X) 2 XX T [ + E (p 1 1) (p 1 1)(Y β T X)X + (β T X)X 2, whee τ 2 = ττ T fo a column vecto τ. Then V(ˆα lik ) V( α lik ) = N 2 t[v 1 (Σ eξ:eξ Σ εξ:εξ ) Σ eξξ V 1 Σ eξξ. The matix in the culy backet equals E(β T X) 2 ξξ T E(β T X)ξξ T V 1 E(β T X)ξξ T, which is the vaiance matix of the esidual in poecting (β T X)ξ on ξ and hence nonnegative definite. Theefoe, V( α lik ) V(ˆα lik ). Poof of Poposition 7. The poof is simila to those of Popositions 1 and 4. The moment condition Ẽ( X 4 ) = O(1) is imposed fo ˆα eg and α eg to show that 9

10 Ẽ(ξξ T ) = V + O p (N 1/2 ) in g 3 (ˆα eg ) and Ẽ(ξζ T ) = V + O p (N 1/2 ) in g 3 ( α eg ) by Chebyshevs inequality. Similaly, the moment condition Ẽ( X 6 ) = O(1) is imposed fo ˆα lik and α lik to show that Ẽ(e ξξ T ) = E Ẽ(e ξξ T ) + O p (N 1/2 ) in g 3 (ˆα lik ) and Ẽ(ε ξξ T ) = E Ẽ(ε ξξ T ) + O p (N 1/2 ) in g 3 ( α lik ). Poof of Poposition 8. (i) The bias fomulas follow by simple calculation. To show V ( α lik ), wite g 2 = g 2 ( α lik ), g 3 = g 3 ( α lik ), and the 8 tems of g 3 as g 31, g 32 and so on. Let e = e Ȳ. By diect but tedious calculation using Lemma A1, va (g 2 ) = N 2 t(v 1 Ω ε ξ:ε ξ) t(v 1 Ω ε ξξv 1 cov (g 1, g 21 ) = N 2 t(v 1 Ω e ε ξξ) + N 2 t(v 1 B ), cov (g 1, g 22 ) = N 2 t(v 1 Ω e ξξv 1 Ω ε ξξ), cov (g 1, g 31 ) = N 2 t(v 1 Ω e ζξv 1 Ω εξξ) + N 2 ν, cov (g 1, g 32 ) = N 2 ν, cov (g 1, g 33 ) = cov (g 1, g 35 ) = N 2 t(v 1 cov (g 1, g 37 ) = N 2 t(v 1 Ω e ε ξξ), Ω e ζξv 1 Ω ε ξξ), Ω ε ξξ), up to tems of ode O(N 2 ) and cov (g 2, g 3l )=o(n 2 ) fo l = 4, 6, 8. Hee Ω ε ξ:ε ξ= Nva Ẽ(ε ξ) and Ω ε ξξ = E Ẽ(ε ξξ T ) as in Poposition 8, Ω e ζξ = E Ẽ(e ζξ T ) = Ω εξξ, Ω e ξξ = E Ẽ(e ξξ T ) = Ω εξξ A, Ω e εξξ = E Ẽ(e ε ξξ T ) = Ω εξ:εξ, and [ ν = t E Ẽ(e ε ξ T ) V 1 E Ẽ(ζ ξξt ) V 1 = E Ẽ(e ε ξ T ) V 1 E Ẽ(ζξT V 1 ξ). To show V (ˆα lik ), wite g 2 = g 2 (ˆα lik ), g 3 = g 3 (ˆα lik ), and the 8 tems of g 3 as g 31, g 32 and so on. By diect but tedious calculation using Lemma A1, va (g 2 ) = N 2 t(v 1 Ω e ξ:e ξ) t(v 1 Ω e ξξv 1 cov (g 1, g 21 ) = N 2 t(v 1 Ω e e ξξ) + N 2 t(v 1 B ), cov (g 1, g 22 ) = N 2 t(v 1 Ω e ξξv 1 Ω eξξ), cov (g 1, g 31 ) = N 2 t(v 1 Ω e ξξv 1 Ω e ξξ) + N 2 u, cov (g 1, g 32 ) = N 2 u, cov (g 1, g 33 ) = cov (g 1, g 35 ) = N 2 t(v 1 cov (g 1, g 37 ) = N 2 t(v 1 Ω e e ξξ), Ω e ξξv 1 Ω e ξξ), Ω eξξ), 10

11 up to tems of ode O(N 2 ) and cov (g 2, g 3l ) = o(n 2 ) fo l = 4, 6, 8. Hee Ω e ξ:e ξ = Nva Ẽ(e ξ) and Ω e ξξ = E Ẽ(e ξξ T ) as in Poposition 8, Ω e e ξξ = E Ẽ( e e ξξ T ), and [ u = t E Ẽ(e e ξ T ) V 1 E Ẽ(ξ ξξt ) V 1 = E Ẽ(e e ξ T ) V 1 E Ẽ(ξξT V 1 ξ). (ii) Expansion (4) can be poved fo ˆα eg,bc and α eg,bc similaly as in the missingdata poblem. The g 1, g 2, and g 3 tems ae defined as in the poofs of Popositions 3 and 6 except that e is eplaced thoughout by e, ε by ε, V by V, and so on. Then the second-ode vaiance can be calculated fo ˆα eg,bc and α eg,bc similaly in the missing-data poblem. The fomulas of va (g 2 ), cov (g 1, g 2 ), etc., ae simila to va(g 2 ), cov(g 1, g 2 ), etc., in the poofs of Popositions 3 and 6, but with subtle changes as in the calculation of V (ˆα lik ) and V ( α lik ). Poof of Coollay 2. All the finite population quantities such as V, β, Ω ε ξξ, and A involve means ove the finite population of polynomials of p 1 (X), Y, and X with degee of Y 2 and that of X 4. By Chow and Teiche (1997, Coollay 8.1.7), each of these finite population means conveges to the coesponding expectation unde L yx. Fo example, V conveges to V yx = E yx (p 1 1)XX T, β to β yx = V 1 yx E yx (p 1 1)XY, Ω ε ξξ to E yx (p 1 1) 2 (Y β T yxx)xx T, and A to E yx (p 1 1)(Y β T yxx)xx T, whee E yx ( ) denotes the expectation of a function of (Y, X) unde L yx. The fomulas of second-ode vaiances emain valid with the finite population means eplaced by the coesponding expectations. Assume that the conditional expectation of Y given X unde L yx, E yx (Y X), is of fom b T X fo a constant vecto b. Then E yx (Y X) = β T yxx and hence Ω εξξ = o(1) and A = o(1). Theefoe, V ( α eg,bc ) = V ( α lik ) = N 2 t(v 1 Ω εξ:εξ) + 2t(V 1 B ) + o(n 2 ). By diect calculation, Ω ε ξ:ε ξ = Nva Ẽ(ε ξ) = Ẽ (p 1 1) 3 (Y β T X) 2 XX T, [ Ω e ξ:e ξ = Nva Ẽ(e ξ) = Ẽ (p 1 1) (p 1 1)(Y β T X)X + (β T X)X 2. Then V (ˆα lik ) V ( α lik ) = N 2 t[v 1 (Ω eξ:eξ Ω εξ:εξ) Ω eξξv 1 Ω eξξ+o(n 2 ). The matix in the culy backet conveges to E yx (p 1 1)(β T yxx) 2 XX T E yx (p 1 1)(β T yxx)xx T V 1 yx E yx (p 1 1)(β T yxx)xx T, which is the expectation of the pod- 11

12 uct of the esidual and its tanspose in poecting (p 1 1) 1/2 (β T yxx)x on (p 1 1) 1/2 X and hence nonnegative definite. Theefoe, V ( α lik ) V (ˆα lik ). Poofs of Popositions 9 and 10. The poof of Poposition 9 is simila to that of Poposition 7. Fo Poposition 10, the bias fomulas follow by simple calculation using Lemma A2. To show V ( α lik ), wite g 2 = g 2 ( α lik ), g 3 = g 3 ( α lik ), and the 8 tems of g 3 as g 31, g 32, etc. Recall that ξ 0,i = R i p i and U 0 = Ẽp(1 p). By diect but tedious calculation using Lemma A2, va (g 2 ) = N 2 t( 1 Γ εξ 1 :ε ξ 1 ) t( 1 Γ εξ 1 ξ 1 1 Γ εξ 1 ξ 1 ), cov (g 1, g 21 ) = N 2 t( 1 Γ ε ξ 1 :ε ξ 1 ) + N 2 t( 1 D 1 ) N 2 ψt( 1 Γ ε ξ 1 ξ 1 ), cov (g 1, g 22 ) = N 2 t( 1 Γ e ξ 1 ξ 1 1 Γ ε ξ 1 ξ 1 ) + N 2 ψt( 1 Γ ε ξ 1 ξ 1 ), cov (g 1, g 31 ) = N 2 t( 1 Γ e ζ 1 ξ 1 1 Γ ε ξ 1 ξ 1 ) + t( 1 Γ e ζ 1 ξ 0 0 Γ T ε ξ 1 ξ 0 ) + N 2 ν, cov (g 1, g 32 ) = N 2 ν, cov (g 1, g 33 ) = cov (g 1, g 35 ) = N 2 t( 1 Γ e ζ 1 ξ 1 1 Γ ε ξ 1 ξ 1 ) + t( 1 Γ e ζ 1 ξ 0 0 Γ T ε ξ 1 ξ 0 ), cov (g 1, g 37 ) = N 2 t( 1 Γ e :ε ξ 1 ξ 1 ), up to tems of ode O(N 2 ) and cov (g 2, g 3l ) = o(n 2 ) fo l = 4, 6, 8. Hee Γ ε ξ 1 :ε ξ 1 = Nva Ẽ(ε ξ 1 ) = Ẽ[(p 1 1)(p 1 1)(Y β T X)Z O 2 +o(1), Γ ε ξ 1 ξ 1 = E P ois Ẽ(ε ξ 1 ξ T 1 ), and Γ ε ξ 1 ξ 0 = E P ois Ẽ(ε ξ 1 ξ T 0 ) as in Poposition 10, Γ e ζ 1 ξ 1 = E P ois Ẽ(e ζ 1 ξ T 1 ) = Γ ε ξ 1 ξ 1, Γ e ζ 1 ξ 0 = E P ois Ẽ(e ζ 1 ξ 0 ) = Γ ε ξ 1 ξ 0, Γ e ξ 1 ξ 1 = E P ois Ẽ( e ξ 1 ξ T 1 ) = Γ εξ 1 ξ 1 C 1, Γ e :ε ξ 1 ξ 1 = E P ois Ẽ(e ε ξ 1 ξ T 1 ) = Ẽ[(p 1 1) 3 (Y β T X) 2 ZZ T = Γ εξ 1 :ε ξ 1 + Q 1 + o(1), and ν = E P ois Ẽ(e ε ξ1 T ) U1 1 E P ois Ẽ(ζ1 ξ1 T U1 1 ξ 1 ) + E P ois Ẽ(e ε ξ 0 ) 0 E P ois Ẽ(Rξ T 1 1 ξ 1 ) To show V (ˆα lik ), wite g 2 = g 2 (ˆα lik ), g 3 = g 3 (ˆα lik ), and the 8 tems of g 3 as g 31, g 32,. 12

13 etc. By diect but tedious calculation using Lemma A2, va (g 2 ) = N 2 t( 1 Γ e ξ 1 :e ξ 1 ) t( 1 Γ e ξ 1 ξ 1 1 Γ e ξ 1 ξ 1 ), cov (g 1, g 21 ) = N 2 t( 1 Γ e :e ξ 1 :ξ 1 ) + N 2 t( 1 D 1 ) N 2 ψt( 1 Γ e ξ 1 ξ 1 ), cov (g 1, g 22 ) = N 2 t( 1 Γ e ξ 1 ξ 1 1 Γ e ξ 1 ξ 1 ) + N 2 ψt( 1 Γ e ξ 1 ξ 1 ), cov (g 1, g 31 ) = N 2 t( 1 Γ e ξ 1 ξ 1 1 Γ eξ 1 ξ 1 ) + t( 1 Γ e ξ 1 ξ 0 0 Γ T e ξ 1 ξ 0 ) + N 2 u, cov (g 1, g 32 ) = N 2 u, cov (g 1, g 33 ) = cov (g 1, g 35 ) = N 2 t( 1 Γ e ξ 1 ξ 1 1 Γ e ξ 1 ξ 1 ) + t( 1 Γ e ξ 1 ξ 0 0 Γ T e ξ 1 ξ 0 ), cov (g 1, g 37 ) = N 2 t( 1 Γ e :e ξ 1 ξ 1 ), up to tems of ode O(N 2 ) and cov (g 2, g 3l ) = o(n 2 ) fo l = 4, 6, 8. Hee Γ e ξ 1 :e ξ 1 = Nva Ẽ(e ξ 1 ) = Ẽ[(p 1 1)(p 1 1)(Y β T X)Z+(β T X)Z O 2 +o(1), Γ eξ 1 ξ 1 = E P ois Ẽ(e ξ 1 ξ T 1 ), and Γ eξ 1 ξ 0 = E P ois Ẽ(e ξ 1 ξ 0 ) as in Poposition 10, Γ e ξ 1 ξ 0 = E P ois Ẽ(e ξ 1 ξ 0 ) = Γ εξ 1 ξ 0 C 0, Γ e :e ξ 1 :ξ 1 = Γ εξ 1 :ε ξ 1 + Ẽ[(p 1 1)(p 1 2)(Y β T X)Z O (β T X)Z T O, Γ e :e ξ 1 ξ 1 = E P ois Ẽ(e e ξ 1 ξ T 1 ) = Γ e :ε ξ 1 ξ 1 +Ẽ(p 1 1)(p 1 2)(Y β T X)(β T X)ZZ T = Γ e :e ξ 1 :ξ 1 + Q 1 + K 1 + o(1), and u = E P ois Ẽ(e e ξ1 T ) U1 1 E P ois Ẽ(ξ1 ξ1 T U1 1 ξ 1 ) + E P ois Ẽ(e e ξ 0 ) 0 E P ois Ẽ(ξ0 ξ T 1 1 ξ 1 ) Finally, V (ˆα eg,bc ) and V ( α eg,bc ) can be shown similaly as in Poposition 8, but with subtle changes as in the foegoing calculation of V (ˆα lik ) and V ( α lik ). Poof of Coollay 3. The poof is simila to that of Coollay 2. Let U yx = E yx (p 1 1)ZZ T. Assume that E yx (Y X) is of fom b T X fo a constant vecto b. Then Γ ε ξ 1 ξ 1, Γ ε ξ 1 ξ 0, C 1, C 0, Q 1, K 1, and ψ ae o(1). Theefoe, V ( α eg,bc ) = V ( α lik ) = N 2 t( 1 Γ ε ξ 1 :ε ξ 1 ) + 2t( 1 D 1 ) + o(n 2 ). Moeove, V (ˆα lik ) V ( α lik ) = N 2 t[ 1 (Γ e ξ 1 :e ξ 1 Γ ε ξ 1 :ε ξ 1 ) Γ e ξ 1 ξ 1 1 Γ e ξ 1 ξ 1 + o(n 2 ). The matix in the culy backet conveges to E yx [(p 1 1)(β T yxx)z O 2 E yx (p 1 1)(β T yxx)zz T yx E yx (p 1 1)(β T yxx)zz T, which is the expectation of the poduct of the esidual and its tanspose in poecting (p 1 1) 1/2 (β T yxx)z O on (p 1 1) 1/2 Z and hence nonnegative definite. Theefoe, V ( α lik ) V (ˆα lik ).. 13

14 Poof of Poposition 11. The poof is simila to that of Poposition 10, by diect calculation using Lemma A3. Fo example, the tem cov (g 1, g 21 ) fo α lik,π involves the additional tem N 2 ϕ T 1 Γ εε ξ 1 by esult (iii) of Lemma A3. REFERENCES Chow, Y.-S. and Teiche, H. (1997) Pobability Theoy (3d edition), New Yok: Spinge. 14

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Curvilinear Systems of Coordinates

Curvilinear Systems of Coordinates A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

М. I. Parolya, М. М. Sheremeta ESTIMATES FROM BELOW FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS

М. I. Parolya, М. М. Sheremeta ESTIMATES FROM BELOW FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS Математичнi Студiї. Т.39, Matematychni Studii. V.39, No. УДК 59.23.2+57.53 М. I. Paolya, М. М. Sheemeta ESTIMATES FROM BELOW FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS M. I. Paolya, M. M. Sheemeta.

Διαβάστε περισσότερα

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Exercise, May 23, 2016: Inflation stabilization with noisy data 1 Monetay Policy Henik Jensen Depatment of Economics Univesity of Copenhagen Execise May 23 2016: Inflation stabilization with noisy data 1 Suggested answes We have the basic model x t E t x t+1 σ 1 ît E

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

TL-Moments and L-Moments Estimation for the Generalized Pareto Distribution

TL-Moments and L-Moments Estimation for the Generalized Pareto Distribution Applied Mathematical Sciences, Vol. 3, 2009, no. 1, 43-52 TL-Moments L-Moments Estimation fo the Genealized Paeto Distibution Ibahim B. Abdul-Moniem Madina Highe Institute fo Management Technology Madina

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Limit theorems under sublinear expectations and probabilities

Limit theorems under sublinear expectations and probabilities Limit theorems under sublinear expectations and probabilities Xinpeng LI Shandong University & Université Paris 1 Young Researchers Meeting on BSDEs, Numerics and Finance 4 July, Oxford 1 / 25 Outline

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 11 Topics Coveed: Obital angula momentum, cente-of-mass coodinates Some Key Concepts: angula degees of feedom, spheical hamonics 1. [20 pts] In

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim 9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

q-analogues of Triple Series Reduction Formulas due to Srivastava and Panda with General Terms

q-analogues of Triple Series Reduction Formulas due to Srivastava and Panda with General Terms Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 7, Numbe 1, pp 41 55 (2012 http://campusmstedu/adsa -analogues of Tiple Seies Reduction Fomulas due to Sivastava and Panda with Geneal

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

On mixing generalized poison with Generalized Gamma distribution

On mixing generalized poison with Generalized Gamma distribution 34 WALFORD I.E. CHUKWU(*) and DEVENDRA GUPTA (**) On mixing genealized poison with Genealized Gamma distibution CONTENTS: Intoduction Mixtue. Refeences. Summay. Riassunto. Key wods (*) Walfod I.E. Chukwu

Διαβάστε περισσότερα

A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES

A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE AND SOME NEW P-Q ETA-FUNCTION IDENTITIES S. Bhagava Chasheka Adiga M. S. Mahadeva Naika. Depatent of

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Solutions Ph 236a Week 2

Solutions Ph 236a Week 2 Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor VEKTORANALYS Kusvecka 4 CURVILINEAR COORDINATES (koklinjiga koodinatstem) Kapitel 10 Sido 99-11 TARGET PROBLEM An athlete is otating a hamme Calculate the foce on the ams. F ams F F ma dv a v dt d v dt

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα