Statics and Strength of Materials

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Statics and Strength of Materials"

Transcript

1 Instructor s Solutions Manual to accompany Statics and Strength of Materials Seventh Edition H.W. Morrow Robert P. Kokernak Upper Saddle River, New Jersey Columbus, Ohio

2 Copyright 2011, 2007, 2004, 2001, 1998, 1993 by Pearson Education, Inc., Upper Saddle River, New Jersey Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department. Pearson Prentice Hall is a trademark of Pearson Education, Inc. Pearson is a registered trademark of Pearson plc Prentice Hall is a registered trademark of Pearson Education, Inc. Instructors of classes using Morrow and Kokernak, Statics and Strength of Materials, 7/e, may reproduce material from the instructor s manual for classroom use ISBN-13: ISBN-10:

3 Contents Chapter 1 Basic Concepts 1 Chapter 2 Resultant of Concurrent Forces in a Plane 13 Chapter 3 Equilibrium of Concurrent Forces in a Plane 19 Chapter 4 Resultant of Nonconcurrent Forces in a Plane 23 Chapter 5 Equilibrium of a Rigid Body 29 Chapter 6 Force Analysis of Structures and Machines 41 Chapter 7 Forces in Space 77 Chapter 8 Friction 91 Chapter 9 Center of Gravity, Centroids, and Moments of Inertia of Areas 101 Chapter 10 Internal Reactions: Stress for Axial Loads 125 Chapter 11 Strain for Axial Loads: Hooke s Law 141 Chapter 12 Shear Stresses and Strains: Torsion 157 Chapter 13 Shear Forces and Bending Moments in Beams 167 Chapter 14 Bending and Shearing Stresses in Beams 179 Chapter 15 Deflection of Beams Due to Bending 205 Chapter 16 Combined Stresses and Mohr s Circle 235 Chapter 17 Columns 259 Chapter 18 Bolted, Riveted, and Welded Structural Connections 267

4 1 Basic Concepts 1. (a) 17.9 in. (25.40 mm)/1 in. = 455 mm = m < (b) 6.4 ft (304.8 mm)/1 ft = 1951 mm = m < (c) 13.8 in. (25.40 mm)/1 in. = 351 mm = m < (d) 95.2 ft (304.8 mm)/1 ft = mm = 29.0 m < 2. (a) 10.2 m (39.37 in.)/1 m = 402 in. = 33.5 ft < (b) 45.0 m (39.37 in.)/1 m = 1772 in. = ft < (c) 204 mm (39.37 in.)/1000 mm = 8.03 in. = ft < (d) 4600 mm (39.37 in.)/1000 mm = in. = ft < 3. 1 hr = 3600 s 1 mi = 5280 ft 60 mi 1 hr 5280 ft = 88.0 ft hr 3600 s 1 mi s < 4. (a) 60 W 1 hp W = hp < (b) 210 hp W 1 hp = W < 5. (a) 23.5 lb (4.448 N)/1 lb = N = kn < (b) 5.8 kips (4448 N)/1 kip = N = 25.8 kn < (c) 250 lb (4.448 N)/1 lb = 1112 N = kn < (d) 15.9 kips (4448 N)/1 kip = N = 70.7 kn < 6. (a) 52.9 N ( lb)/1 N = lb = kip < (b) 6.85 kn (224.8 lb)/1 kn = 1540 lb = kips < 7. (a) 250 kg 9.81 m/s 2 = 2450 N = 2.45 kn < (b) 4.5 Mg: kg 9.81 m/s 2 = N = 44.1 kn < (c) m/s 2 = 3680 N = 3.68 kn < (d) 25.0 Mg: kg 9.81 m/s 2 = N = 245 kn < (e) kg: 140 kg 9.81 m/s 2 = 1373 N = kn < 8. (a) 2000 N/9.81 m/s 2 = 204 kg < (b) 3.50 kn: 3500 N/9.81 m/s 2 = 357 kg < (c) 1200 N/9.81 m/s 2 = kg < (d) 4.40 kn: 4400 N/9.81 m/s 2 = 449 kg < 9. (a) lb/ft 3 (1 ft/0.3048) 3 (4.448 N/lb) = 9810 N/m 3 = 9.81 kn/m 3 < (b) lb ft 3 1 ft in in gal 55 gal = 459 lb < (10 in. 22 in.) (1 ft 2 /144 in. 2 ) = 229 lb/ft < (229 lb/ft)(1 ft/ m)(4.448 N/lb) = 3344 N/m = 3.34 kn/m < (3344 N/m)(1 kg/9.81 N) = 341 kg/m < 11. (1 lb/in. 2 )(4.448 N/lb) (1 in./ m) 2 = 6894 N/m 2 = 6.89 kpa(kn/m 2 ) < [(6894 N/m 2 )/(1 lb/in. 2 )] (14.7 lb/in. 2 ) = Pa = kpa(kn/m 2 ) < Chapter 1 1

5 MN/m 2 = N/m 2 ( N/m 2 )(1 lb/4.448 N) (1 m/39.37 in.) 2 = lb/in. 2 (psi) < = 36.3 kips/in. 2 (ksi) < 55 MN/m 2 = N/m 2 ( N/m 2 )(1 lb/4.448 N) (1 m/39.37 in.) 2 < = lb/in. 2 (psi) = 7.98 kips/in. 2 (ksi) < ,560 ft 2 ( m/ft) 2 = 4050 m 2 < MN/m 2 = N/m N/m 2 (1 lb/4.448 N) (1 m/39.37 in.) 2 = lb/in. 2 (psi) < = 58.0 kips/in. 2 (ksi) < N/m 2 (1 lb/4.448 N) (1 m/39.37 in.) 2 = lb/in. 2 (psi) < = kips/in. 2 (ksi) < 15. (a) c 2 = (475) 2 + (950) 2 c = 1062 mm < θ = arctan (475/950) = 26.6 sin 26.6 = < cos 26.6 = < (b) c 2 = , c = 10 ft sin θ = (6/10) = 0.6 < cos θ = (8/10) = 0.8 < 16. (a) d = cos 70 = m d = 8 m = 2.74 m < (b) h = sin 70 = m h = 8 m = 7.52 m < CHECK: d 2 + h 2 = (8 m) 2? 17. θ 1 = 45, θ 2 = 35, d = 300 mm Eliminating b from the two Eq. (a) of Prob. 1.16, we have (c + d)/tan θ 1 = d/tan θ 2 c = d(tan θ 1 tan θ 2 )/ tan θ 2 = 300(tan 45 tan 35 )/ tan 35 c = m < From Eq. (a), we have b = (c + d)/ tan θ 1 = ( )/tan 45 = 428 m < 18. b = 10 ft = 120 in. h = 5 ft 8 in. = 68 in. tan θ = h/b = 68/120; θ = 29.5 < 19. tan 28 = h/40 h = 40 tan 28 h = 21.3 m < Chapter 1 2

6 20. tan 22 = 288/b b = 288/tan 22 = = 713 ft < 21. h 2 = 30 tan 42 = 27.0 m < h 1 = 124 h 2 = = 97.0 m < 22. Distance AE = BC = 200 ft Distance ED = 340 ft 225 ft = 115 ft Then for triangle AED: (AD) 2 = (200 ft) 2 + (115 ft) 2 AD = Road frontage = ft < 23. In triangle ABD: AD = sin 54 or AD = m 6.0 m BD 6.0 m = cos 54 or BD = m In triangle ACD: (CD) 2 + (4.854 m) 2 = (8.0 m) 2 CD = m Then: x = BC = CD BD x = m m x = m < 24. (AC) 2 = (14 in.) 2 + (14 in.) 2 AC = 19.8 in. AB = BC = 1 (80 in in.) 2 AB = BC = 26 in. 9.8 in. sin θ = = in. θ = Angle ABC = 2θ = 44.3 < Chapter 1 3

7 25. Using bracket dimensions: (AC) 2 = (2.5 m) 2 + (0.6 m) 2 AC = 2.57 m tan β = 2.5 m = β = m α = = 55 θ = 180 α β = 48.5 In triangle ABC: AB = sin θ AC AB 2.57 m AB = 1.93 m < = sin (a) In triangle ECG, let angle CEG = θ. Then: CG tan θ = 16 ft = EG (8 ft + 8 ft) So: θ = 45 Similarly, the following angles are equal to θ: BAH, BGH, DGF, ABH, GBH, BCG, FDG, EDF, and DCG. (b) In triangle DEF, DF = tan 95 = EF so DF = BH = 8 ft and (DE) 2 = (8 ft) 2 + (8 ft) 2 or DE = ft = DG = BG = AB Since angle CDG = 90, then CD = DG = CB = BG = ft Total lineal feet: 8 ft) ft) + 16 ft) = 132 ft < 27. From the Fig. tan 37 = h/b tan 56 = (400 + h)/b (a) (b) Eliminating b beween Eqs. (a) and (b), we have h/tan 37 = (400 + h)/tan 56 or h(tan 56 tan 37 ) = 400 tan 37 h = 400 tan 37 /(tan 56 tan 37 ) h = = 414 m 28. (a) For Fig. a = 7 in., B = 40, C = 30 A = 180 B C = 110 From Fig. and law of sines b/sin 40 = c/sin 30 = 7/sin 110 b = 7 sin 40 /sin 110 = 4.79 in. < c = 7 sin 30 /sin 110 = 3.72 in. < (b) a = 3 m, b = 6 m, C = 48 From Fig. and law of cosines c 2 = (6) 2 + (3) 2 2(6)(3) cos 48 c = 4.57 m < From Fig. and law of sines sin A/3 = sin 48 /4.57 sin A = ; A = 29.2 < B = 180 A C; B = < Chapter 1 4

8 (c) a = 8 ft, b = 7 ft, A = 60 From Fig. and law of sines sin B/7 = sin 60 /8 sin B = ; B = 49.3 < C = 180 A B; C = 70.7 < From Fig. and law of cosines c 2 = (7) 2 + (8) 2 2(7)(8) cos 70.7 c = 8.72 ft < (d) a = 4 m, b = 7 m, c = 9 m From Fig. and law of cosines (9) 2 = (7) 2 + (4) 2 2(7)(4) cos C cos C = ; C = < & (4) 2 = (7) 2 + (9) 2 2(7)(9) cos A cos A = ; A = 25.2 < B = 180 A C; B = 48.2 < 29. (a) 8 in., 12.5 in., 65 From Fig. and law of cosines (AC) 2 = (8) 2 + (12.5) 2 2(8)(12.5) cos( ); AC = in. < (BD) 2 = (8) 2 + (12.5) 2 2(8)(12.5) cos 65 ; BD = in. < (b) 550 mm, 320 mm, 55 From Fig. and law of cosines (AC) 2 = (550) 2 + (320) 2 2(550)(320) cos( ); AC = 779 mm < (BD) 2 = (550) 2 + (320) 2 2(550)(320) cos 55 ; BD = 451 mm < (c) 10.3 ft, 12.5 ft, 45 From Fig. and law of cosines (AC) 2 = (10.3) 2 + (12.5) 2 2(10.3)(12.5) cos( ) AC = 21.1 ft < (BD) 2 = (10.3) 2 + (12.5) 2 2(10.3)(12.5) cos 45 BD = 8.96 ft < (d) 5 m, 12 m, 125 From Fig. and law of cosines (AC) 2 = (5) 2 + (12) 2 2(5)(12) cos( ); AC = m < (BD) 2 = (5) 2 + (12) 2 2(5)(12) cos 125 ; BD = m < 30. From Fig. and the law of cosines (AB) 2 = (5) 2 + (8) 2 2(5)(8) cos 40 AB = 5.26 ft < From Fig. and law of sines sin A/8 = sin 40 /5.26 sin A = A = = θ = A 90 = = < Chapter 1 5

9 31. From Fig. and law of cosines (BC) 2 = (28.3) 2 + (44.7) 2 2(28.3)(44.7) cos 18.4 BC = ft < From Fig. and law of sines sin BCD/28.3 = sin DBC/44.7 = sin 18.4 /19.96 sin BCD = ; BCD = 26.6 < sin DBC = DBC = = < DBA = = 45 < AD = AB tan ABD = AC tan BCD AB tan 45 = (AB ) tan 26.6 AB = ft AC = = 40.0 ft < 32. OA = 120 mm, AB = 300 mm From the law of sines sin 35 /300 = sin A/OB = sin B/120 sin B = (120/300) sin 35 Angle B = Angle A = = OB = 300 sin A/sin 35 = 300 sin /sin 35 OB = 390 mm < (120) 2 + (OB ) 2 = (300) 2 OB = 275 mm < Distance moved = OB OB = = mm < 33. Fig. (1) (a) From Fig. (1) tan θ 1 = 1.5/6; θ 1 = tan θ 2 = ( )/6; θ 2 = and GCB = 90 θ 2 = = 76.0 < Chapter 1 6

10 (b) From Fig. (2) JK = 1.5 tan θ 2 = m KA = 2 JK = m tan θ 3 = 1.125/1.5 θ 3 = AHJ = θ 1 + θ 2 = 67.1 < Fig. (2) 34. From the Fig. tan θ 1 = 3/36 θ 1 = 4.76 BAH = 90 θ 1 = 85.2 < (AD) 2 = (3) 2 + (36) 2 AD = BC = AD/3 = ft BAH = CBG From Fig. and law of cosines (CG) 2 = (18) 2 + (12.04) 2 2(18)(12.04) cos 85.2 CG = ft From the figure of the tower and the law of sines sin BCG sin 85.2 = sin BCG = BCG = 59.5 < DEF = 90 + θ 1 = 94.8 < 35. (a) Law of sines: 9.15 m = 5.50 m sin 65 sin α α = 33.0 β = α = 82.0 So 9.15 m = h sin 65 sin 82.0 h = 10.0 m < (b) Law of sines: 13.7 m = 10.0 m sin 115 sin θ θ = 41.4 γ = θ = m = dd sin 115 sin 23.6 d = 6.05 m < 36. In triangle ABD, law of sines yields: dd = 75 ft sin 138 sin 14 d = ft In right triangle ACD: h = sin 28 = ft h = 97.4 ft, tree will hit house < Chapter 1 7

11 37. (a) Law of sines: 225 ft = WW sin 130 sin 30 W = ft < (b) h = (225 ft)sin 20 = 77.0 ft V = ft (146.9 ft)(77.0 ft)( ) 2 8 = 3,732,729 ft 3 1 cu. yd. V = 3,732,729 ft 3 27 ft 3 V = 138,249 cu. yds. < 138,249 cu. yds. (c) No. of truckloads = 20 cu. yds./truck = 6,912 truckloads < 38. From law of cosines: R 2 = (18) 2 + (32) 2 2(18)(32) cos 41.5 R = 22.0 ft < From law of sines: 18 ft sin B = 22.0 ft sin 41.5 sin B = B = 32.8 < 39. From law of cosines: (14) 2 = r 2 + r 2 2(r)(r) cos 120 r = 8.08 cm d = 2r = 16.2 cm < DD = = 15(3) 21( 2) 2 3 = DDDD = = 12(3) (21)(17) 17 3 = DDDD = = 15(17) (12)( 2) 2 17 = 231 Dividing Dx and Dy by D, we have xx = 321 = 107, yy = 231 = 77 < DD = = 19( 21) ( 20)(20) = DDDD = = ( 22)( 21) ( 20)( 23) = Chapter 1 8

12 DDDD = = 19( 23) ( 22)(20) = Dividing Du and Dv by D, we have uu = 2 = 2, vv = 3 = 3 < DD = 5 3 = 5( 5) ( 3)(3) 3 5 = DDDD = = 9( 5) ( 3)( 9) = DDDD = 5 9 = 5( 9) 9(3) = Dividing Dm and Dn by D, we have mm = = 4.5, nn = = 4.5 < DD = 2 2 = (2)( 1) (1)(2) = DDDD = = (3)( 1) ( 0.9)(2) = DDDD = 2 3 = (2)( 0.9) (1)(3) = Then: AA = DDDD DD 4 = 0.3 < BB = DDDD DD 4 = 1.2 < 45. 7x + 10y = 10 < 9x 5y = 5 < xx = = ( 50) ( 50) 9 5 (35) (90) = 0 55 = 0 < yy = = (35) (90) 9 5 (35) (90) Equation set is valid. = = +1 < Chapter 1 9

13 46. $10.10 = F + 12r < $13.95 = F +19r < FF = = (191.90) (167.40) 1 19 (19) (12) F = $3.50 < rr = = (13.95) (10.10) 1 19 (19) (12) r = $0.55/lb < 47. C = Cost of one 2 4 P = Cost of one C + 200P = $ < 140C + 125P = $ < CC = = 29, ,750 C = $1.85 < ,750 PP = P = $2.15 < = 33, , (1 st column) DD = = 2[1(2) 1( 3)] 1[3(2) ( 2)( 3)] + ( 1)[3(1) ( 2)(1)] = (2 nd row) DDDD = = 2[3(2) ( 2)( 3)] + 1[( 7)(2) ( 2)(5)] 1[( 7)( 3) (3)(5)] = 10 (1st column) DDDD = = 2[2(2) 1(5)] 1[( 7)(2) ( 2)(5)] + ( 1)[( 7)(1) ( 2)(2)] = (1st column) DDDD = = 2[1(5) 2( 3)] 1[3(5) ( 7)( 3)] + ( 1)[3(2) ( 7)(1)] = Dividing Dx, Dy, & Dz by D, we have xx = 10 5 = 2, yy = 5 5 = 1, zz = 15 5 = 3 < DD = = +(1)( 2)(1) + (3)(3)( 1) + (2)( 2)(1) (2)( 2)( 1) (1)(3)(1) (3)( 2)(1) = 16 Chapter 1 10

14 DDDD = = +(2)( 2)(1) + (3)(3)( 1) + (2)(1)(1) (2)( 2)( 1) (2)(3)(1) (3)(1)(1) = DDDD = = +(1)(1)(1) + (2)(3)( 1) + (2)( 2)( 1) (2)(1)( 1) (1)(3)( 1) (2)( 2)(1) = DDDD = = +(1)( 2)( 1) + (3)(1)( 1) + (2)( 2)(1) (2)( 2)( 1) (1)(1)(1) (3)( 2)( 1) = 16 Dividing DP, DQ, & DR by D, we have P = 24 = 1.5, 16 QQ = 8 16 = 0.5, RR = = 1 < DD = = +(0)(2)(1) + (1)( 1)(3) + (2)( 2)( 1) (2)(2)(3) (0)( 1)( 1) (1)( 2)(1) = DDDD = = +(1)(2)(1) + (1)( 1)(2) + (2)(3)( 1) (2)(2)(2) (1)( 1)( 1) (1)(3)(1) = DDDD = = +(0)(3)(1) + (1)( 1)(3) + (2)( 2)(2) (2)(3)(3) (0)( 1)(2) (1)( 2)(1) = DDDD = = +(0)(2)(2) + (1)(3)(3) + (1)( 2)( 1) (1)(2)(3) (0)(3)( 1) (1)( 2)(2) = 9 Dividing Dx, Dy, & Dz by D, we have xx = = 2, yy = = 3, zz = 9 = 1 < DD = = +(2)(1)(1) + (3)( 4)(1) + (2)(2)(2) (2)(1)(1) (2)( 4)(2) (3)(2)(1) = 6 Chapter 1 11

15 DDDD = = +(3)(1)(1) + (3)( 4)(2) + (2)(4)(2) (2)(1)(2) (3)( 4)(2) (3)(4)(1) = DDDD = = +(2)(4)(1) + (3)( 4)(1) + (2)(2)(2) (2)(4)(1) (2)( 4)(2) (3)(2)(1) = DDDD = = +(2)(1)(2) + (3)(4)(1) + (3)(2)(2) (3)(1)(1) Dividing DA, DB, & DC by D, we have A = 3 = 0.5, BB = 6 3 = 1, CC = = 0.5 < L = Lightest casting weight M = Middle casting weight H = Heaviest casting weight L + M + H = 1867 < H L = 395 < 2L = M + H 427 < Aligning equations: L + M + H = 1867 < L + H = 395 < 2L M H = 427 < LL = MM = HH = = = = (2)(4)(2) (3)(2)(2) = 3 = 480 lb < = 512 lb < = 875 lb < Chapter 1 12

16 2 Resultant of Concurrent Forces in a Plane R = < R = < 3. R 2 = (2.0) 2 + (1.5) 2 2(2.0)(1.5) cos 100 R = 2.70 kips (sin B/1.5) = (sin 100 /2.70) B = 33.2 θ = 35 + B = 68.2 R = < 4. R 2 = (6.0) 2 + (8.5) 2 2(6.0)(8.5) cos 105 R = kn (sin A/8.5) = (sin 105 /11.60) A = 45.1 θ = 35 + A = 80.1 R = < 5. R 2 = (300) 2 + (525) 2 2(300)(525) cos 110 R = lb (sin B/525) = (sin 110 /688.0) B = θ = B 45 = 0.81 R = < Chapter 2 13

17 6. A = = 25 (R/sin 110 ) = (Q/sin 45 ) = (24/sin 25 ) R = 53.4 kn < Q = 40.2 kn < 7. Q 2 = (15) 2 + (35) 2 2(15)(35) cos 30 Q = 23.3 kips < (sin θ 2 )/15 = (sin 30 )/23.3 θ 2 = 18.8 < 8. C = = 115 Q/sin 40 = P/sin 25 = 14/sin 115 Q = 9.93 kn < P = 6.53 kn < 9. (R ) 2 = (800) 2 + (600) 2 2(800)(600) cos 120 R = N N = 600 N θ = 25.3 sin 120 sin θ 10. (R) 2 = (1216.6) 2 + (400) 2 2(1216.6)(400) cos ( ) R = 1434 N 1434 N = 400 N α = 14.6 sin sin α R = 1434 (30 + θ + α) R = < 11. R = < R = < Chapter 2 14

18 12. R = < 13. Direction: right or up is + P = P cos θ, P = P sin θ (a) : kn, kn < (b) : kn, kn < 14. Direction: right or up is + P = P cos θ, P = P sin θ (a) : lb, lb < (b) : lb, lb < 15. Direction: right or up is + F x = F cos θ, F y = F sin θ (a) 22.9 kn, kn < (b) lb, +388 lb < (c) 2.64 kips, kips < (d) 289 N, 345 N < 16. Direction: right or up is + FF xx = FF cos θ, FF yy = FF sin θ (a) : 27.6 kn, kn < (b) : lb, 750 lb < (c) : kips, kips < (d) : 448 N, 39.2 N < 17. Perpendicular component: FF1 = cos 34 = N F1 = N < Parallel component: FF2 = sin 34 = N F2 = N < Chapter 2 15

19 14 in. 18. tan α = = in. α = 28.3 tan β = (14 in in.) 26 in. = β = 63.4 θ = β α = 35.1 Parallel component: F1 = 1650 lb cos 35.1 = 1350 lb < Perpendicular component: F2 = 1650 lb sin 35.1 = lb < 19. R x = FF xx = 3.4 cos cos 243 R x = kips R y = FF yy = 3.4 sin sin 243 R y = kips R 2 = ( 4.365) 2 + ( 1.672) 2 R = 4.67 kip < tan θ = = θ = ~ 21.0 in 3 rd quadrant or θ = 201 < 20. R x = FF xx R x = 12.5 cos cos 105 = 7.85 kn R y = FF yy = 12.5 sin sin 105 = kn R 2 = (7.85) 2 + (17.36) 2 = R = kn < θ = arctan (17.36/7.85) θ = < 21. FF xx = 2.15 cos 115 R x = kn FF yy = 2.15 sin sin ( 90 ) R y = kn R 2 = ( 0.909) 2 + ( 1.511) 2 R = 1.76 kn < θ 1 = arctan ( 1.511/ 0.909) = 59.0 θ = = 121 < 22. FF xx = (3/ 13) R x = kips FF yy = 3.81(2/ 13) 3.65 R y = kips R 2 = ( 7.900) 2 + ( 1.537) 2 R = 8.05 kips < θ 1 = arctan ( 1.537/ 7.900) = 11.0 θ = = 169 < 23. R x = FF xx = 0 FF xx = S x cos cos 140 = 0 S x = 83.3 N R y = FF yy = 500 FF yy = S y sin sin 140 = 500, S y = N S 2 = (83.3) 2 + (355.2) 2 ; S = 365 N < Chapter 2 16

20 θ = arctan (355.2/83.3) = < 24. R x = FF xx = 4800 FF xx = V x cos cos 45 V x = 2616 lb R y = FF yy = 0 FF yy = 1000 sin sin 10 + V y = 0 V y = lb V 2 = (2616) 2 + (967.6) 2 V = 2790 lb < θ = arctan ( 967.6/2616) = 20.3 < 25. Solve Prob. 2.1 by components. R x = FF xx = 20 cos cos 65 = 30.1 lb R y = FF yy = 20 sin sin 65 = lb R 2 = (30.1) 2 + (18.87) 2 R = 35.5 lb < θ = arctan ( 18.87/30.1) = 32.1 < 26. Solve Prob. 2.2 by components. R x = FF xx = 80 cos cos 110 = 53.7 N R y = FF yy = 80 sin sin 110 = 85.5 N R 2 = (53.7) 2 + (85.5) 2 R = N < θ = arctan ( 85.5/53.7) = 57.9 < 27. Solve Prob. 2.3 by components. R x = FF xx = 1.5 cos cos 145 = kips R y = FF yy = 1.5 sin sin 145 = 2.51 kips R 2 = (1.004) 2 + (2.70) 2 R = 2.70 kips < θ 1 = arctan (2.51/ 1.004) = 68.2 θ = = < 28. Solve Prob. 2.4 by components. R x = FF xx = 6.0 cos cos 110 = 2.01 kn R y = FF yy = 6.0 sin sin 110 = kn R 2 = (2.01) 2 + (11.43) 2 R = kn < θ = arctan (11.43/2.01) = < 29. Solve Prob. 2.9 by components. R x = FF xx = 30 cos cos cos 120 = 54.7 kn R y = FF yy = sin sin sin 120 = kn R 2 = (54.7) 2 + (15.34) 2 R = 56.8 kn < θ 1 = arctan (15.34/ 54.7) = 15.7 θ = = < 30. Solve Prob by components. R x = FF xx = 8 cos cos cos 110 = kips R y = FF yy = sin sin sin 110 = 7.62 kips R 2 = (10.81) 2 + (7.62) 2 Chapter 2 17

21 R = kips < θ = arctan ( 7.62/10.81) = 35.2 < 31. Solve Prob by components. R x = FF xx = cos cos 120 = 352 lb R y = FF yy = 180 sin sin sin 90 = lb R 2 = (352) 2 + (17.18) 2 R = 352 lb < θ = arctan (17.18/352) = < 32. Solve Prob by components. R x = FF xx = cos cos 120 = 7.83 kips R y = FF yy = 4.0 sin sin sin 90 = 3.22 kips R 2 = (7.83) 2 + (3.22) 2 R = 8.47 kips < θ = arctan (3.22/7.83) = < 33. Find F 1 F 2 Prob by comp. R x = FF xx = 3.0 cos cos 140 = kips R y = FF yy = 3.0 sin sin 140 = 4.33 kips R 2 = (0.647) 2 + (4.33) 2 R = 4.37 kips θ 1 = arctan (4.33/ 0.647) = 81.6 < θ = = < 34. Find P Q Prob by comp. R x = FF xx = 11.5 cos cos 150 = kn R y = FF yy = 11.5 sin sin 150 = 4.86 kn R 2 = (13.80) 2 + (4.86) 2 R = kn < θ 1 = arctan (4.86/ 13.80) = 19.4 θ = = < 35. FF xx = 1.65 cos cos 90 = kn FF yy = 1.65 sin sin 90 = kn Q = 1.92 kn R 2 = (0.697) 2 + (3.415) 2 ; R = 3.49 kn < θ = arctan ( 3.415/0.697) = 78.5 < 36. FF xx = 4.5 cos ( 3/13) = 7.50 kips FF yy = 3.5 sin (2/13) = 5.50 kips R 2 = (7.50) 2 + (5.50) 2 ; R = 9.30 kips < θ 1 = arctan (5.50/ 7.50) = 36.3 θ = = < Chapter 2 18

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

Κλινικοί Εκπαιδευτές: σύντομη περιγραφή ρόλου, κριτήρια επιλογής & πρόγραμμα εκπαίδευσης

Κλινικοί Εκπαιδευτές: σύντομη περιγραφή ρόλου, κριτήρια επιλογής & πρόγραμμα εκπαίδευσης σύντομη περιγραφή ρόλου, κριτήρια επιλογής & πρόγραμμα εκπαίδευσης 1 Σεπτέμβριος 2012 2012 4 η ΥΠΕ. Με επιφύλαξη παντός δικαιώματος. Απαγορεύεται αναδημοσίευση της έκδοσης σε οποιαδήποτε μορφή, ολόκληρης

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com Adda47 No. APP for Banking & SSC Preparation Website:store.adda47.com Email:ebooks@adda47.com S. Ans.(d) Given, x + x = 5 3x x + 5x = 3x x [(x + x ) 5] 3 (x + ) 5 = 3 0 5 = 3 5 x S. Ans.(c) (a + a ) =

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Review Exercises for Chapter 7

Review Exercises for Chapter 7 8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Answers to practice exercises

Answers to practice exercises Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)

Διαβάστε περισσότερα

1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =

1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 = IDE S8 Test 6 Name:. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = = ΣF y = = ΣM A = = (counter-clockwise as positie). Sketch

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

TeSys contactors a.c. coils for 3-pole contactors LC1-D

TeSys contactors a.c. coils for 3-pole contactors LC1-D References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

2 Προετοιμαςία & χοριγθςθ IV υγρϊν. Όροι Χρήςησ

2 Προετοιμαςία & χοριγθςθ IV υγρϊν. Όροι Χρήςησ Προετοιμασία & χορήγηση IV υγρών 4θ Υγειιονομιικι Περιιφζρειια Μακεδονίίασ Θράκθσ 2 Προετοιμαςία & χοριγθςθ IV υγρϊν Όροι Χρήςησ Το πρωτόκολλο νοςθλευτικισ πρακτικισ, που ακολουκεί, αναπτφχκθκε από κλινικοφσ

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Seria : 0. T_ME_(+B)_Strength of Materia_9078 Dehi Noida Bhopa Hyderabad Jaipur Luckno Indore une Bhubanesar Kokata atna Web: E-mai: info@madeeasy.in h: 0-56 CLSS TEST 08-9 MECHNICL ENGINEERING Subject

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

θ p = deg ε n = με ε t = με γ nt = μrad

θ p = deg ε n = με ε t = με γ nt = μrad IDE 110 S08 Test 7 Name: 1. The strain components ε x = 946 με, ε y = -294 με and γ xy = -362 με are given for a point in a body subjected to plane strain. Determine the strain components ε n, ε t, and

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

2 Διενζργεια Διενζργεια υψθλοφ εκκενωτικοφ υποκλυςμοφ. Όροι Χρήςησ

2 Διενζργεια Διενζργεια υψθλοφ εκκενωτικοφ υποκλυςμοφ. Όροι Χρήςησ Διενϋργεια Υψηλού Εκκενωτικού Υποκλυςμού 4η Υγειιονομιικό Περιιφϋρειια Μακεδονύύασ Θρϊκησ 2 Διενζργεια Διενζργεια υψθλοφ εκκενωτικοφ υποκλυςμοφ Όροι Χρήςησ Το πρωτόκολλο νοςθλευτικισ πρακτικισ, που ακολουκεί,

Διαβάστε περισσότερα

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1 University of Waterloo Department of Mechanical Engineering ME 3 - Mechanical Design 1 Partial notes Part 1 G. Glinka Fall 005 1 Forces and stresses Stresses and Stress Tensor Two basic types of forces

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Theoretical Question 2: Strong Resistive Electromagnets SOLUTION

Theoretical Question 2: Strong Resistive Electromagnets SOLUTION 25 April 2 Page of 6 (Document Released: 4:3, 4/24) Theoretical Question 2: Strong Resistive Electromagnets SOLUTION Part A. Magnetic Fields on the Axis of the Coil (a) At the point xx on the axis, the

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

SIEMENS Squirrel Cage Induction Standard Three-phase Motors - SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque

Διαβάστε περισσότερα

Mechanics of Materials Lab

Mechanics of Materials Lab Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 6 3 1 7 7 7 6 4 0 6 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 October/November 2013 Candidates answer

Διαβάστε περισσότερα

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5) IDE 0 S08 Test 5 Name:. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? ( points) Areas () and (5) Areas () through (5) Areas (), ()

Διαβάστε περισσότερα

Chapter 2. Stress, Principal Stresses, Strain Energy

Chapter 2. Stress, Principal Stresses, Strain Energy Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10) Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Supplementary Information 1.

Supplementary Information 1. Supplementary Information 1. Fig. S1. Correlations between litter-derived-c and N (percent of initial input) and Al-/Fe- (hydr)oxides dissolved by ammonium oxalate (AO); a) 0 10 cm; b) 10 20 cm; c) 20

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Matrices Review. Here is an example of matrices multiplication for a 3x3 matrix

Matrices Review. Here is an example of matrices multiplication for a 3x3 matrix Matrices Review Matri Multiplication : When the number of columns of the first matri is the same as the number of rows in the second matri then matri multiplication can be performed. Here is an eample

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

ο αεροσολσ σλοω χλιµατιχ ωαρµινγ? Ηαλτινγ τηε σπρεαδ οφ ΑΙ Σ. Χαν παρτιχλε πηψσιχσ χοµε βαχκ?

ο αεροσολσ σλοω χλιµατιχ ωαρµινγ? Ηαλτινγ τηε σπρεαδ οφ ΑΙ Σ. Χαν παρτιχλε πηψσιχσ χοµε βαχκ? ΦΕΒΡΥΑΡΨ 1994 3.95 ο αεροσολσ σλοω χλιµατιχ ωαρµινγ? Ηαλτινγ τηε σπρεαδ οφ ΑΙ Σ. Χαν παρτιχλε πηψσιχσ χοµε βαχκ? ιγιταλ φοργερψ χαν χρεατε πηοτογραπηιχ εϖιδενχε φορ εϖεντσ τηατ νεϖερ ηαππενεδ. Φεβρυαρψ

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 0 5 1 0 3 4 8 7 8 5 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 May/June 2013 Candidates answer on the

Διαβάστε περισσότερα

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Chapter 7 Analytic Trigonometry

Chapter 7 Analytic Trigonometry Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding

Διαβάστε περισσότερα

KEPKYPA Â Î Û Â È KEPKYPA

KEPKYPA Â Î Û Â È KEPKYPA KEPKYPA Â Î Û Â È KEPKYPA ISBN: 978-960-9490-06-1 Copyright: Εκδόσεις ΚΕΡΚΥΡΑ Α.Ε. Economia PUBLISHING 1η έκδοση, Νοέµβριος 2010 Ελεύθερη έµµετρη απόδοση: ηµήτρης Β. Χρυσοβιτσιώτης Εικονογράφηση: Ειρήνη

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

The logic of the Mechanics of Materials

The logic of the Mechanics of Materials Torsion The logic of the Mechanics of Materials Torsion Chapter 5 Torsion Torsional failures (ductile, buckling, buckling): Bars subjected to Torsion Let us now consider a straight bar supported at one

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

5.0 DESIGN CALCULATIONS

5.0 DESIGN CALCULATIONS 5.0 DESIGN CALCULATIONS Load Data Reference Drawing No. 2-87-010-80926 Foundation loading for steel chimney 1-00-281-53214 Boiler foundation plan sketch : Figure 1 Quantity Unit Dia of Stack, d 6.00 m

Διαβάστε περισσότερα