Nonequilibrium quantum condensates: from microscopic theory to macroscopic phenomenology

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Nonequilibrium quantum condensates: from microscopic theory to macroscopic phenomenology"

Transcript

1 Nonequilibrium quantum condensates: from microscopic theory to macroscopic phenomenology J. M. J. Keeling N. G. Berloff, M. O. Borgh, P. B. Littlewood, F. M. Marchetti, M. H. Szymanska. Royal Holloway Condensed Matter Seminar, October 2009 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 1 / 36

2 Acknowledgements People: Funding: Pembroke College Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 2 / 36

3 Microcavity Polaritons Cavity Quantum Wells Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 3 / 36

4 Microcavity Polaritons Energy Photon UP LP Exciton [Pekar, JETP(1958)] [Hopfield, Phys. Rev.(1958)] Cavity Quantum Wells Momentum Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 3 / 36

5 Microcavity Polaritons Energy Photon UP LP Exciton [Pekar, JETP(1958)] [Hopfield, Phys. Rev.(1958)] Cavity Quantum Wells Momentum Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 3 / 36

6 Microcavity Polaritons Energy Photon UP LP Exciton [Pekar, JETP(1958)] [Hopfield, Phys. Rev.(1958)] Cavity Quantum Wells Momentum Cavity photons: ω k = ω0 2 + c2 k 2 ω 0 + k 2 /2m m 10 4 m e Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 3 / 36

7 Microcavity Polaritons Energy Photon UP LP Exciton [Pekar, JETP(1958)] [Hopfield, Phys. Rev.(1958)] Cavity Quantum Wells Momentum Cavity photons: ω k = ω0 2 + c2 k 2 ω 0 + k 2 /2m m 10 4 m e Energy [mev] UP Photon Exciton -10 LP Angle [degrees] Wavevector [10 7 cm -1 ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 3 / 36

8 Non-equilibrium: flux and baths θ Photon Exciton Energy In plane momentum Cavity Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 4 / 36

9 Polariton experiments: Momentum/Energy distribution [Kasprzak, et al., Nature, 2006] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 5 / 36

10 Polariton experiments: Coherence Basic idea: Sample Beam Splitter CCD Tunable Delay Retroreflector Coherence map: + = [Kasprzak, et al., Nature, 2006] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 6 / 36

11 Other polariton condensation experiments Stress traps for polaritons [Balili et al Science (2007)] Temporal coherence and line narrowing [Love et al Phys. Rev. Lett (2008)] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 7 / 36

12 Other polariton condensation experiments Quantised vortices in disorder potential [Lagoudakis et al Nature Phys. 4, 706 (2008)] Changes to excitation spectrum [Utsunomiya et al Nature Phys (2008)] Soliton propagation [Amo et al Nature (2009)] Driven superfluidity [Amo et al Nature Phys. (2009) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 8 / 36

13 Overview 1 Introduction to microcavity polaritons 2 Model and review of equilibrium results Disorder-localised exciton model Equilibrium mean field theory 3 Microscopic non-equilibrium model Model and mean-field theory Fluctuations Stability of normal state lasing vs condensation Condensed spectrum 4 Macroscopic phenomenology Gross Pitaevskii equation in an harmonic trap Internal Josephson effect and spatial variation Spin degree of freedom Spin and spatial degrees of freedom 5 Conclusions Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 9 / 36

14 Excitons in a disorderd Quantum well Cavity Quantum Wells Exciton states in disorder: [ ] 2 R + V (R) Φ α (R) = ε α Φ α (R) 2m X V ( R) smoothed by exciton Bohr radius [PRL (2006); PRB (2007)] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 10 / 36

15 Excitons in a disorderd Quantum well Cavity Quantum Wells Exciton states in disorder: [ ] 2 R + V (R) Φ α (R) = ε α Φ α (R) 2m X V ( R) smoothed by exciton Bohr radius Want: Energies ε α Oscillator strengths: g α,p ψ 1s (0)Φ α,p [PRL (2006); PRB (2007)] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 10 / 36

16 Excitons in a disorderd Quantum well Cavity Quantum Wells Exciton states in disorder: [ ] 2 R + V (R) Φ α (R) = ε α Φ α (R) 2m X V ( R) smoothed by exciton Bohr radius Want: Energies ε α Oscillator strengths: g α,p ψ 1s (0)Φ α,p g αp=0 2 [arb. units] g 2 (ε,0) DoS(ε) ε-e x [mev] [PRL (2006); PRB (2007)] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 10 / 36

17 Polariton system model Polariton model Disorder-localised excitons Treat disorder sites as two-level (exciton/no-exciton) Propagating (2D) photons Energy Cavity Quantum Wells Exciton photon coupling g. Position Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 11 / 36

18 Polariton system model Polariton model Disorder-localised excitons Treat disorder sites as two-level (exciton/no-exciton) Propagating (2D) photons Exciton photon coupling g. Energy Cavity Quantum Wells H sys = k ω k ψ k ψ k + α Position [ɛ α (b αb α a αa ) α + 1 ] g α,k ψ k b αa α + H.c. Area System Excitons Cavity mode Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 11 / 36

19 Equilibrium: Mean-field theory H sys = k ω k ψ k ψ k + α [ɛ α (b αb α a αa ) α + g ] α,k ψ k b αa α + H.c. A g αp=0 2 [arb. units] g 2 (ε,0) DoS(ε) ε-e x [mev] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 12 / 36

20 Equilibrium: Mean-field theory H sys = k ω k ψ k ψ k + α [ɛ α (b αb α a αa ) α + g ] α,k ψ k b αa α + H.c. A Mean-field theory: Self-consistent polarisation and field [ ] i t + ω 0 2 ψ = 1 g α P α 2m A α g αp=0 2 [arb. units] g 2 (ε,0) DoS(ε) ε-e x [mev] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 12 / 36

21 Equilibrium: Mean-field theory H sys = k ω k ψ k ψ k + α [ɛ α (b αb α a αa ) α + g ] α,k ψ k b αa α + H.c. A Mean-field theory: Self-consistent polarisation and field ] [ µ + ω 0 2 ψ = 1 g α a 2m αb α A α g αp=0 2 [arb. units] g 2 (ε,0) DoS(ε) ε-e x [mev] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 12 / 36

22 Equilibrium: Mean-field theory H sys = k ω k ψ k ψ k + α [ɛ α (b αb α a αa ) α + g ] α,k ψ k b αa α + H.c. A Mean-field theory: Self-consistent polarisation and field ] [ µ + ω 0 2 ψ = 1 g α ψ g α tanh (βe α ) 2m A 2E α α ( ) E 2 ɛα µ 2 α = + g 2 2 g αp=0 2 [arb. units] g 2 (ε,0) DoS(ε) αψ ε-e x [mev] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 12 / 36

23 Equilibrium: Mean-field theory H sys = k ω k ψ k ψ k + α [ɛ α (b αb α a αa ) α + g ] α,k ψ k b αa α + H.c. A Mean-field theory: Self-consistent polarisation and field ] [ µ + ω 0 2 ψ = 1 g α ψ g α 2m A Density ρ = ψ A α α ( E 2 ɛα µ α = 2 tanh (βe α ) 2E α ) 2 + gαψ 2 2 [ 1 2 ɛ ] α µ tanh(βe α ) 4E α g αp=0 2 [arb. units] g 2 (ε,0) DoS(ε) ε-e x [mev] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 12 / 36

24 Equilibrium: Mean-field theory H sys = k ω k ψ k ψ k + α [ɛ α (b αb α a αa ) α + g ] α,k ψ k b αa α + H.c. A Mean-field theory: Self-consistent polarisation and field ] [ µ + ω 0 2 ψ = 1 g α ψ g α 2m A α ( E 2 ɛα µ α = 2 tanh (βe α ) 2E α ) 2 + gαψ 2 2 g αp=0 2 [arb. units] 40 g 2 (ε,0) DoS(ε) ε-e x [mev] non-condensed Density ρ = ψ A α [ 1 2 ɛ ] α µ tanh(βe α ) 4E α k B T condensed n [cm -2 ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 12 / 36

25 Overview 1 Introduction to microcavity polaritons 2 Model and review of equilibrium results Disorder-localised exciton model Equilibrium mean field theory 3 Microscopic non-equilibrium model Model and mean-field theory Fluctuations Stability of normal state lasing vs condensation Condensed spectrum 4 Macroscopic phenomenology Gross Pitaevskii equation in an harmonic trap Internal Josephson effect and spatial variation Spin degree of freedom Spin and spatial degrees of freedom 5 Conclusions Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 13 / 36

26 Non-equilibrium system Photon Exciton Ph Ex Energy In plane momentum Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 14 / 36

27 Non-equilibrium system Photon Exciton Ph Ex Energy In plane momentum Lifetime Thermalisation Atoms 10s 10ms Excitons a 50ns 0.2ns Polaritons 5ps 0.5ps Magnons b 1µs(??) 100ns(?) a Coupled quantum wells. [Hammack et al PRB (2007)] b Yttrium Iron Garnett. [Demokritov et al, Nature (2007)] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 14 / 36

28 Non-equilibrium system Photon Exciton Ph Ex Energy In plane momentum Lifetime Thermalisation Linewidth Temperature Atoms 10s 10ms mev 10 8 K 10 9 mev Excitons a 50ns 0.2ns mev 1K 0.1meV Polaritons 5ps 0.5ps 0.5meV 20K 2meV Magnons b 1µs(??) 100ns(?) mev 300K 30meV a Coupled quantum wells. [Hammack et al PRB (2007)] b Yttrium Iron Garnett. [Demokritov et al, Nature (2007)] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 14 / 36

29 Non-equilibrium model: baths Pumping Bath γ Excitons System Cavity mode κ Bulk photon modes H = H sys + H sys,bath + H bath Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 15 / 36

30 Non-equilibrium model: baths Pumping Bath γ Excitons System Cavity mode κ Bulk photon modes H = H sys + H sys,bath + H bath Schematically: pump γ, decay κ H sys,bath κψk Ψ p + ) γ (a αa β + b αb β + H.c. p, k α,β Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 15 / 36

31 Non-equilibrium model: baths Pumping Bath γ Excitons System Cavity mode κ Bulk photon modes H = H sys + H sys,bath + H bath Schematically: pump γ, decay κ H sys,bath κψk Ψ p + ) γ (a αa β + b αb β + H.c. p, k α,β Bath correlations, Ψ Ψ, A A, B B fixed: Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 15 / 36

32 Non-equilibrium model: baths Pumping Bath γ Excitons System Cavity mode κ Bulk photon modes H = H sys + H sys,bath + H bath Schematically: pump γ, decay κ H sys,bath κψk Ψ p + ) γ (a αa β + b αb β + H.c. p, k α,β Bath correlations, Ψ Ψ, A A, B B fixed: Ψ bath is empty. Pumping bath thermal, µ B, T : na ε nb x µ /2 0 +µ B B/2 ε x Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 15 / 36

33 Non-equilibrium theory; mean-field Look for mean-field solution, ψ(r, t) = ψ 0 e iµ S t. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 16 / 36

34 Non-equilibrium theory; mean-field Look for mean-field solution, ψ(r, t) = ψ 0 e iµ S t. Gap equation: (µ s ω 0 + iκ) ψ 0 = χ(ψ 0, µ s )ψ 0 Susceptibility: χ(ψ 0, µ s ) = g 2 γ excitons dν (F a + F b )ν + (F b F a )(iγ + ɛ α 1 2 µ S) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 16 / 36

35 Non-equilibrium theory; mean-field Look for mean-field solution, ψ(r, t) = ψ 0 e iµ S t. Gap equation: (µ s ω 0 + iκ) ψ 0 = χ(ψ 0, µ s )ψ 0 Susceptibility: E 2 α = ɛ 2 α + g 2 ψ 0 2 χ(ψ 0, µ s ) = g 2 γ excitons dν (F a + F b )ν + (F b F a )(iγ + ɛ α 1 2 µ S) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 16 / 36

36 Non-equilibrium theory; mean-field Look for mean-field solution, ψ(r, t) = ψ 0 e iµ S t. Gap equation: (µ s ω 0 + iκ) ψ 0 = χ(ψ 0, µ s )ψ 0 Susceptibility: Eα 2 = ɛ 2 α + g 2 ψ 0 2, F a,b (ν) = F [ν 1 2 (µ s µ B )] χ(ψ 0, µ s ) = g 2 γ dν (F a + F b )ν + (F b F a )(iγ + ɛ α 1 2 µ S) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ] excitons Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 16 / 36

37 Non-equilibrium theory; mean-field Look for mean-field solution, ψ(r, t) = ψ 0 e iµ S t. Gap equation: (µ s ω 0 + iκ) ψ 0 = χ(ψ 0, µ s )ψ 0 Susceptibility: Eα 2 = ɛ 2 α + g 2 ψ 0 2, F a,b (ν) = F [ν 1 2 (µ s µ B )] χ(ψ 0, µ s ) = g 2 γ dν (F a + F b )ν + (F b F a )(iγ + ɛ α 1 2 µ S) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ] excitons Bath Temperature Increasing γ Density Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 16 / 36

38 Limits of gap equation Gap equation: µ s ω 0 + iκ = g 2 γ excitons dν (F a + F b )ν + (F b F a )(iγ + ɛ α 1 2 µ S) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 17 / 36

39 Limits of gap equation Gap equation: µ s ω 0 + iκ = g 2 γ excitons dν (F a + F b )ν + (F b F a )(iγ + ɛ α 1 2 µ S) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ] Laser Limit Imaginary part: Gain vs Loss. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 17 / 36

40 Limits of gap equation Gap equation: µ s ω 0 + iκ = g 2 γ excitons dν (F a + F b )ν + (F b F a )(iγ + ɛ α 1 2 µ S) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ] Laser Limit Imaginary part: Gain vs Loss. If F b (ω) F a (ω) 2N 0 κ = g 2 γ excitons N 0 2(E 2 α + γ 2 ) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 17 / 36

41 Limits of gap equation Gap equation: µ s ω 0 + iκ = g 2 γ excitons dν (F a + F b )ν + (F b F a )(iγ + ɛ α 1 2 µ S) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ] Laser Limit Imaginary part: Gain vs Loss. If F b (ω) F a (ω) 2N 0 κ = g 2 γ excitons N 0 2(Eα 2 + γ 2 ) = g 2 2γ Inversion Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 17 / 36

42 Limits of gap equation Gap equation: µ s ω 0 + iκ = g 2 γ excitons dν (F a + F b )ν + (F b F a )(iγ + ɛ α 1 2 µ S) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ] Laser Limit Imaginary part: Gain vs Loss. If F b (ω) F a (ω) 2N 0 κ = g 2 γ excitons N 0 2(Eα 2 + γ 2 ) = g 2 2γ Inversion Equilibrium limit: finite T set by pumping, need κ γ. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 17 / 36

43 Limits of gap equation Gap equation: µ s ω 0 + iκ = g 2 γ excitons dν (F a + F b )ν + (F b F a )(iγ + ɛ α 1 2 µ S) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ] Laser Limit Imaginary part: Gain vs Loss. If F b (ω) F a (ω) 2N 0 κ = g 2 γ excitons N 0 2(Eα 2 + γ 2 ) = g 2 2γ Inversion Equilibrium limit: finite T set by pumping, need κ γ. Require: F a (ω) = F b (ω) so µ S = µ B Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 17 / 36

44 Limits of gap equation Gap equation: µ s ω 0 + iκ = g 2 γ excitons dν (F a + F b )ν + (F b F a )(iγ + ɛ α 1 2 µ S) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ] Laser Limit Imaginary part: Gain vs Loss. If F b (ω) F a (ω) 2N 0 κ = g 2 γ excitons N 0 2(Eα 2 + γ 2 ) = g 2 2γ Inversion Equilibrium limit: finite T set by pumping, need κ γ. Require: F a (ω) = F b (ω) so µ S = µ B Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 17 / 36

45 Limits of gap equation Gap equation: µ s ω 0 + iκ = g 2 γ excitons dν (F a + F b )ν + (F b F a )(iγ + ɛ α 1 2 µ S) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ] Laser Limit Imaginary part: Gain vs Loss. If F b (ω) F a (ω) 2N 0 κ = g 2 γ excitons N 0 2(Eα 2 + γ 2 ) = g 2 2γ Inversion Equilibrium limit: finite T set by pumping, need κ γ. Require: F a (ω) = F b (ω) so µ S = µ B ω 0 µ s = g 2 ( ) βe 2E tanh 2 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 17 / 36

46 Overview 1 Introduction to microcavity polaritons 2 Model and review of equilibrium results Disorder-localised exciton model Equilibrium mean field theory 3 Microscopic non-equilibrium model Model and mean-field theory Fluctuations Stability of normal state lasing vs condensation Condensed spectrum 4 Macroscopic phenomenology Gross Pitaevskii equation in an harmonic trap Internal Josephson effect and spatial variation Spin degree of freedom Spin and spatial degrees of freedom 5 Conclusions Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 18 / 36

47 Fluctuations Stability, Luminescence, Absorption Keldysh approach: [ D R,A = iθ[±(t t )] ψ, ψ ] [ D K = i ψ, ψ ] + Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 19 / 36

48 Fluctuations Stability, Luminescence, Absorption Keldysh approach: [ D R D A = i ψ, ψ ] [ D K = i ψ, ψ ] + Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 19 / 36

49 Fluctuations Stability, Luminescence, Absorption Keldysh approach: [ D R D A = i ψ, ψ ] [ D K = i ψ, ψ ] = (2n(ω) + 1)(D R D A ) + Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 19 / 36

50 Fluctuations Stability, Luminescence, Absorption [ D R D A = i ψ, ψ ] Keldysh approach: [ D K = i ψ, ψ ] = (2n(ω) + 1)(D R D A ) + [ 1 D (ω)] R = A(ω) + ib(ω), [ D 1 (ω) ] K = ic(ω), Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 19 / 36

51 Fluctuations Stability, Luminescence, Absorption [ D R D A = i ψ, ψ ] Keldysh approach: [ D K = i ψ, ψ ] = (2n(ω) + 1)(D R D A ) + [ 1 D (ω)] R = A(ω) + ib(ω), [ D 1 (ω) ] K = ic(ω), D K = 1 [D R ] 1 [D 1 ] K 1 [D A ] 1 D R D A 1 = [D R ] 1 1 [D A ] 1 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 19 / 36

52 Fluctuations Stability, Luminescence, Absorption [ D R D A = i ψ, ψ ] Keldysh approach: [ D K = i ψ, ψ ] = (2n(ω) + 1)(D R D A ) + [ 1 D (ω)] R = A(ω) + ib(ω), [ D 1 (ω) ] K = ic(ω), D K = D R D A = ic(ω) B(ω) 2 + A(ω) 2 2B(ω) B(ω) 2 + A(ω) 2 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 19 / 36

53 Fluctuations Stability, Luminescence, Absorption Keldysh approach: [ D R D A = i ψ, ψ ] [ D K = i ψ, ψ ] = (2n(ω) + 1)(D R D A ) + [ 1 D (ω)] R = A(ω) + ib(ω), A(ω) [ D 1 (ω) ] 1 K = ic(ω), D K = D R D A = ic(ω) B(ω) 2 + A(ω) 2 2B(ω) B(ω) 2 + A(ω) 2 Intensity (a.u.) Density of states, 2 Im[D R ] Energy (units of g) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 19 / 36

54 Fluctuations Stability, Luminescence, Absorption Keldysh approach: [ D R (ω)] 1 = A(ω) + ib(ω), [ D 1 (ω) ] K = ic(ω), [ D R D A = i ψ, ψ ] [ D K = i ψ, ψ ] = (2n(ω) + 1)(D R D A ) A(ω) B(ω) 1 0 D K = D R D A = ic(ω) B(ω) 2 + A(ω) 2 2B(ω) B(ω) 2 + A(ω) 2 Intensity (a.u.) Density of states, 2 Im[D R ] Energy (units of g) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 19 / 36

55 Fluctuations Stability, Luminescence, Absorption Keldysh approach: [ D R (ω)] 1 = A(ω) + ib(ω), [ D 1 (ω) ] K = ic(ω), [ D R D A = i ψ, ψ ] [ D K = i ψ, ψ ] = (2n(ω) + 1)(D R D A ) A(ω) B(ω) 1 C(ω) 0 D K = D R D A = ic(ω) B(ω) 2 + A(ω) 2 2B(ω) B(ω) 2 + A(ω) 2 Intensity (a.u.) Density of states, 2 Im[D R ] Occupation, n(ω) Energy (units of g) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 19 / 36

56 Fluctuations Stability, Luminescence, Absorption Keldysh approach: [ D R (ω)] 1 = A(ω) + ib(ω), [ D 1 (ω) ] K = ic(ω), D K = D R D A = [ D R D A = i ψ, ψ ] [ D K = i ψ, ψ ] = (2n(ω) + 1)(D R D A ) + ic(ω) B(ω) 2 + A(ω) 2 2B(ω) B(ω) 2 + A(ω) 2 [ D R (ω)] 1 = (ω ω k )+iα(ω µ eff ) Intensity (a.u.) A(ω) B(ω) 1 C(ω) Density of states, 2 Im[D R ] Occupation, n(ω) Energy (units of g) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 19 / 36

57 Linewidth, inverse Green s function and gap equation A(ω) B(ω) 1 C(ω) 0 Intensity (a.u.) Density of states, 2 Im[D R ] Occupation, n(ω) Energy (units of g) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 20 / 36

58 Linewidth, inverse Green s function and gap equation Intensity (a.u.) A(ω) B(ω) 1 C(ω) Density of states, 2 Im[D R ] Occupation, n(ω) Energy (units of g) Energy of zero (units of g) Zero of Re Zero of Im Bath chemical potential, µ B /g Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 20 / 36

59 [D R ] 1 for a laser Maxwell-Bloch equations: t ψ = iω k ψ κψ + gp t P = 2iɛP ΓP + gψn t N = Γ(N 0 N) 2g(ψ P + P ψ) [ 1 D (ω)] R g 2 N 0 = ω ωk +iκ+ ω 2ɛ + iγ Energy of zero Zero of Re Zero of Im -(2γ/g) 2 (2γκ/g 2 ) System inversion, N Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 21 / 36

60 Fluctuations above transition When condensed [ 1 Det D R (ω, k)] = ω 2 c 2 k 2 Poles: ω = c k frequency Sound mode momentum [Szymańska et al., PRL 06; PRB 07] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 22 / 36

61 Fluctuations above transition When condensed [ ] 1 Det D R (ω, k) = (ω+ix) 2 +x 2 c 2 k 2 Poles: ω = ix ± c 2 k 2 x 2 frequency Real Imaginary momentum [Szymańska et al., PRL 06; PRB 07] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 22 / 36

62 Fluctuations above transition When condensed [ ] 1 Det D R (ω, k) = (ω+ix) 2 +x 2 c 2 k 2 Poles: ω = ix ± c 2 k 2 x 2 frequency Real Imaginary momentum Correlations (in 2D): ψ (r, t)ψ(0, r ) ψ 0 2 exp [ D φφ (t, r, r )] [Szymańska et al., PRL 06; PRB 07] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 22 / 36

63 Fluctuations above transition When condensed [ ] 1 Det D R (ω, k) = (ω+ix) 2 +x 2 c 2 k 2 Poles: ω = ix ± c 2 k 2 x 2 frequency Real Imaginary momentum Correlations (in 2D): ψ (r, t)ψ(0, r ) ψ 0 2 exp [ D φφ (t, r, r )] [ { ] ψ (r, t)ψ(0, 0 ψ 0 2 ln(r/ξ) r, t 0 exp η 1 2 ln(c2 t/xξ 2 ) r, t [Szymańska et al., PRL 06; PRB 07] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 22 / 36

64 Overview 1 Introduction to microcavity polaritons 2 Model and review of equilibrium results Disorder-localised exciton model Equilibrium mean field theory 3 Microscopic non-equilibrium model Model and mean-field theory Fluctuations Stability of normal state lasing vs condensation Condensed spectrum 4 Macroscopic phenomenology Gross Pitaevskii equation in an harmonic trap Internal Josephson effect and spatial variation Spin degree of freedom Spin and spatial degrees of freedom 5 Conclusions Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 23 / 36

65 Limits of gap equation Gap equation: (µ s ω 0 + iκ) ψ = χ(ψ, µ s )ψ Local density limit: Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 24 / 36

66 Limits of gap equation Gap equation: (µ s ω 0 + iκ) ψ = χ(ψ, µ s )ψ Local density limit: Gross-Pitaevskii equation ( i t + iκ [V (r) 2 2 ]) ψ(r) = χ(ψ(r, t))ψ(r, t) 2m Nonlinear, complex susceptibility χ(ψ(r, t)) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 24 / 36

67 Limits of gap equation Gap equation: (µ s ω 0 + iκ) ψ = χ(ψ, µ s )ψ Local density limit: Gross-Pitaevskii equation ( i t + iκ [V (r) 2 2 ]) ψ(r) = χ(ψ(r, t))ψ(r, t) 2m Nonlinear, complex susceptibility χ[e(ψ(r, t))], E 2 α = ɛ 2 α + g 2 ψ 0 2 i t ψ nlin = U ψ 2 ψ Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 24 / 36

68 Limits of gap equation Gap equation: (µ s ω 0 + iκ) ψ = χ(ψ, µ s )ψ Local density limit: Gross-Pitaevskii equation ( i t + iκ [V (r) 2 2 ]) ψ(r) = χ(ψ(r, t))ψ(r, t) 2m Nonlinear, complex susceptibility χ[e(ψ(r, t))], E 2 α = ɛ 2 α + g 2 ψ 0 2 i t ψ nlin = U ψ 2 ψ i t ψ loss = iκψ i t ψ gain = iγ eff (µ B )ψ Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 24 / 36

69 Limits of gap equation Gap equation: (µ s ω 0 + iκ) ψ = χ(ψ, µ s )ψ Local density limit: Gross-Pitaevskii equation ( i t + iκ [V (r) 2 2 ]) ψ(r) = χ(ψ(r, t))ψ(r, t) 2m Nonlinear, complex susceptibility χ[e(ψ(r, t))], E 2 α = ɛ 2 α + g 2 ψ 0 2 i t ψ loss = iκψ i t ψ nlin = U ψ 2 ψ i t ψ gain = iγ eff (µ B )ψ iγ ψ 2 ψ Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 24 / 36

70 Limits of gap equation Gap equation: (µ s ω 0 + iκ) ψ = χ(ψ, µ s )ψ Local density limit: Gross-Pitaevskii equation ( i t + iκ [V (r) 2 2 ]) ψ(r) = χ(ψ(r, t))ψ(r, t) 2m Nonlinear, complex susceptibility χ[e(ψ(r, t))], E 2 α = ɛ 2 α + g 2 ψ 0 2 i t ψ loss = iκψ i t ψ nlin = U ψ 2 ψ i t ψ gain = iγ eff (µ B )ψ iγ ψ 2 ψ i t ψ = [ 2 2 2m + V (r) + U ψ 2 + i ( γ eff (µ B ) κ Γ ψ 2) ] ψ Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 24 / 36

71 Gross-Pitaevskii equation: Harmonic trap i t ψ = [ 2 2 2m + mω2 2 r 2 + U ψ 2 + i ( γ eff κ Γ ψ 2) ] ψ [Keeling & Berloff, PRL, 08] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 25 / 36

72 Gross-Pitaevskii equation: Harmonic trap i t ψ = [ 2 2 2m + mω2 2 r 2 + U ψ 2 + i ( γ eff κ Γ ψ 2) ] ψ Density Radius [Keeling & Berloff, PRL, 08] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 25 / 36

73 Stability of Thomas-Fermi solution 1 2 tρ+ (ρv) = 1 (γ net Γρ)ρ 3γ net 2Γ Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 26 / 36

74 Stability of Thomas-Fermi solution High m modes: δρ n,m e imθ r m tρ+ (ρv) = 1 (γ net Γρ)ρ Unstable growth 3γ net 2Γ Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 26 / 36

75 Stability of Thomas-Fermi solution High m modes: δρ n,m e imθ r m tρ+ (ρv) = 1 (γ netθ(r 0 r) Γρ)ρ Stabilised 3γ net 2Γ Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 26 / 36

76 Stability of Thomas-Fermi solution High m modes: δρ n,m e imθ r m tρ+ (ρv) = 1 (γ netθ(r 0 r) Γρ)ρ???? 3γ net 2Γ Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 26 / 36

77 Time evolution: t=0 t=2 t=22 t=30 t=35 t=40 t=45 t=56 [Keeling & Berloff, PRL, 08] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 27 / 36

78 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 28 / 36

79 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 28 / 36

80 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 28 / 36

81 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 28 / 36

82 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 28 / 36

83 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 28 / 36

84 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 28 / 36

85 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 28 / 36

86 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 28 / 36

87 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 28 / 36

88 Why vortices: chemical potential vs size µ Thomas-Fermi : µ = f (r 0 ) stable 1 Vortex : µ = Uγ net Γ unstable r 0 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 29 / 36

89 Overview 1 Introduction to microcavity polaritons 2 Model and review of equilibrium results Disorder-localised exciton model Equilibrium mean field theory 3 Microscopic non-equilibrium model Model and mean-field theory Fluctuations Stability of normal state lasing vs condensation Condensed spectrum 4 Macroscopic phenomenology Gross Pitaevskii equation in an harmonic trap Internal Josephson effect and spatial variation Spin degree of freedom Spin and spatial degrees of freedom 5 Conclusions Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 30 / 36

90 Polariton spin degree of freedom Results so far do not involve polariton spin: Left- and Right-circular polarised polaritons states. For weakly-interacting dilute Bose gas model: Tendency to biexciton formation: U 1 Magnetic field: Quantum well interface, break rotation symmetry: J 1 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 31 / 36

91 Polariton spin degree of freedom Results so far do not involve polariton spin: Left- and Right-circular polarised polaritons states. For weakly-interacting dilute Bose gas model: H = Ψ L 2 2m + Ψ R 2 2m + U 0 ( Ψ L 2 + Ψ R 2) 2 2 Tendency to biexciton formation: U 1 Magnetic field: Quantum well interface, break rotation symmetry: J 1 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 31 / 36

92 Polariton spin degree of freedom Results so far do not involve polariton spin: Left- and Right-circular polarised polaritons states. For weakly-interacting dilute Bose gas model: H = Ψ L 2 2m + Ψ R 2 2m + U 0 ( Ψ L 2 + Ψ R 2) 2 2 2U 1 Ψ L 2 Ψ R 2 + ( Ψ L 2 Ψ R 2) ) + J 1 (Ψ 2 L Ψ R + H.c. Tendency to biexciton formation: U 1 Magnetic field: Quantum well interface, break rotation symmetry: J 1 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 31 / 36

93 Non-equilibrium spinor system Spinor Gross-Pitaevskii equation: i t ψ L = [ 2 2 2m + V (r) U 0 ψ L 2 + (U 0 2U 1 ) ψ R 2 + i ( γ eff (µ B ) κ Γ ψ L 2)] ψ L + J 1 ψ R J 1 interconversion. How does this interact with currents. Two-mode case (neglect spatial variation): [Wouters PRB 08] To recap results write ψ L,R = ρ L,R e i(φ±θ/2), ρ L,R = R ± z. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 32 / 36

94 Non-equilibrium spinor system Spinor Gross-Pitaevskii equation: i t ψ L = [ 2 2 2m + V (r) U 0 ψ L 2 + (U 0 2U 1 ) ψ R 2 + i ( γ eff (µ B ) κ Γ ψ L 2)] ψ L + J 1 ψ R J 1 interconversion. How does this interact with currents. Two-mode case (neglect spatial variation): [Wouters PRB 08] To recap results write ψ L,R = ρ L,R e i(φ±θ/2), ρ L,R = R ± z. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 32 / 36

95 Non-equilibrium spinor system Spinor Gross-Pitaevskii equation: i t ψ L = [ 2 2 2m + V (r) U 0 ψ L 2 + (U 0 2U 1 ) ψ R 2 + i ( γ eff (µ B ) κ Γ ψ L 2)] ψ L + J 1 ψ R J 1 interconversion. How does this interact with currents. Two-mode case (neglect spatial variation): [Wouters PRB 08] To recap results write ψ L,R = ρ L,R e i(φ±θ/2), ρ L,R = R ± z. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 32 / 36

96 Non-equilibrium spinor system Spinor Gross-Pitaevskii equation: i t ψ L = [ 2 2 2m + V (r) U 0 ψ L 2 + (U 0 2U 1 ) ψ R 2 + i ( γ eff (µ B ) κ Γ ψ L 2)] ψ L + J 1 ψ R J 1 interconversion. How does this interact with currents. Two-mode case (neglect spatial variation): [Wouters PRB 08] To recap results write ψ L,R = ρ L,R e i(φ±θ/2), ρ L,R = R ± z. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 32 / 36

97 Non-equilibrium spinor system Spinor Gross-Pitaevskii equation: i t ψ L = [ 2 2 2m + V (r) U 0 ψ L 2 + (U 0 2U 1 ) ψ R 2 + i ( γ eff (µ B ) κ Γ ψ L 2)] ψ L + J 1 ψ R J 1 interconversion. How does this interact with currents. Two-mode case (neglect spatial variation): [Wouters PRB 08] To recap results write ψ L,R = ρ L,R e i(φ±θ/2), ρ L,R = R ± z. ( Ṙ = 2σ R γ net Γ R2 z 2) θ = 4U 1 z + 2 J 1z cos(θ) R 2 z 2 ż = 2(γ net 2ΓR)z 2J 1 R 2 z 2 sin(θ) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 32 / 36

98 Two-mode system summary ( Ṙ = 2σ R γ net Γ R2 z 2) θ = 4U 1 z + 2 J 1z cos(θ) R 2 z 2 ż = 2(γ net 2ΓR)z 2J 1 R 2 z 2 sin(θ). Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 33 / 36

99 Two-mode system summary ( Ṙ = 2σ R γ net Γ R2 z 2) θ = 4U 1 z + 2 J 1z cos(θ) R 2 z 2 ż = 2(γ net 2ΓR)z 2J 1 R 2 z 2 sin(θ) Josephson regime J U 1 R. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 33 / 36

100 Two-mode system summary ( Ṙ = 2σ R γ net Γ R2 z 2) θ = 4U 1 z + 2 J 1z cos(θ) R 2 z 2 ż = 2(γ net 2ΓR)z 2J 1 R 2 z 2 sin(θ) Josephson regime J U 1 R & z R. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 33 / 36

101 Two-mode system summary ( Ṙ = 2σ R γ net Γ R2 z 2) θ = 4U 1 z + 2 J 1z cos(θ) R 2 z 2 ż = 2(γ net 2ΓR)z 2J 1 R 2 z 2 sin(θ) Josephson regime J U 1 R & z R. R = γ net /Γ θ = 4U 1 z, ż = 2γ net z 2J 1 R 0 sin(θ) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 33 / 36

102 Two-mode system summary ( Ṙ = 2σ R γ net Γ R2 z 2) θ = 4U 1 z + 2 J 1z cos(θ) R 2 z 2 ż = 2(γ net 2ΓR)z 2J 1 R 2 z 2 sin(θ) Josephson regime J U 1 R & z R. R = γ net /Γ θ = 4U 1 z, ż = 2γ net z 2J 1 R 0 sin(θ) Damped, driven pendulum γ net 8U J 1 1 θ + 2γ net θ = 8U 1 J 1 R 0 sin(θ) 2γ net Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 33 / 36

103 Two-mode system summary ( Ṙ = 2σ R γ net Γ R2 z 2) θ = 4U 1 z + 2 J 1z cos(θ) R 2 z 2 ż = 2(γ net 2ΓR)z 2J 1 R 2 z 2 sin(θ) γ net 8U J 1 1 Josephson regime J U 1 R & z R. R = γ net /Γ θ = 4U 1 z, ż = 2γ net z 2J 1 R 0 sin(θ) Damped, driven pendulum γ net Bistable θ + 2γ net θ = 8U 1 J 1 R 0 sin(θ) 2γ net Stable limit cycle Stable fixed point 1.5 γ net Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 33 / 36

104 Trapped spinor system Consider: V (r) = mω 2 r 2 /2 γ net γ net Θ(r 0 r) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 34 / 36

105 Trapped spinor system Consider: V (r) = mω 2 r 2 /2 γ net γ net Θ(r 0 r) Track µ L,R = t ln ψ L,R vs. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 34 / 36

106 Trapped spinor system Consider: V (r) = mω 2 r 2 /2 γ net γ net Θ(r 0 r) Track µ L,R = t ln ψ L,R vs. 22 Simple case J 1 = γ net ; r 0 < r TF µ µ R L Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 34 / 36

107 Trapped spinor system Consider: V (r) = mω 2 r 2 /2 γ net γ net Θ(r 0 r) Track µ L,R = t ln ψ L,R vs. 22 Simple case J 1 = γ net ; r 0 < r TF. 20 Marginal case J 1 = γ net ; r 0 r TF. 18 θ = 4U 1 z = 0 16 causes L(R) to grow (shrink) µ µ R L Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 34 / 36 µ µ R L

108 Trapped spinor system Consider: V (r) = mω 2 r 2 /2 γ net γ net Θ(r 0 r) Track µ L,R = t ln ψ L,R vs. 22 Simple case J 1 = γ net ; r 0 < r TF. 20 Marginal case J 1 = γ net ; r 0 r TF. 18 µ R θ = 4U 1 z = 0 16 causes L(R) to grow (shrink) µ L µ µ R L Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 34 / 36

109 Trapped spinor system Consider: V (r) = mω 2 r 2 /2 γ net γ net Θ(r 0 r) Track µ L,R = t ln ψ L,R vs. 22 Simple case J 1 = γ net ; r 0 < r TF. 20 Marginal case J 1 = γ net ; r 0 r TF. 18 θ = 4U 1 z = 0 16 causes L(R) to grow (shrink) µ µ R L Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 34 / 36 µ µ R L

110 Trapped spinor system phase portraits Simple case not so simple µ µ R L Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 35 / 36

111 Trapped spinor system phase portraits Simple case not so simple µ µ R L Examine phase portrait t θ vs θ Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 35 / 36

112 Trapped spinor system phase portraits Simple case not so simple µ µ R L Examine phase portrait t θ vs θ Retrograde motion; limit cycles with winding 0,1,2; chaotic behaviour (large J 1, ) t θ=µ L µ R = Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 35 / 36

113 Trapped spinor system phase portraits Simple case not so simple µ µ R L Examine phase portrait t θ vs θ Retrograde motion; limit cycles with winding 0,1,2; chaotic behaviour (large J 1, ) t θ=µ L µ R t θ=µ L µ R = = 3.25 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 35 / 36

114 Conclusions Effects of pumping on mean-field theory Pumping Bath γ Excitons System Cavity mode κ Bulk photon modes Bath Temperature Increasing γ Density 1 Instability of normal state Translating: condensation lasing Energy of zero (units of g) Zero of Re Zero of Im Bath chemical potential, µ B /g Energy of zero Zero of Re Zero of Im -(2γ/g) 2 (2γκ/g 2 ) System inversion, N Modification to Thomas-Fermi profile Spontaneous rotating vortex lattice t=22 t=35 t=56 Spinor model. Steady states & fluctuations. Temperature neither polarised normal γ net Stable limit cycle Bistable Stable fixed point t θ=µ L µ R r l+r Magnetic field, l 1.5 γnet Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 36 / 36

115 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 37 / 55

116 Extra slides 6 Equilibrium results 7 Mean-field Keldysh theory 8 Condensate lineshape 9 More on vortices Instability of Thomas-Fermi Stability of lattice Observation 10 Spinor problem Two level systems; phase diagram Two model model,dispersion 11 Superfluidity Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 38 / 55

117 Fluctuation corrections to phase boundary Fluctuation corrections to density ρ ρ 0 + q δψ δψ In 2D system: modified critical condition: ρ s = ρ ρ normal = # 2m 2 k B T Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 39 / 55

118 Fluctuation corrections to phase boundary Fluctuation corrections to density ρ ρ 0 + q δψ δψ In 2D system: modified critical condition: ρ s = ρ ρ normal = # 2m non-condensed condensed 2 k B T k B T n [cm -2 ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 39 / 55

119 Fluctuation corrections to phase boundary Fluctuation corrections to density ρ ρ 0 + q δψ δψ In 2D system: modified critical condition: ρ s = ρ ρ normal = # 2m non-condensed condensed 2 k B T k B T n [cm -2 ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 39 / 55

120 Fluctuation corrections to phase boundary Fluctuation corrections to density ρ ρ 0 + q δψ δψ In 2D system: modified critical condition: ρ s = ρ ρ normal = # 2m 2 k B T Energy k k 40 non-condensed 30 condensed k B T n [cm -2 ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 39 / 55

121 Fluctuation corrections to phase boundary Fluctuation corrections to density ρ ρ 0 + q δψ δψ In 2D system: modified critical condition: ρ s = ρ ρ normal = # 2m 2 k B T Energy k k 40 non-condensed 30 condensed k B T n [cm -2 ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 39 / 55

122 Fluctuation corrections to phase boundary Fluctuation corrections to density ρ ρ 0 + q δψ δψ In 2D system: modified critical condition: ρ s = ρ ρ normal = # 2m 2 k B T Energy k k 40 non-condensed condensed k B T n [cm -2 ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 39 / 55

123 Fluctuation corrections to phase boundary Fluctuation corrections to density ρ ρ 0 + q δψ δψ In 2D system: modified critical condition: ρ s = ρ ρ normal = # 2m 2 k B T Energy k k 40 non-condensed 30 condensed k B T Second BCS crossover at na 2 B n [cm -2 ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 39 / 55

124 Blueshfit and experimental phase boundary Blueshift: Energy [mev] mean field threshold δ=5.3mev, k B T eff =17K n [cm 2 ] Clean limit: δe LP Ry X a 2 X n + Ω Ra 2 X n Here: Ω R a 2 X Ω Rξ 2 [PRB ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 40 / 55

125 Blueshfit and experimental phase boundary Blueshift: Energy [mev] mean field threshold Phase diagram: k B T δ=5.3mev, k B T eff =17K n [cm 2 ] non-condensed condensed n [cm -2 ] Clean limit: δe LP Ry X a 2 X n + Ω Ra 2 X n Here: Ω R a 2 X Ω Rξ 2 [PRB ] CdTe: T [K] n [cm -2 ] δ=5.5mev δ=5.3mev T cryo =5K δ=6.9mev, T cryo =15K δ=7.2mev, T cryo =5K 0 20 δ=7.6mev, T cryo =12K 0 20 δ=10.5mev, T cryo =5K 0 20 δ=12.5mev, T cryo 5K n [cm -2 ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 40 / 55

126 Zero temperature phase diagram ω 0 iκ = g 2 γ α dν (F a + F b )ν + (F b F a )( ɛ α + iγ) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ]. Pump bath coupling γ/g κ/g= µ B /g Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 41 / 55

127 Zero temperature phase diagram ω 0 iκ = g 2 γ α dν (F a + F b )ν + (F b F a )( ɛ α + iγ) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ]. Pump bath coupling γ/g κ/g= µ B /g Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 41 / 55

128 Zero temperature phase diagram ω 0 iκ = g 2 γ α dν (F a + F b )ν + (F b F a )( ɛ α + iγ) 2π [(ν E α ) 2 + γ 2 ][(ν + E α ) 2 + γ 2 ]. 1 Pump bath coupling γ/g µ B /g=-0.05 κ/g=0.05 µ B /g= κ/g µ B /g κ/g Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 41 / 55

129 Finite size effects: Single mode vs many mode ψ (r, t)ψ(0, r ) ψ 0 2 exp [ D φφ (t, r, r ) ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 42 / 55

130 Finite size effects: Single mode vs many mode ψ (r, t)ψ(0, r ) ψ 0 2 exp [ D φφ (t, r, r ) ] D φφ (t, r, r ) from sum of phase modes. Study ct r limit: n max D φφ (t, r, r) n dω 2π ϕ n (r) 2 (1 e iωt ) (ω + ix) 2 + x 2 (n ) 2 2 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 42 / 55

131 Finite size effects: Single mode vs many mode ψ (r, t)ψ(0, r ) ψ 0 2 exp [ D φφ (t, r, r ) ] D φφ (t, r, r ) from sum of phase modes. Study ct r limit: n max D φφ (t, r, r) n dω 2π ϕ n (r) 2 (1 e iωt ) (ω + ix) 2 + x 2 (n ) 2 2 x/t E max E max Energy D φφ 1 + ln(e max t/x) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 42 / 55

132 Finite size effects: Single mode vs many mode ψ (r, t)ψ(0, r ) ψ 0 2 exp [ D φφ (t, r, r ) ] D φφ (t, r, r ) from sum of phase modes. Study ct r limit: n max D φφ (t, r, r) n dω 2π ϕ n (r) 2 (1 e iωt ) (ω + ix) 2 + x 2 (n ) 2 2 E max x/t E max Energy D φφ 1 + ln(e max t/x) x/t Emax E max Energy D φφ ( πc 2x ) ( t ) 2x Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 42 / 55

133 Relating finite-size spectrum to self phase modulation Single mode spectrum: D φφ (t, r, r) dω ϕ n (r) 2 (1 e iωt ) 2π (ω + ix) 2 + x 2 (n ) 2 2 Connection to Kubo Formula [Eastham and Whittaker, arxiv: ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 43 / 55

134 Relating finite-size spectrum to self phase modulation Single mode spectrum: D φφ (t, r, r) dω ϕ n (r) 2 (1 e iωt ) 2π (ω + ix) 2 + x 2 2 Connection to Kubo Formula [Eastham and Whittaker, arxiv: ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 43 / 55

135 Relating finite-size spectrum to self phase modulation Single mode spectrum: D φφ (t, r, r) dω ϕ n (r) 2 (1 e iωt ) 2π (ω + ix) 2 + x 2 2 Connection to Kubo Formula [Eastham and Whittaker, arxiv: ] Imψ t φ = UδN φ Reψ Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 43 / 55

136 Relating finite-size spectrum to self phase modulation Single mode spectrum: D φφ (t, r, r) dω ϕ n (r) 2 (1 e iωt ) 2π (ω + ix) 2 + x 2 2 Connection to Kubo Formula [Eastham and Whittaker, arxiv: ] Imψ t φ = UδN t δn = ΓδN + F (t), F (t)f (t ) = Cδ(t t ) φ Reψ Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 43 / 55

137 Relating finite-size spectrum to self phase modulation Single mode spectrum: D φφ (t, r, r) dω ϕ n (r) 2 (1 e iωt ) 2π (ω + ix) 2 + x 2 2 Connection to Kubo Formula [Eastham and Whittaker, arxiv: ] Imψ φ Reψ t φ = UδN t δn = ΓδN + F (t), F (t)f (t ) = Cδ(t t ) dω D φφ (t) = 2π (1 eiωt ) φ ω φ ω Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 43 / 55

138 Relating finite-size spectrum to self phase modulation Single mode spectrum: D φφ (t, r, r) dω ϕ n (r) 2 (1 e iωt ) 2π (ω + ix) 2 + x 2 2 Connection to Kubo Formula [Eastham and Whittaker, arxiv: ] Imψ φ Reψ t φ = UδN t δn = ΓδN + F (t), F (t)f (t ) = Cδ(t t ) dω D φφ (t) = 2π (1 CU 2 eiωt ) ω(ω + iγ) 2 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 43 / 55

139 Relating finite-size spectrum to self phase modulation Single mode spectrum: D φφ (t, r, r) dω ϕ n (r) 2 (1 e iωt ) 2π (ω + ix) 2 + x 2 2 Connection to Kubo Formula [Eastham and Whittaker, arxiv: ] Imψ φ Reψ t φ = UδN t δn = ΓδN + F (t), F (t)f (t ) = Cδ(t t ) dω D φφ (t) = 2π (1 CU 2 eiωt ) ω(ω + iγ) 2 = CU2 [ 2Γ 3 Γt 1 + e Γt] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 43 / 55

140 Instability of Thomas-Fermi: details ψ = ρe iφ v = m φ 1 2 tρ + (ρv) = (γ net Γρ)ρ t v + (Uρ + mω2 2 r 2 + m 2 v 2 ) = 0 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 44 / 55

141 Instability of Thomas-Fermi: details ψ = ρe iφ v = m φ 1 2 tρ + (ρv) = (γ net Γρ)ρ t v + (Uρ + mω2 2 r 2 + m 2 v 2 ) = 0 Consider ρ ρ + δρ, v v + δv. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 44 / 55

142 Instability of Thomas-Fermi: details ψ = ρe iφ v = m φ If γ net, Γ 0, can find normal modes in 2D trap: 1 2 tρ + (ρv) = (γ net Γρ)ρ t v + (Uρ + mω2 2 r 2 + m 2 v 2 ) = 0 δρ n,m (r, θ, t) = e imθ h n,m (r)e iωn,mt ω n,m = ω2 m(1 + 2n) + 2n(n + 1) Consider ρ ρ + δρ, v v + δv. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 44 / 55

143 Instability of Thomas-Fermi: details ψ = ρe iφ v = m φ If γ net, Γ 0, can find normal modes in 2D trap: 1 2 tρ + (ρv) = (γ net Γρ)ρ t v + (Uρ + mω2 2 r 2 + m 2 v 2 ) = 0 δρ n,m (r, θ, t) = e imθ h n,m (r)e iωn,mt ω n,m = ω2 m(1 + 2n) + 2n(n + 1) Consider ρ ρ + δρ, v v + δv. Add weak pumping/decay: Instability [ ] m(1 + 2n) + 2n(n + 1) m 2 ω n,n ω n,m + iγ net 2m(1 + 2n) + 4n(n + 1) + m 2 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 44 / 55

144 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 45 / 55

145 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 45 / 55

146 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 45 / 55

147 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 45 / 55

148 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 45 / 55

149 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 45 / 55

150 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 45 / 55

151 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 45 / 55

152 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 45 / 55

153 Why vortices Density profile Thomas-Fermi in flattened trap Density Cross Section Rotating solution: i t ψ = (µ 2ΩL z )ψ [ρ(v Ω r)] = (γ net Θ(r 0 r) Γρ) ρ, µ = m 2 v Ω r 2 + m 2 r 2 (ω 2 Ω 2 ) + Uρ 2 2 ρ 2m ρ v = Ω r, Ω = ω, ρ = γ net Γ Θ(r 0 r) = µ U Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 45 / 55

154 Why vortices: chemical potential vs size µ Thomas-Fermi : µ = f (r 0 ) stable 1 Vortex : µ = Uγ net Γ unstable r 0 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 46 / 55

155 Observing vortices: fringe pattern Sample Beam Splitter CCD Tunable Delay Retroreflector + = Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 47 / 55

156 Observing vortices: fringe pattern Sample t=35 t=40 t=45 Beam Splitter CCD Tunable Delay Retroreflector t=35 t=40 t=45 + = Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 47 / 55

157 Spin in terms of twofour-level systems To include spin, replace 2 level system with 4 levels: 0, L, R, LR Bi-exciton binding E XX U 1 Mean-field: find polarisation given ψ L, ψ R. E XX has weak effect on T c [Marchetti et al PRB, 08] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 48 / 55

158 Spin in terms of twofour-level systems To include spin, replace 2 level system with 4 levels: 0, L, R, LR ĥ α = 0 gψ L gψ R 0 gψl ε α µ 0 gψ L gψr 0 ε α + µ gψ R 0 gψl gψr 2(ε α µ) E XX Bi-exciton binding E XX U 1 Mean-field: find polarisation given ψ L, ψ R. E XX has weak effect on T c [Marchetti et al PRB, 08] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 48 / 55

159 Spin in terms of twofour-level systems To include spin, replace 2 level system with 4 levels: 0, L, R, LR ĥ α = 0 gψ L gψ R 0 gψl ε α µ 0 gψ L gψr 0 ε α + µ gψ R 0 gψl gψr 2(ε α µ) E XX Bi-exciton binding E XX U 1 Mean-field: find polarisation given ψ L, ψ R. E XX has weak effect on T c [Marchetti et al PRB, 08] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 48 / 55

160 Spin in terms of twofour-level systems To include spin, replace 2 level system with 4 levels: 0, L, R, LR ĥ α = 0 gψ L gψ R 0 gψl ε α µ 0 gψ L gψr 0 ε α + µ gψ R 0 gψl gψr 2(ε α µ) E XX Bi-exciton binding E XX U 1 Mean-field: find polarisation given ψ L, ψ R. E XX has weak effect on T c [Marchetti et al PRB, 08] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 48 / 55

161 Spin in terms of twofour-level systems To include spin, replace 2 level system with 4 levels: 0, L, R, LR ĥ α = 0 gψ L gψ R 0 gψl ε α µ 0 gψ L gψr 0 ε α + µ gψ R 0 gψl gψr 2(ε α µ) E XX 30 Bi-exciton binding E XX U 1 Mean-field: find polarisation given ψ L, ψ R. 5 E XX has weak effect on T c 0 0 [Marchetti et al PRB, 08] T[K] No binding E XX = 4 mev E XX = 8 mev n [cm -2 ] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 48 / 55

162 Equilibrium phase diagrams J 1 = J 2 = 0. For U 1 = 0.5, Ψ L,R decouple neither T/T deg HFB approx Exact EOS 0.1 r l+r l /k B T deg Circular Eliptical transitions. [Rubo et al Phys. Lett. A 06; Keeling, Phys. Rev. B 08] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 49 / 55

163 Equilibrium phase diagrams J 1 = J 2 = 0. For U 1 = 0.5, Ψ L,R decouple neither J 1 = 0, J 2 0. Phase locking J 2 cos(2(θ L θ R )). T/T deg HFB approx Exact EOS 0.1 r l+r l /k B T deg Circular Eliptical transitions. [Rubo et al Phys. Lett. A 06; Keeling, Phys. Rev. B 08] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 49 / 55

164 Equilibrium phase diagrams J 1 = J 2 = 0. For U 1 = 0.5, Ψ L,R decouple. T/T deg HFB approx Exact EOS neither 0.1 r l+r l /k B T deg Circular Eliptical transitions. J 1 = 0, J 2 0. Phase locking J 2 cos(2(θ L θ R )). Temperature r neither l+r Magnetic field, polarised normal Separate Ising/XY transitions. l [Rubo et al Phys. Lett. A 06; Keeling, Phys. Rev. B 08] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 49 / 55

165 Equilibrium phase diagrams J 1 = J 2 = 0. For U 1 = 0.5, Ψ L,R decouple. T/T deg HFB approx Exact EOS neither 0.1 r l+r l /k B T deg Circular Eliptical transitions. J 1 = 0, J 2 0. Phase locking J 2 cos(2(θ L θ R )). Temperature r neither l+r Magnetic field, polarised normal Separate Ising/XY transitions. J 1 0: Eqbm state locked. l [Rubo et al Phys. Lett. A 06; Keeling, Phys. Rev. B 08] Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 49 / 55

166 Mathematical outline 2D Single component equation of state: n(µ, T ) = Tf (x = µ/t ) For two components: n 0 = T [ f ( µ + Ω T ) + f At critical point for one component: [ ( n 0 = T f c + f x c + 2Ω T ( )] µ Ω T )] Hence: T = n 0 f c + f ( x c + 2Ω T ) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 50 / 55

167 Mathematical outline 2D Single component equation of state: n(µ, T ) = Tf (x = µ/t ) For two components: n 0 = T [ f ( µ + Ω T ) + f At critical point for one component: [ ( n 0 = T f c + f x c + 2Ω T ( )] µ Ω T )] Hence: T = n 0 f c + f ( x c + 2Ω T ) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 50 / 55

168 Mathematical outline 2D Single component equation of state: n(µ, T ) = Tf (x = µ/t ) For two components: n 0 = T [ f ( µ + Ω T ) + f At critical point for one component: [ ( n 0 = T f c + f x c + 2Ω T ( )] µ Ω T )] Hence: T = n 0 f c + f ( x c + 2Ω T ) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 50 / 55

169 Mathematical outline 2D Single component equation of state: n(µ, T ) = Tf (x = µ/t ) For two components: n 0 = T [ f ( µ + Ω T ) + f At critical point for one component: [ ( n 0 = T f c + f x c + 2Ω T ( )] µ Ω T )] Hence: T = n 0 f c + f ( x c + 2Ω T ) Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 50 / 55

170 [ Graphical implementation of T = n 0 / f c + f ( x c + 2Ω T )] 4 3 Bogoliubov µ/g Monte Carlo HFP f x=µ/t Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 51 / 55

171 [ Graphical implementation of T = n 0 / f c + f ( x c + 2Ω T )] 4 3 Bogoliubov µ/g Monte Carlo HFP f Ω/T = x-x c Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 51 / 55

172 [ Graphical implementation of T = n 0 / f c + f ( x c + 2Ω T )] n 0 /T Bogoliubov µ/g Monte Carlo HFP Ω/T Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 51 / 55

173 [ Graphical implementation of T = n 0 / f c + f ( x c + 2Ω T )] 0.4 Bogoliubov µ/g Monte Carlo HFP T/n Ω/T Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 51 / 55

174 [ Graphical implementation of T = n 0 / f c + f ( x c + 2Ω T )] 0.4 Bogoliubov µ/g Monte Carlo HFP T/n Ω/n 0 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 51 / 55

175 [ Graphical implementation of T = n 0 / f c + f ( x c + 2Ω T )] 0.4 Bogoliubov µ/g Monte Carlo HFP T/n Ω/n 0 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 51 / 55

176 Two-mode model bistability γ net Stable limit cycle Bistable c Stable fixed point 1.5 γ net Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 52 / 55

177 Two-mode model bistability γ net Stable limit cycle 4 =6.6 =6.8 =7.0 Bistable c Stable fixed point γ net z dθ/dt =7.2 =7.4 =7.6 4 =7.8 0 =8.0 = π 2π 0 π 2π 0 π 2π θ Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 52 / 55

178 Two-mode model bistability γ net Stable limit cycle 4 =6.6 =6.8 =7.0 ω Bistable ω= c Stable fixed point 1.5 γ net =7.8 c : ω [ln( c )] 1 0 π 2π z dθ/dt =7.2 =7.4 =7.6 =8.0 0 π 2π 0 π 2π θ =8.2 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 52 / 55

179 Spatial freedom: Homgeneous case < c θ + 2γ net θ = 8U 1 J 1 R 0 sin(θ) 2γ net Steady state condition: ( 8U 1 J 1 R 0 sin(θ) = 2γ net ψ L,R e iµt ψl,r 0 + u 1e ik r+( iω κ)t + v1 e ik r+(iω κ)t) Define Ω 2 p = 8U 1 J 1 R 0 cos(θ). At k = 0 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 53 / 55

180 Spatial freedom: Homgeneous case < c θ + 2γ net θ = 8U 1 J 1 R 0 sin(θ) 2γ net Steady state condition: ( 8U 1 J 1 R 0 sin(θ) = 2γ net ψ L,R e iµt ψl,r 0 + u 1e ik r+( iω κ)t + v1 e ik r+(iω κ)t) Define Ω 2 p = 8U 1 J 1 R 0 cos(θ). At k = 0 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 53 / 55

181 Spatial freedom: Homgeneous case < c θ + 2γ net θ = 8U 1 J 1 R 0 sin(θ) 2γ net Steady state condition: ( 8U 1 J 1 R 0 sin(θ) = 2γ net ψ L,R e iµt ψl,r 0 + u 1e ik r+( iω κ)t + v1 e ik r+(iω κ)t) Define Ω 2 p = 8U 1 J 1 R 0 cos(θ). At k = 0 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 53 / 55

182 Spatial freedom: Homgeneous case < c θ + 2γ net θ = 8U 1 J 1 R 0 sin(θ) 2γ net Steady state condition: ( 8U 1 J 1 R 0 sin(θ) = 2γ net ψ L,R e iµt ψl,r 0 + u 1e ik r+( iω κ)t + v1 e ik r+(iω κ)t) Define Ω 2 p = 8U 1 J 1 R 0 cos(θ). At k = 0 ω iκ = 0, 2iγ net iγ net ± i γ net Ω 2 p ω π/4 π/2 3π/4 π 0 π/4 π/2 3π/4 π θ θ Stability requires Ω 2 p > 0. If Ω 2 p < γ net overdamped. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 53 / 55

183 Spatial variation Varieties of behaviour possible as θ(r), not θ needed to define state. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 54 / 55

184 Spatial variation Varieties of behaviour possible as θ(r), not θ needed to define state. Plot J 1 sin(θ) vs r. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 54 / 55

185 Spatial variation Varieties of behaviour possible as θ(r), not θ needed to define state. Plot J 1 sin(θ) vs r. J 1 = 0.5; r 0 > r TF ; = 6 Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 54 / 55

186 Spatial variation Varieties of behaviour possible as θ(r), not θ needed to define state. Plot J 1 sin(θ) vs r. J 1 = 0.5; r 0 > r TF ; = 6 J 1 = 1; r 0 > r TF ; = 6 Counter-rotating. Jonathan Keeling Nonequilibrium quantum condensates Royal Holloway CM Seminar 54 / 55

Martti M. Salomaa (Helsinki Univ. of Tech.)

Martti M. Salomaa (Helsinki Univ. of Tech.) Martti M. Salomaa (Helsinki Univ. of Tech.) 1. 2. 3. Phase Phase contrast contrast images images (in (in situ) situ) Time Time of of flight flight (TOF) (TOF) images images BEC = Trapped atomic gases Neutral

Διαβάστε περισσότερα

Oscillatory Gap Damping

Oscillatory Gap Damping Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling 1th AIAA/CEAS Aeroacoustics Conference, May 006 interactions Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Interaction M. Glesser 1, A. Billon 1, V. Valeau, and A. Sakout 1 mglesser@univ-lr.fr

Διαβάστε περισσότερα

Geodesic paths for quantum many-body systems

Geodesic paths for quantum many-body systems Geodesic paths for quantum many-body systems Michael Tomka, Tiago Souza, Steve Rosenberg, and Anatoli Polkovnikov Department of Physics Boston University Group: Condensed Matter Theory June 6, 2016 Workshop:

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample

Διαβάστε περισσότερα

Low Frequency Plasma Conductivity in the Average-Atom Approximation

Low Frequency Plasma Conductivity in the Average-Atom Approximation Low Frequency Plasma Conductivity in the Average-Atom Approximation Walter Johnson & Michael Kuchiev Physical Review E 78, 026401 (2008) 1. Review of Average-Atom Linear Response Theory 2. Demonstration

Διαβάστε περισσότερα

Optical Feedback Cooling in Optomechanical Systems

Optical Feedback Cooling in Optomechanical Systems Optical Feedback Cooling in Optomechanical Systems A brief introduction to input-output formalism C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum Stochastic differential

Διαβάστε περισσότερα

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Thermodynamics of the motility-induced phase separation

Thermodynamics of the motility-induced phase separation 1/9 Thermodynamics of the motility-induced phase separation Alex Solon (MIT), Joakim Stenhammar (Lund U), Mike Cates (Cambridge U), Julien Tailleur (Paris Diderot U) July 21st 2016 STATPHYS Lyon Active

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Markov chains model reduction

Markov chains model reduction Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

UV fixed-point structure of the 3d Thirring model

UV fixed-point structure of the 3d Thirring model UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

ω α β χ φ() γ Γ θ θ Ξ Μ ν ν ρ σ σ σ σ σ σ τ ω ω ω µ υ ρ α Coefficient of friction Coefficient of friction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 0.90 0.80 0.70 0.60 0.50 0.40 0.30

Διαβάστε περισσότερα

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information An unusual bifunctional Tb-MOF for highly sensing

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors BYU PHYS 73 Statistical Mechanics Chapter 7: Sethna Professor Manuel Berrondo Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids,

Διαβάστε περισσότερα

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Large β 0 corrections to the energy levels and wave function at N 3 LO

Large β 0 corrections to the energy levels and wave function at N 3 LO Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Self-Gravitating Lattice Gas

Self-Gravitating Lattice Gas Self-Gravitating Lattice Gas Divana Boukari and Gerhard Müller University of Rhode Island Benaoumeur Bakhti and Philipp Maass Universität Osnabrück Michael Karbach Bergische Universität Wuppertal 11/9/2017

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin. Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Non-Gaussianity from Lifshitz Scalar

Non-Gaussianity from Lifshitz Scalar COSMO/CosPA 200 September 27, 200 Non-Gaussianity from Lifshitz Scalar Takeshi Kobayashi (Tokyo U.) based on: arxiv:008.406 with Keisuke Izumi, Shinji Mukohyama Lifshitz scalars with z=3 obtain super-horizon,

Διαβάστε περισσότερα

D-term Dynamical SUSY Breaking

D-term Dynamical SUSY Breaking D-term Dynamical SUSY Breaking Nobuhito Maru (Keio University) with H. Itoyama (Osaka City University) arxiv: 1109.76 [hep-ph] 7/6/01 @Y ITP workshop on Field Theory & String Theory Introduction SUPERSYMMETRY

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Aluminum Complexes of N 2 O 2 3 Formazanate Ligands Supported by Phosphine Oxide Donors Ryan R. Maar, Amir Rabiee Kenaree, Ruizhong Zhang, Yichen Tao, Benjamin D. Katzman, Viktor

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

Chapter 9 Ginzburg-Landau theory

Chapter 9 Ginzburg-Landau theory Chapter 9 Ginzburg-Landau theory The liit of London theory The London equation J µ λ The London theory is plausible when B 1. The penetration depth is the doinant length scale ean free path λ ξ coherent

Διαβάστε περισσότερα

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Hartree-Fock Theory. Solving electronic structure problem on computers

Hartree-Fock Theory. Solving electronic structure problem on computers Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information rigin of the Regio- and Stereoselectivity of Allylic Substitution of rganocopper Reagents Naohiko Yoshikai, Song-Lin Zhang, and Eiichi Nakamura* Department of Chemistry, The University

Διαβάστε περισσότερα

Contents 1. Introduction Theoretical Background Theoretical Analysis of Nonlinear Interactions... 35

Contents 1. Introduction Theoretical Background Theoretical Analysis of Nonlinear Interactions... 35 Contents 1. Introduction...1 1.1 Nonlinear Optics and Nonlinear-Optic Instruments...1 1.2 Waveguide and Integrated Optics...2 1.3. Historical Perspectives on Waveguide NLO Devices...3 1.4. Future Prospects...6

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Assignment 1 Solutions Complex Sinusoids

Assignment 1 Solutions Complex Sinusoids Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(

Διαβάστε περισσότερα

linear motions: surge, sway, and heave rotations: roll, pitch, and yaw

linear motions: surge, sway, and heave rotations: roll, pitch, and yaw heave yaw when the ship is treated as a rigid body, it has six degrees of freedom: three linear motions and three rotations as indicated in the figure at the left: body-fixed axes pitch, v roll, u sway

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a) hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Haddow s Experiment:

Haddow s Experiment: schematic drawing of Haddow's experimental set-up moving piston non-contacting motion sensor beams of spring steel m position varies to adjust frequencies blocks of solid steel m shaker Haddow s Experiment:

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Models for Probabilistic Programs with an Adversary

Models for Probabilistic Programs with an Adversary Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Quantum shot noise: From Schottky to Bell

Quantum shot noise: From Schottky to Bell Quantum shot noise: From Schottky to Bell Markus Büttiker University of Geneva Peter Samuelsson Eugene V. Sukhorukov Vanessa Chung Valentin Rytchkov Micheal Polianski Micheal Moskalets Niels Bohr Summer

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Wilson ratio: universal nature of quantum fluids

Wilson ratio: universal nature of quantum fluids Wilson ratio: universal nature of quantum fluids Xi-Wen Guan key collaborators: Yi-Cong Yu, Yang-Yang Chen, Hai-Qing Lin Washington University, April 205 Giamarchi, Quantum Physics in one dimension,

Διαβάστε περισσότερα

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane. upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΕΝΕΡΓΟ ΦΙΛΤΡΟ ΔΙΑΚΟΠΤΙΚΟΥ ΠΗΝΙΟΥ ( Switched Inductor Variable Filter ) Ευτυχία Ιωσήφ Λεμεσός, Μάιος 2016 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011 2.019 Design of Ocean Systems Lecture 6 Seakeeping (II) February 21, 2011 ω, λ,v p,v g Wave adiation Problem z ζ 3 (t) = ζ 3 cos(ωt) ζ 3 (t) = ω ζ 3 sin(ωt) ζ 3 (t) = ω 2 ζ3 cos(ωt) x 2a ~n Total: P (t)

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Dynamics of cold molecules in external electromagnetic fields. Roman Krems University of British Columbia

Dynamics of cold molecules in external electromagnetic fields. Roman Krems University of British Columbia Dynamics of cold molecules in external electromagnetic fields Roman Krems University of British Columbia UBC group: Zhiying Li Timur Tscherbul Erik Abrahamsson Sergey Alyabishev Chris Hemming Collaborations:

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 2.25 Hoework Proble Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two conducting planes at zero potential eet along the z axis, aking an angle β between the, as

Διαβάστε περισσότερα

of the methanol-dimethylamine complex

of the methanol-dimethylamine complex Electronic Supplementary Information for: Fundamental and overtone virational spectroscopy, enthalpy of hydrogen ond formation and equilirium constant determination of the methanol-dimethylamine complex

Διαβάστε περισσότερα

MET 4302 LECTURE 3A 23FEB18

MET 4302 LECTURE 3A 23FEB18 E 3 LECRE 3A 3FEB8 Objective: o analyze baroclinic instability of normal-mode Rossby waves in a vertically sheared zonal flow. Reading: CH 7, pp 3-3 Problems: 7. and 7.3 on p. 6 ---------------------------------------

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns There is however one main difference in this chapter compared to many other chapters. All loss and gain coefficients are given for the intensity and not the amplitude and are therefore a factor of 2 larger!

Διαβάστε περισσότερα

Hits (L AND R) MIDDLE Right Side Hits (L AND R) MIDDLE Left Side

Hits (L AND R) MIDDLE Right Side Hits (L AND R) MIDDLE Left Side hits_top_r Noise distribution (L XOR R) BOTTOM Right Side 6 4 Hits (L AND R) TOP Right Side Hits (L AND R) TOP Left Side hits_top_r Entries 338 Mean.7 RMS 6.948 8 6 4 Hits (L AND R) MIDDLE Right Side Hits

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα