Knaster-Reichbach Theorem for 2 κ
|
|
- ÏΓάϊος Χρηστόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Knaster-Reichbach Theorem for 2 κ Micha l Korch February 9, 2018 In the recent years the theory of the generalized Cantor and Baire spaces was extensively developed (see, e.g. [1], [2], [6], [4] and many others). An important part of the research in this subject is an attempt to transfer the results in set theory of the real line to 2 κ and κ κ (the list of open questions can be found in [5]). Throughout this paper, unless it is stated otherwise, we assume that κ is an uncountable regular cardinal number and κ > ω. We consider the space 2 κ, called κ-cantor space (or the generalized Cantor space), endowed with so called bounded topology with a base {[x] x 2 <κ }, where for x 2 <κ, [x] = {f 2 κ f domx = x}. If we additionally assume that κ <κ = κ, the above base has cardinality κ. This assumption proves to be very convenient when considering the generalized Cantor space and the generalized Baire space, and is assumed throughout this note, unless stated otherwise (see e.g. [1]). The above base consists of clopen sets. Notice also that an intersection of less than κ of basic sets is a basic set or an empty set. Therefore, an intersection of less than κ open sets is still open. A T 1 topological space is said to be κ-additive if for any α < κ, an intersection of an α- sequence of open subsets of this space is open. Various properties of κ-additive spaces were considered by R. Sikorski in [7]. Therefore, the generalized Cantor space is a zero-dimensional κ-additive space which is completely normal. The character, density and weight of 2 κ equal κ (the assumption κ <κ = κ is needed in the case of density and weight). It is easy to see that A 2 κ is closed if and only if A = [T ] for some tree T 2 <κ. Indeed, if A = [T ] and T is a tree, then if x A, there exists α < κ such that x α T. Therefore [x α] 2 κ A, so A is closed. On the other hand, if A is closed, let T = {x α x A, α < κ}. Then, if a 2 κ, and a α T for all α < κ, we have that a A, since A is closed. For a closed A 2 κ, a tree T 2 <κ such that A = [T ] is denoted by T A. A set A 2 κ is called κ-closed, if for every limit β < κ, and t 2 β such that for all α < β, t α T A, we have t T A. For s, t 2 κ, let d(s, t) = {α < min(len(s), len(t)) β<α s(β) = t(β)}. Classical Knaster-Reichbach Theorem (proved in [3], the authors acknowledged there that the theorem is actually due to Cz. Ryll-Nardzewski) states, that if P, Q 2 ω are closed nowhere dense subsets of the classical Cantor space, and h P Q is a homeomorphism, then there exists a homeomorphism H 2 ω 2 ω such that H P = h. In this note we present an analogue of Knaster-Richbach Theorem for the generalized Cantor space 2 κ. This answers an oral question of W. Kubiś. 1
2 Theorem 1 Assume that (1) P, Q 2 κ, (2) t α α<κ, s α α<κ (2 <κ ) κ, (3) p α α<κ P κ, q α α<κ Q κ, (4) f, g κ κ, (5) h P Q are such that: (a) h is a homeomorphism, (b) P and Q are closed, (c) 2 κ P = α<κ [t α ] and 2 κ Q = α<κ [s α ], (d) for each α < β < κ, [t α ] [t β ] = and [s α ] [s β ] =, (e) f, g are one-to-one, (f) for every β < κ there exists γ < κ such that for all γ < α < κ, d(p α, t α ) > β and d(q α, s α ) > β, (g) for all α < κ and p P (h) for all α < κ and q Q (i) for all α < κ (j) for all α < κ d(p, t α ) d(p α, t α ), d(q, s α ) d(q α, s α ), d(p α, t α ) d(h(p α ), s f(α) ), d(q α, s α ) d(h 1 (q α ), t g(α) ). Then there exists a homemorphism H 2 κ 2 κ such that H P = h. Proof: First notice that there are A 1, A 2, B 1, B 2 κ such that (i) A 1 A 2 = B 1 B 2 = κ, (ii) A 1 A 2 = B 1 B 2 =, (iii) f[a 1 ] = B 1 and g[b 2 ] = f[a 2 ]. 2
3 For each α A 1, let f α [t α ] [s f(α) ] be a homeomorphism. Similarly, for each α B 2, let g α [s α ] [t g(α) ] be a homeomorphism. Now set h(x) for x P, H(x) = f α (x) for x [t α ] α A 1, gα 1 (x) for x [t g(α) ] α B 2. It remains to prove that H is a homeomorphism. Actually, notice that it suffices to prove that for every p P, H is continuous at p. Let q = h(p) = H(p) Q, and let s 2 <κ be such that s q. Since h is continuous, there exists t 2 <κ with t p such that for all x P [t], we have h(x) [s]. Notice that {β A 2 d(s β, q β ) < len(t) t t g(β) } < κ. Thus, let η < κ be such that η len(t) and for all β A 2 such that t g(β) [p η], we have d(s β, q β ) len(t). Let δ = max{len(s), η} < κ. We prove that H[[p δ]] [s]. Indeed, if x [p δ] P, then there exists α < κ such that x [t α ]. We have that either α A 1 or α A 2. In the first case, we get that p α [p δ], since δ d(p, t α ), but also for all α < κ and p P, d(p, t α ) d(p α, t α ). Thus, H([t α ]) = [s f(α) ] [s], because for all α < κ d(p α, t α ) d(h(p α ), s f(α) ), and h(p α ) [s] (and len(s) δ). On the other hand, if α A 2, then let β B 2 be such that α = g(β). Assume towards contradiction, that s β / s. Then h 1 (q β ) / t, but then we get d(q β, s β ) d(h 1 (q β ), t α ) < len(t). This is a contradiction with the choice of η, thus s β s. Thus H is continuous at p. Lemma 1 Assume that (1) P, Q 2 κ, (2) t α α<κ, s α α<κ (2 <κ ) κ, (3) p α α<κ P κ, q α α<κ Q κ, (4) h P Q are such that: (a) h is a homeomorphism, (b) P and Q are closed, (c) 2 κ P = α<κ [t α ] and 2 κ Q = α<κ [s α ], 3
4 (d) for each α < β < κ, [t α ] [t β ] = and [s α ] [s β ] =, (e) for every β < κ there exists γ < κ such that for all γ < α < κ, d(p α, t α ) > β and d(q α, s α ) > β, (f) for all α < κ and p P (g) for all α < κ and q Q (h) for all α < κ (i) for all α < κ d(p, t α ) d(p α, t α ), d(q, s α ) d(q α, s α ), {β < κ d(t α, p α ) d(s β, h(p α ))} = κ, {β < κ d(s α, q α ) d(t β, h 1 (q α ))} = κ. Then there exist f, g κ κ such that the premise of Theorem 1 is satisfied. Proof: By symmetry, it is enough to prove the existence of f. We construct f by induction. For α < κ, let f(α) = ({β < κ d(t α, p α ) d(s β, h(p α ))} {f(β) β < α}). Theorem 2 Assume that κ is strongly inaccessible. Let P, Q 2 κ be κ-closed nowhere dense sets, and let h P Q be a homeomorphism. Then there exists a homemorphism H 2 κ 2 κ such that H P = h. Proof: We start by constructing inductively sequences of sets Q α α<κ, P α α<κ (P(2 <κ )) κ such that (a) for α < κ, P α, Q α 2 α, (b) α<κ {[t] t P α } = 2 κ P, (c) α<κ {[t] t Q α } = 2 κ Q, (d) for all α < κ, and t 2 α such that [t] P = and for all β < α and all u P β, u / t, t P α, (e) for all α < κ, and s 2 α such that [s] Q = and for all β < α and for all u Q β, u / s, s Q α. and To achieve the above for α < κ, put P α = {t 2 α [t] P = β<α u Pβ u / t}, Q α = {t 2 α [t] Q = β<α u Qβ u / t}. Notice, that since P, Q are κ-closed, for any limit ordinal α < κ, P α = Q α =. 4
5 Let P α = {t α α < κ}, α<κ and Q α = {s α α < κ}. α<κ be enumerations such that for all α < β < κ and γ, δ < κ, if t γ P α and t δ P β, then γ < δ, and also for all α < β < κ and γ, δ < κ, if s γ Q α and s δ Q β, then γ < δ. This is possible since κ is strongly inaccessible. Since P and Q are κ-closed, there exist p α α<κ P κ, q α α<κ Q κ such that (a) for all α < κ and p P d(p, t α ) d(p α, t α ), (b) for all α < κ and q Q d(q, s α ) d(q α, s α ). Notice also, that for all α, γ < κ, if t γ P α+1, d(t γ, p γ ) = α, and for all α, γ < κ, if s γ Q α+1, d(s γ, q γ ) = α. Thus, for every β < κ there exists γ < κ such that for all γ < α < κ, d(p α, t α ) > β and d(q α, s α ) > β. Notice also, that since P is nowhere dense, we have that for every α < κ {β < κ d(t α, p α ) d(s β, h(p α ))} = κ. Indeed, if d(t α, p α ) = γ < κ, then for every γ < δ < κ, we have that there is no β < κ such that s β h(p α ) δ, but there exists s 2 <κ such that h(p α ) δ s, and [s] Q =. Similarly, for every α < κ, {β < κ d(s α, q α ) d(t β, h 1 (q α ))} = κ. Thus, the conditions of Lemma 1 are satisfied. Problem 1 Does Theorem 2 hold for uncountable regular κ which is not strongly inaccessible? Problem 2 Does Theorem 2 hold for P, Q 2 κ which are nowhere dense and closed but not κ-closed? References [1] Sy-David Friedman, Tapani Hyttinen, and Vadim Kulikov. Generalized Descriptive Set Theory and Classification Theory, volume 1081 of Mem. Amer. Math. Soc. American Mathematical Society, [2] Sy-David Friedman and Giorgio Laguzzi. A null ideal for inaccessibles. preprint, [3] Bronis law Knaster and Marian Reichbach. Notion d homogénéité et prolongements des homéomorphies. Fund. Math., 40: , [4] Micha l Korch and Tomasz Weiss. Special subsets of the generalized Cantor space 2 κ and the generalized Baire space κ κ. sent to Math. Logic Quart., m korch/wp-content/uploads/2017/09/special-kappa.pdf,
6 [5] Giorgio Laguzzi, Benedikt Löwe, and Ilya Sharankou. Questions on generalized Baire spaces. Math. Logic Quart., 62: , [6] Saharon Shelah. A parallel to the null ideal for inaccessible λ. preprint, [7] Roman Sikorski. Remarks on some topological spaces of high power. Fund. Math., 37: ,
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
1. Introduction and Preliminaries.
Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
F A S C I C U L I M A T H E M A T I C I
F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.
Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Chapter 3: Ordinal Numbers
Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
SOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Operation Approaches on α-γ-open Sets in Topological Spaces
Int. Journal of Math. Analysis, Vol. 7, 2013, no. 10, 491-498 Operation Approaches on α-γ-open Sets in Topological Spaces N. Kalaivani Department of Mathematics VelTech HighTec Dr.Rangarajan Dr.Sakunthala
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
GAUGES OF BAIRE CLASS ONE FUNCTIONS
GAUGES OF BAIRE CLASS ONE FUNCTIONS ZULIJANTO ATOK, WEE-KEE TANG, AND DONGSHENG ZHAO Abstract. Let K be a compact metric space and f : K R be a bounded Baire class one function. We proved that for any
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
On density of old sets in Prikry type extensions.
On density of old sets in Prikry type extensions. Moti Gitik December 31, 2015 Abstract Every set of ordinals of cardinality κ in a Prikry extension with a measure over κ contains an old set of arbitrary
Cyclic or elementary abelian Covers of K 4
Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Lecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Cardinals. Y = n Y n. Define h: X Y by f(x) if x X n X n+1 and n is even h(x) = g
Cardinals 1. Introduction to Cardinals We work in the base theory ZF. The definitions and many (but not all) of the basic theorems do not require AC; we will indicate explicitly when we are using choice.
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano
235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS
THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS STEFAN BOLD, BENEDIKT LÖWE In [BoLö ] we gave a survey of measure analyses under AD, discussed the general theory of order
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Generating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Homomorphism of Intuitionistic Fuzzy Groups
International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com
Intuitionistic Fuzzy Ideals of Near Rings
International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
12. Radon-Nikodym Theorem
Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Intuitionistic Supra Gradation of Openness
Applied Mathematics & Information Sciences 2(3) (2008), 291-307 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. Intuitionistic Supra Gradation of Openness A. M. Zahran 1, S. E.
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp
Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
NON-NORMALITY POINTS OF βx \ X
NON-NORMALITY POINTS OF βx \ X LYNNE YENGULALP 1. INTRODUCTION A point p in a space X is called a non-normality point if X \ {p} is not normal and is called a butterfly point if there are closed subsets
ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II)
Commun. Korean Math. Soc. 25 (2010), No. 3, pp. 457 475 DOI 10.4134/CKMS.2010.25.3.457 ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II) Ahmed Abd El-Kader Ramadan, Salah El-Deen Abbas, and Ahmed Aref
The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality
The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings
International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 61-71 International Research Publication House http://www.irphouse.com A Note on Characterization
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
Splitting stationary sets from weak forms of Choice
Splitting stationary sets from weak forms of Choice Paul Larson and Saharon Shelah February 16, 2008 Abstract Working in the context of restricted forms of the Axiom of Choice, we consider the problem
SOLVING CUBICS AND QUARTICS BY RADICALS
SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras
Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
SINGULAR CARDINALS AND SQUARE PROPERTIES
SINGULAR CARDINALS AND SQUARE PROPERTIES MENACHEM MAGIDOR AND DIMA SINAPOVA Abstract. We analyze the effect of singularizing cardinals on square properties. By work of Džamonja-Shelah and of Gitik, if
PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)
GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk