Markov chains model reduction
|
|
- Νάρκισσος Χατζηιωάννου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, / 21
2 Model Reduction N η N (t) random walk C. Landim Markov chains model reduction March 17, / 21
3 Model Reduction Identification of the slow variables Derive their asymptotic behavior C. Landim Markov chains model reduction March 17, / 21
4 Model Reduction d = 2 Mixing time N 2 Hitting time N 2 log N d 3 Mixing time N 2 Hitting time N d C. Landim Markov chains model reduction March 17, / 21
5 Model Reduction Σ N A A 3 A 1 A 2 C. Landim Markov chains model reduction March 17, / 21
6 Model Reduction Σ N A A 3 A 1 A 2 Ψ N : Σ N {, 1, 2, 3} Ψ N (x) = X N (t) = Ψ N (η N (t)) 3 k 1{x A k } k= C. Landim Markov chains model reduction March 17, / 21
7 Model Reduction X N (t) not Markov Hidden Markov Chain N d N d N d t C. Landim Markov chains model reduction March 17, / 21
8 Model Reduction X N (t) not Markov Hidden Markov Chain N d N d N d t No convergence X N (t) in Skorohod topology C. Landim Markov chains model reduction March 17, / 21
9 Trace process Σ N E E 3 E 1 E 2 N = Σ N \ [E E 1 E 2 E 3 ] C. Landim Markov chains model reduction March 17, / 21
10 Trace of a Markov chain η(t) E-valued Markov chain F E η F (t) trace of η(t) on F F = {a, b} E b T 3 b T 3 a T 1 T 2 T 1 + T 2 a t t C. Landim Markov chains model reduction March 17, / 21
11 Trace of a Markov chain η(t) E-valued Markov chain F E η F (t) trace of η(t) on F F = {a, b} E b T 3 b T 3 a T 1 T 2 T 1 + T 2 a t t η F (t) Markov chain r F (x, y) = λ(x) P x [H F \{x} = H y ] C. Landim Markov chains model reduction March 17, / 21
12 Trace process Σ N E E 3 E 1 E 2 N = Σ N \ [E E 1 E 2 E 3 ] r F (x, y) = λ(x) P x [H F \{x} = H y ] long jumps C. Landim Markov chains model reduction March 17, / 21
13 Problem η E (t) trace of η(t) on E = E E 1 E 2 E 3 3 Ψ N : E {, 1, 2, 3} Ψ N (x) = k 1{x E k } k= X N (t) = Ψ N (η E (t)) Hidden M. C. C. Landim Markov chains model reduction March 17, / 21
14 Problem η E (t) trace of η(t) on E = E E 1 E 2 E 3 3 Ψ N : E {, 1, 2, 3} Ψ N (x) = k 1{x E k } k= X N (t) = Ψ N (η E (t)) Hidden M. C. X N (θ N t) X (t) [ max E x 1{η(θ N s) E} ds ] x E C. Landim Markov chains model reduction March 17, / 21
15 Problem η E (t) trace of η(t) on E = E E 1 E 2 E 3 3 Ψ N : E {, 1, 2, 3} Ψ N (x) = k 1{x E k } k= X N (t) = Ψ N (η E (t)) Hidden M. C. X N (θ N t) X (t) [ max E x 1{η(θ N s) E} ds ] x E η(θ N t) X (t) soft topology C. Landim Markov chains model reduction March 17, / 21
16 Martingale approach Beltrán, L. (21-15) X N (t) = Ψ N (η E (tθ N )) X (t) C. Landim Markov chains model reduction March 17, / 21
17 Martingale approach X N (t) = Ψ N (η E (tθ N )) X (t) Tightness X N (t) C. Landim Markov chains model reduction March 17, / 21
18 Martingale approach X N (t) = Ψ N (η E (tθ N )) X (t) Tightness X N (t) X (t) solves martingale problem: F (X t ) F (X ) Exists L (LF )(X s ) ds martingale F : {,..., 3} R C. Landim Markov chains model reduction March 17, / 21
19 Martingale approach X N (t) = Ψ N (η E (tθ N )) X (t) Tightness X N (t) X (t) solves martingale problem: F (X t ) F (X ) F (X t ) F (X ) Exists L (LF )(X s ) ds martingale F : {,..., 3} R 3 r(x s, k) [F (k) F (X s )] ds k= C. Landim Markov chains model reduction March 17, / 21
20 Martingale approach Ψ N (η E (θ N t)) X (t) F (X t ) F (X ) 3 r(x s, k) [F (k) F (X s )] ds k= martingale C. Landim Markov chains model reduction March 17, / 21
21 Martingale approach Ψ N (η E (θ N t)) X (t) F (X t ) F (X ) 3 r(x s, k) [F (k) F (X s )] ds k= martingale H : E R H(η E (θ N t)) H(η E ()) θn [L E H](η) = ξ E R E (η, ξ) {H(ξ) H(η)} [L E H] (η E (s)) ds C. Landim Markov chains model reduction March 17, / 21
22 Martingale approach Ψ N (η E (θ N t)) X (t) F (X t ) F (X ) 3 r(x s, k) [F (k) F (X s )] ds k= martingale H : E R H(η E (θ N t)) H(η E ()) θn [L E H](η) = ξ E R E (η, ξ) {H(ξ) H(η)} [L E H] (η E (s)) ds H = F Ψ N F (X N (t)) F (X N ()) θ N [L E (F Ψ)](η E (θ N s)) ds C. Landim Markov chains model reduction March 17, / 21
23 Closing the equation θ N [L E (F Ψ)](η E (θ N s)) ds 3 k= r(x s, k) [F (k) F (X s )] ds C. Landim Markov chains model reduction March 17, / 21
24 Closing the equation θ N [L E (F Ψ)](η E (θ N s)) ds 3 k= r(x s, k) [F (k) F (X s )] ds [L E (F Ψ)](η) = ξ E R E (η, ξ) {(F Ψ)(ξ) (F Ψ)(η)} = = 3 [F (k) F (X N )] R E (η, ξ) ξ E k k= 3 [F (k) F (X N )] R E (η, E k ) k= C. Landim Markov chains model reduction March 17, / 21
25 Closing the equation θ N [L E (F Ψ)](η E (θ N s)) ds 3 k= r(x s, k) [F (k) F (X s )] ds [L E (F Ψ)](η) = ξ E R E (η, ξ) {(F Ψ)(ξ) (F Ψ)(η)} = = 3 [F (k) F (X N )] R E (η, ξ) ξ E k k= 3 [F (k) F (X N )] R E (η, E k ) k= θ N R E (η E (θ N s), E k ) ds r(x N s, k) ds C. Landim Markov chains model reduction March 17, / 21
26 Local ergodicity θ N R E (η E (θ N s), E k ) 1{X N s k}ds r(x N s, k) 1{X N s k} ds Σ N E E 3 E 1 E 2 C. Landim Markov chains model reduction March 17, / 21
27 Local ergodicity θ N R E (η E (θ N s), E k ) 1{X N s k}ds r(x N s, k) 1{X N s k} ds G : E R Ĝ = E πn [G(η) E,..., E 3 ] π N ss 1 Ĝ(η) = π N (η)g(η) η E j π N (E j ) η E j Ĝ(η) = Ĝ(Ψ N(η)) { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds (C1) C. Landim Markov chains model reduction March 17, / 21
28 Consequence θ N R E (η E (θ N s), E k ) 1{X N s θ N R E (η E (θ N s), E k ) 1{X N s k}ds = j}ds r(xs N, k) 1{Xs N k} ds r(j, k) 1{X N s = j} ds C. Landim Markov chains model reduction March 17, / 21
29 Consequence θ N R E (η E (θ N s), E k ) 1{X N s θ N R E (η E (θ N s), E k ) 1{X N s k}ds = j}ds r(x N s, k) 1{X N s r(j, k) 1{X N s θ N π N (η)r E (η, E k ) =: θ N r N (j, k) π N (E j ) η E j 1 θ N π N (η)r E (η, E k ) r(j, k) π N (E j ) η E j k} ds = j} ds (C2) θ N [L E (F Ψ)](η E (θ N s)) ds (LF )(X s ) ds C. Landim Markov chains model reduction March 17, / 21
30 Summary Ĝ(η) = E πn [G(η) E,..., E 3 ] { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds (C1) C. Landim Markov chains model reduction March 17, / 21
31 Summary Ĝ(η) = E πn [G(η) E,..., E 3 ] { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds θ N π N (η)r E (η, E k ) = θ N r N (j, k) r(j, k) π N (E j ) η E j (C1) (C2) C. Landim Markov chains model reduction March 17, / 21
32 Summary Ĝ(η) = E πn [G(η) E,..., E 3 ] { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds θ N π N (η)r E (η, E k ) = θ N r N (j, k) r(j, k) π N (E j ) η E j (C1) (C2) X N (t) = Ψ N (η E (tθ N )) X t C. Landim Markov chains model reduction March 17, / 21
33 Summary Ĝ(η) = E πn [G(η) E,..., E 3 ] { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds θ N π N (η)r E (η, E k ) = θ N r N (j, k) r(j, k) π N (E j ) η E j (C1) (C2) X N (t) = Ψ N (η E (tθ N )) X t [ max E x 1{η(θ N s) E} ds ] x E (C3) Ψ N (η(tθ N )) X t soft topology C. Landim Markov chains model reduction March 17, / 21
34 Applications Random walks Random walks random traps Random walks in potential field Spin models Kawasaki dynamics in d = 2 Blume-Capel dynamics Mean field Potts models Interacting particle systems Condensing zero-range processes ABC model Inclusion-exclusion dynamics Random polymers In interaction with substrates repulsive wall Reversible and non-reversible dynamics Logarithmic barriers C. Landim Markov chains model reduction March 17, / 21
35 Tools Processes which visit points: General: Potential theory (C1) (C3) formulated in terms of capacities Ergodic properties Spectral gap C. Landim Markov chains model reduction March 17, / 21
36 Condensing zero-range processes Model: T L = {1,..., L} periodic boundary conditions State space N T L configurations η = {η x : x T L } C. Landim Markov chains model reduction March 17, / 21
37 Condensing zero-range processes Model: T L = {1,..., L} periodic boundary conditions State space N T L configurations η = {η x : x T L } Dynamics: g : N R + g() = g(k) > < p 1 x x + 1 at rate pg(η x ) x x 1 at rate (1 p)g(η x ) g(k) = k independent random walks g(k) = 1{k 1} queues and servers C. Landim Markov chains model reduction March 17, / 21
38 Condensation Evans (25), Armendariz, Beltran, Chleboun, Ferrari, Godrèche, Grosskinsky, Loulakis, Schuetz, Sisko, Spohn ( k ) α g(1) = 1 g(k) = k 2 α > k 1 N number of particles E L,N = {η N T L : x T L η x = N} {η(t) : t } irreducible Phase transition µ L,N α > 2 T removes the site with largest number of particles {N L : L 1} N L /L ρ > ρ µ L,N T 1 ν ρ L(ρ ρ ) α > 1 L fixed 1 l N N lim N µ L,N {max 1 x L η x N l N } = 1 C. Landim Markov chains model reduction March 17, / 21
39 Model Reduction, Coarse graining Fix 1 l N N EN x = {η : η x N l N } 1 x L L E N = EN x E L,N = E N N x=1 C. Landim Markov chains model reduction March 17, / 21
40 Model Reduction, Coarse graining Fix 1 l N N EN x = {η : η x N l N } 1 x L L E N = EN x E L,N = E N N x=1 E L,N E 4 N E 3 N N E 1 N E 2 N C. Landim Markov chains model reduction March 17, / 21
41 Model Reduction, Coarse graining Fix 1 l N N EN x = {η : η x N l N } 1 x L L E N = EN x E L,N = E N N x=1 η E N (t) trace of {η(t) : t } on E N = L x=1 Ex N Ψ N : E N {1,..., L} Ψ N (η) = x iff η E x N X N (t) = Ψ N (η E N (N 1+α t)) X (t) C. Landim Markov chains model reduction March 17, / 21
42 Model Reduction, Coarse graining Fix 1 l N N EN x = {η : η x N l N } 1 x L L E N = EN x E L,N = E N N x=1 η E N (t) trace of {η(t) : t } on E N = L x=1 Ex N Ψ N : E N {1,..., L} Ψ N (η) = x iff η E x N X N (t) = Ψ N (η E N (N 1+α t)) X (t) θ N = N 1+α Reversible: r(x, y) = C(α) L cap(x, y) Non-reversible p = 1 C. Landim Markov chains model reduction March 17, / 21
STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION
STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION L.Arkeryd, Chalmers, Goteborg, Sweden, R.Esposito, University of L Aquila, Italy, R.Marra, University of Rome, Italy, A.Nouri,
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Προσομοίωση Monte Carlo Αλυσίδων Markov: Αλγόριθμοι Metropolis & Metropolis-Hastings Προσομοιωμένη Ανόπτηση Simulated Annealing
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Μοντέλα Στατιστικής Μηχανικής, Κινητικότητα & Ισορροπία Αλυσίδες Markov: Καταστάσεις, Εξισώσεις Μεταβάσεων καθ. Βασίλης Μάγκλαρης
DEFINITION OF LAPLACE-STIELTJES TRANSFORM FOR THE ERGODIC DISTRIBUTION OF THE SEMI-MARKOV RANDOM PROCESS
DEFINITION OF LAPLACE-STIELTJES TRANSFORM FOR THE ERGODIC DISTRIBUTION OF THE SEMI-MARKOV RANDOM PROCESS T. I. NASIROVA, B.G.SHAMILOVA, U.Y. KERIMOVA Abstract. In this paper we will investigate the semi-markov
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
MOTORCAR INSURANCE I
MOTORCAR INSURANCE I I Acc. II Acc. III Acc. Sex Year Month Day 19970602 0 0 M 1966 4 11 19820101 19840801 0 M 1926 3 25 19820801 19840712 0 F 1952 2 19 19781222 19810507 0 M 1952 3 23 19821110 19870614
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors
BYU PHYS 73 Statistical Mechanics Chapter 7: Sethna Professor Manuel Berrondo Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids,
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo
(absolute loss function)186 - (posterior structure function)163 - (a priori rating variables)25 (Bayes scale) 178 (bancassurance)233 - (beta distribution)203, 204 (high deductible)218 (bonus)26 ( ) (total
Dark matter from Dark Energy-Baryonic Matter Couplings
Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Fundamentals of Probability: A First Course. Anirban DasGupta
Fundamentals of Probability: A First Course Anirban DasGupta Contents 1 Introducing Probability 5 1.1 ExperimentsandSampleSpaces... 6 1.2 Set Theory Notation and Axioms of Probability........... 7 1.3
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University
Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression Lu Tian and Richard Olshen Stanford University 1 One sample problem T 1,, T n 1 S( ), C 1,, C n G( ) and T i C i Observations: (U i,
INTERACTING PARTICLE SYSTEMS OUT OF EQUILIBRIUM. Davide Gabrielli University of L Aquila. (EURANDOM 2011) joint with
INTERACTING PARTICLE SYSTEMS OUT OF EQUILIBRIUM Davide Gabrielli University of L Aquila (EURANDOM 2011) joint with 1 Continuous time Markov chains State space: configurations of particles η = configuration,
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Large β 0 corrections to the energy levels and wave function at N 3 LO
Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March
Summary of the model specified
Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com
Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas
Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas Weizhu Bao Department of Mathematics & Center for Computational Science and Engineering National University of Singapore Email: bao@math.nus.edu.sg
Stationary Univariate Time Series Models 1
Stationary Univariate Time Series Models 1 Sebastian Fossati University of Alberta 1 These slides are based on Eric Zivot s time series notes available at: http://faculty.washington.edu/ezivot Example
[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]
(Akihiko Inoue) Graduate School of Science, Hiroshima University (Yukio Kasahara) Graduate School of Science, Hokkaido University Mohsen Pourahmadi, Department of Statistics, Texas A&M University 1, =
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
The circle theorem and related theorems for Gauss-type quadrature rules
OP.circle p. / The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu Purdue University OP.circle p. 2/ Web Site http : //www.cs.purdue.edu/ archives/22/wxg/codes
Hartree-Fock Theory. Solving electronic structure problem on computers
Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Single-value extension property for anti-diagonal operator matrices and their square
1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property
Approximation of dynamic boundary condition: The Allen Cahn equation
1 Approximation of dynamic boundary condition: The Allen Cahn equation Matthias Liero I.M.A.T.I. Pavia and Humboldt-Universität zu Berlin 6 th Singular Days 2010 Berlin Introduction Interfacial dynamics
Lecture 7: Overdispersion in Poisson regression
Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Λήψη Α οφάσεων υ ό Αβεβαιότητα Decision Making under Uncertainty Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Εντο
ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ
ΚΑΤΑΡΤΙΣΗ ΜΗΤΡΩΟΥ ΕΣΩΤΕΡΙΚΩΝ & ΕΞΩΤΕΡΙΚΩΝ ΜΕΛΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε., ΣΤΕΦ/ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ Γνωστικό Αντικείμενο: Computer Aided Design (CAD) Computer
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Linear System Response to Random Inputs. M. Sami Fadali Professor of Electrical Engineering University of Nevada
Linear System Response to Random Inputs M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline Linear System Response to deterministic input. Response to stochastic input. Characterize
Mean-Variance Hedging on uncertain time horizon in a market with a jump
Mean-Variance Hedging on uncertain time horizon in a market with a jump Thomas LIM 1 ENSIIE and Laboratoire Analyse et Probabilités d Evry Young Researchers Meeting on BSDEs, Numerics and Finance, Oxford
Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1
207 : msjmeeting-207sep-07i00 ( ) Abstract 989 Korotyaev Schrödinger Gérard Laba Multiparticle quantum scattering in constant magnetic fields - propagator ( ). ( ) 20 Sigal-Soffer [22] 987 Gérard- Laba
Theory and Simulation of Interacting Particle Systems
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστικών Συστημάτων Διπλωματική Εργασία Theory and Simulation of Interacting
UV fixed-point structure of the 3d Thirring model
UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches
Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης
Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE 802.11 Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης mkafetz@iit.demokritos.gr Το κίνητρο µας-συνεισφορά Η ασύρµατη δικτύωση λαµβάνει ευρείας αποδοχής. Το πρότυπο
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 8/3/2017 ΠΑΡΑΜΕΤΡΟΙ (1/4) (Επανάληψη) Ένταση φορτίου (traffic intensity)
Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence
Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Phase-Field Force Convergence
Phase-Field Force Convergence Bo Li Department of Mathematics and Quantitative Biology Graduate Program UC San Diego Collaborators: Shibin Dai and Jianfeng Lu Funding: NSF School of Mathematical Sciences
A thermodynamic characterization of some regularity structures near the subcriticality threshold
Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ SPA 2017 Invited Session: Regularity structures A thermodynamic characterization of some regularity structures
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.
The Early Life of a Peptide Cation-Radical. Ground and Excited-State Trajectories of Electron-Based Peptide Dissociations During the First 330 Femtoseconds Christopher L. Moss, Wenkel Liang, Xiaosong Li,*
Comportement critique du modèle d accrochage de. Toulouse, 29 Mars 2016
Comportement critique du modèle d accrochage de polymère Niccolò Torri Toulouse, 29 Mars 2016 1 Pinning Model 2 New Results 3 Proof 4 Perspectives N. Torri (Université de Nantes) Polymères aléatoires Toulouse,
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές
ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές 1. Patsis, P. A. & Zachilas, L.: 1990, Complex Instability Of Simple Periodic-Orbits In A Realistic 2-Component Galactic Potential, Astron. & Astroph., 227, 37 (ISI,
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Η Ουρά Μ/Μ/1/N Σφαιρικές & Τοπικές Εξισώσεις Ισορροπίας Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 22/3/2017 ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ ΘΑΝΑΤΩΝ (1/4) Birth Death Processes
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 9/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
Higher spin gauge theories and their CFT duals
Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density
The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density 5..29 Radek Wojtak Nicolaus Copernicus Astronomical Center collaboration: Ewa Łokas, Gary Mamon, Stefan
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1
Managing Economic Fluctuations -Keynesian macro: - -term nominal interest rates. - - P. - - P. Managing Macroeconomic Fluctuations 1 Review: New Keynesian Model -run macroeconomics: - π = γ (Y Y P ) +
Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution
Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution Jim Dai Joint work with Masakiyo Miyazawa July 8, 211 211 INFORMS APS conference at Stockholm Jim Dai (Georgia
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)
Online Appendix I Appendix D Additional Existence Proofs Denote B q = {q : A E A S [0, +r ]}, Bψ = {ψ : Y E A S S}, B W = {W : I E A S R}. I slightly abuse the notation by defining B q (L q ) the subset
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 23/3/2016 Άδεια Χρήσης
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Ουρών Αναμονής Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 13/3/2019 ΠΑΡΑΜΕΤΡΟΙ (1/3) Ένταση φορτίου (traffic intensity) Σε περίπτωση 1 ουράς, 1 εξυπηρετητή:
Quantum Systems: Dynamics and Control 1
Quantum Systems: Dynamics and Control 1 Mazyar Mirrahimi and Pierre Rouchon 3 February 7, 018 1 See the web page: http://cas.ensmp.fr/~rouchon/masterupmc/index.html INRIA Paris, QUANTIC research team 3
LTI Systems (1A) Young Won Lim 3/21/15
LTI Systems (1A) Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version
Lecture 12: Pseudo likelihood approach
Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed
Math 200 Problem Set VI. x 2 1 c 2 2 u
Math 00 Problem Set VI 1 Find all second partial derivatives of f, y = + y. Find all second order derivatives of gs, t = fs + t, s t. The wave equation u 1 c u = 0 arises in many models involving wave-like
From the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics. Based on joint research with
Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics (, Based on joint research with ( ( Contents 1. Physical background of the problem 2. Mathematical formulation
Deep factorisation of the stable process: Part I: Lagrange lecture, Torino University Part II: Seminar, Collegio Carlo Alberto.
Deep factorisation of the stable process: Part I: Lagrange lecture, Torino University Part II: Seminar, Collegio Carlo Alberto. Andreas E. Kyprianou, University of Bath, UK. Stable processes Definition
The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points
Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
Introduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
Universalité pour des polymères aléatoires. Paris, 17 Novembre 2015
Universalité pour des polymères aléatoires Niccolò Torri Paris, 17 Novembre 2015 1 Polymers 2 Pinning Model and DPRE 3 Universality of the Pinning Model New Results 4 Proofs Continuum model Proof of our
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
Μελέτη του Προτύπου 2D- Potts σε Υπολογιστικό Περιβάλλον MATLAB. Παρουσίαση της Διπλωματικής Εργασίας του Γιάννη Ασσιώτη
Μελέτη του Προτύπου 2D- Potts σε Υπολογιστικό Περιβάλλον MATLAB 1 Παρουσίαση της Διπλωματικής Εργασίας του Γιάννη Ασσιώτη 2 Στατιστική Μηχανική Μέγεθος συστημάτων Στοχαστική αντιμετώπιση Σύστημα Χαμιλτονιανή
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009
Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 1 IV. Hedging of credit derivatives 1. Two default free assets, one defaultable asset 1.1 Two