Markov chains model reduction

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Markov chains model reduction"

Transcript

1 Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, / 21

2 Model Reduction N η N (t) random walk C. Landim Markov chains model reduction March 17, / 21

3 Model Reduction Identification of the slow variables Derive their asymptotic behavior C. Landim Markov chains model reduction March 17, / 21

4 Model Reduction d = 2 Mixing time N 2 Hitting time N 2 log N d 3 Mixing time N 2 Hitting time N d C. Landim Markov chains model reduction March 17, / 21

5 Model Reduction Σ N A A 3 A 1 A 2 C. Landim Markov chains model reduction March 17, / 21

6 Model Reduction Σ N A A 3 A 1 A 2 Ψ N : Σ N {, 1, 2, 3} Ψ N (x) = X N (t) = Ψ N (η N (t)) 3 k 1{x A k } k= C. Landim Markov chains model reduction March 17, / 21

7 Model Reduction X N (t) not Markov Hidden Markov Chain N d N d N d t C. Landim Markov chains model reduction March 17, / 21

8 Model Reduction X N (t) not Markov Hidden Markov Chain N d N d N d t No convergence X N (t) in Skorohod topology C. Landim Markov chains model reduction March 17, / 21

9 Trace process Σ N E E 3 E 1 E 2 N = Σ N \ [E E 1 E 2 E 3 ] C. Landim Markov chains model reduction March 17, / 21

10 Trace of a Markov chain η(t) E-valued Markov chain F E η F (t) trace of η(t) on F F = {a, b} E b T 3 b T 3 a T 1 T 2 T 1 + T 2 a t t C. Landim Markov chains model reduction March 17, / 21

11 Trace of a Markov chain η(t) E-valued Markov chain F E η F (t) trace of η(t) on F F = {a, b} E b T 3 b T 3 a T 1 T 2 T 1 + T 2 a t t η F (t) Markov chain r F (x, y) = λ(x) P x [H F \{x} = H y ] C. Landim Markov chains model reduction March 17, / 21

12 Trace process Σ N E E 3 E 1 E 2 N = Σ N \ [E E 1 E 2 E 3 ] r F (x, y) = λ(x) P x [H F \{x} = H y ] long jumps C. Landim Markov chains model reduction March 17, / 21

13 Problem η E (t) trace of η(t) on E = E E 1 E 2 E 3 3 Ψ N : E {, 1, 2, 3} Ψ N (x) = k 1{x E k } k= X N (t) = Ψ N (η E (t)) Hidden M. C. C. Landim Markov chains model reduction March 17, / 21

14 Problem η E (t) trace of η(t) on E = E E 1 E 2 E 3 3 Ψ N : E {, 1, 2, 3} Ψ N (x) = k 1{x E k } k= X N (t) = Ψ N (η E (t)) Hidden M. C. X N (θ N t) X (t) [ max E x 1{η(θ N s) E} ds ] x E C. Landim Markov chains model reduction March 17, / 21

15 Problem η E (t) trace of η(t) on E = E E 1 E 2 E 3 3 Ψ N : E {, 1, 2, 3} Ψ N (x) = k 1{x E k } k= X N (t) = Ψ N (η E (t)) Hidden M. C. X N (θ N t) X (t) [ max E x 1{η(θ N s) E} ds ] x E η(θ N t) X (t) soft topology C. Landim Markov chains model reduction March 17, / 21

16 Martingale approach Beltrán, L. (21-15) X N (t) = Ψ N (η E (tθ N )) X (t) C. Landim Markov chains model reduction March 17, / 21

17 Martingale approach X N (t) = Ψ N (η E (tθ N )) X (t) Tightness X N (t) C. Landim Markov chains model reduction March 17, / 21

18 Martingale approach X N (t) = Ψ N (η E (tθ N )) X (t) Tightness X N (t) X (t) solves martingale problem: F (X t ) F (X ) Exists L (LF )(X s ) ds martingale F : {,..., 3} R C. Landim Markov chains model reduction March 17, / 21

19 Martingale approach X N (t) = Ψ N (η E (tθ N )) X (t) Tightness X N (t) X (t) solves martingale problem: F (X t ) F (X ) F (X t ) F (X ) Exists L (LF )(X s ) ds martingale F : {,..., 3} R 3 r(x s, k) [F (k) F (X s )] ds k= C. Landim Markov chains model reduction March 17, / 21

20 Martingale approach Ψ N (η E (θ N t)) X (t) F (X t ) F (X ) 3 r(x s, k) [F (k) F (X s )] ds k= martingale C. Landim Markov chains model reduction March 17, / 21

21 Martingale approach Ψ N (η E (θ N t)) X (t) F (X t ) F (X ) 3 r(x s, k) [F (k) F (X s )] ds k= martingale H : E R H(η E (θ N t)) H(η E ()) θn [L E H](η) = ξ E R E (η, ξ) {H(ξ) H(η)} [L E H] (η E (s)) ds C. Landim Markov chains model reduction March 17, / 21

22 Martingale approach Ψ N (η E (θ N t)) X (t) F (X t ) F (X ) 3 r(x s, k) [F (k) F (X s )] ds k= martingale H : E R H(η E (θ N t)) H(η E ()) θn [L E H](η) = ξ E R E (η, ξ) {H(ξ) H(η)} [L E H] (η E (s)) ds H = F Ψ N F (X N (t)) F (X N ()) θ N [L E (F Ψ)](η E (θ N s)) ds C. Landim Markov chains model reduction March 17, / 21

23 Closing the equation θ N [L E (F Ψ)](η E (θ N s)) ds 3 k= r(x s, k) [F (k) F (X s )] ds C. Landim Markov chains model reduction March 17, / 21

24 Closing the equation θ N [L E (F Ψ)](η E (θ N s)) ds 3 k= r(x s, k) [F (k) F (X s )] ds [L E (F Ψ)](η) = ξ E R E (η, ξ) {(F Ψ)(ξ) (F Ψ)(η)} = = 3 [F (k) F (X N )] R E (η, ξ) ξ E k k= 3 [F (k) F (X N )] R E (η, E k ) k= C. Landim Markov chains model reduction March 17, / 21

25 Closing the equation θ N [L E (F Ψ)](η E (θ N s)) ds 3 k= r(x s, k) [F (k) F (X s )] ds [L E (F Ψ)](η) = ξ E R E (η, ξ) {(F Ψ)(ξ) (F Ψ)(η)} = = 3 [F (k) F (X N )] R E (η, ξ) ξ E k k= 3 [F (k) F (X N )] R E (η, E k ) k= θ N R E (η E (θ N s), E k ) ds r(x N s, k) ds C. Landim Markov chains model reduction March 17, / 21

26 Local ergodicity θ N R E (η E (θ N s), E k ) 1{X N s k}ds r(x N s, k) 1{X N s k} ds Σ N E E 3 E 1 E 2 C. Landim Markov chains model reduction March 17, / 21

27 Local ergodicity θ N R E (η E (θ N s), E k ) 1{X N s k}ds r(x N s, k) 1{X N s k} ds G : E R Ĝ = E πn [G(η) E,..., E 3 ] π N ss 1 Ĝ(η) = π N (η)g(η) η E j π N (E j ) η E j Ĝ(η) = Ĝ(Ψ N(η)) { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds (C1) C. Landim Markov chains model reduction March 17, / 21

28 Consequence θ N R E (η E (θ N s), E k ) 1{X N s θ N R E (η E (θ N s), E k ) 1{X N s k}ds = j}ds r(xs N, k) 1{Xs N k} ds r(j, k) 1{X N s = j} ds C. Landim Markov chains model reduction March 17, / 21

29 Consequence θ N R E (η E (θ N s), E k ) 1{X N s θ N R E (η E (θ N s), E k ) 1{X N s k}ds = j}ds r(x N s, k) 1{X N s r(j, k) 1{X N s θ N π N (η)r E (η, E k ) =: θ N r N (j, k) π N (E j ) η E j 1 θ N π N (η)r E (η, E k ) r(j, k) π N (E j ) η E j k} ds = j} ds (C2) θ N [L E (F Ψ)](η E (θ N s)) ds (LF )(X s ) ds C. Landim Markov chains model reduction March 17, / 21

30 Summary Ĝ(η) = E πn [G(η) E,..., E 3 ] { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds (C1) C. Landim Markov chains model reduction March 17, / 21

31 Summary Ĝ(η) = E πn [G(η) E,..., E 3 ] { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds θ N π N (η)r E (η, E k ) = θ N r N (j, k) r(j, k) π N (E j ) η E j (C1) (C2) C. Landim Markov chains model reduction March 17, / 21

32 Summary Ĝ(η) = E πn [G(η) E,..., E 3 ] { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds θ N π N (η)r E (η, E k ) = θ N r N (j, k) r(j, k) π N (E j ) η E j (C1) (C2) X N (t) = Ψ N (η E (tθ N )) X t C. Landim Markov chains model reduction March 17, / 21

33 Summary Ĝ(η) = E πn [G(η) E,..., E 3 ] { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds θ N π N (η)r E (η, E k ) = θ N r N (j, k) r(j, k) π N (E j ) η E j (C1) (C2) X N (t) = Ψ N (η E (tθ N )) X t [ max E x 1{η(θ N s) E} ds ] x E (C3) Ψ N (η(tθ N )) X t soft topology C. Landim Markov chains model reduction March 17, / 21

34 Applications Random walks Random walks random traps Random walks in potential field Spin models Kawasaki dynamics in d = 2 Blume-Capel dynamics Mean field Potts models Interacting particle systems Condensing zero-range processes ABC model Inclusion-exclusion dynamics Random polymers In interaction with substrates repulsive wall Reversible and non-reversible dynamics Logarithmic barriers C. Landim Markov chains model reduction March 17, / 21

35 Tools Processes which visit points: General: Potential theory (C1) (C3) formulated in terms of capacities Ergodic properties Spectral gap C. Landim Markov chains model reduction March 17, / 21

36 Condensing zero-range processes Model: T L = {1,..., L} periodic boundary conditions State space N T L configurations η = {η x : x T L } C. Landim Markov chains model reduction March 17, / 21

37 Condensing zero-range processes Model: T L = {1,..., L} periodic boundary conditions State space N T L configurations η = {η x : x T L } Dynamics: g : N R + g() = g(k) > < p 1 x x + 1 at rate pg(η x ) x x 1 at rate (1 p)g(η x ) g(k) = k independent random walks g(k) = 1{k 1} queues and servers C. Landim Markov chains model reduction March 17, / 21

38 Condensation Evans (25), Armendariz, Beltran, Chleboun, Ferrari, Godrèche, Grosskinsky, Loulakis, Schuetz, Sisko, Spohn ( k ) α g(1) = 1 g(k) = k 2 α > k 1 N number of particles E L,N = {η N T L : x T L η x = N} {η(t) : t } irreducible Phase transition µ L,N α > 2 T removes the site with largest number of particles {N L : L 1} N L /L ρ > ρ µ L,N T 1 ν ρ L(ρ ρ ) α > 1 L fixed 1 l N N lim N µ L,N {max 1 x L η x N l N } = 1 C. Landim Markov chains model reduction March 17, / 21

39 Model Reduction, Coarse graining Fix 1 l N N EN x = {η : η x N l N } 1 x L L E N = EN x E L,N = E N N x=1 C. Landim Markov chains model reduction March 17, / 21

40 Model Reduction, Coarse graining Fix 1 l N N EN x = {η : η x N l N } 1 x L L E N = EN x E L,N = E N N x=1 E L,N E 4 N E 3 N N E 1 N E 2 N C. Landim Markov chains model reduction March 17, / 21

41 Model Reduction, Coarse graining Fix 1 l N N EN x = {η : η x N l N } 1 x L L E N = EN x E L,N = E N N x=1 η E N (t) trace of {η(t) : t } on E N = L x=1 Ex N Ψ N : E N {1,..., L} Ψ N (η) = x iff η E x N X N (t) = Ψ N (η E N (N 1+α t)) X (t) C. Landim Markov chains model reduction March 17, / 21

42 Model Reduction, Coarse graining Fix 1 l N N EN x = {η : η x N l N } 1 x L L E N = EN x E L,N = E N N x=1 η E N (t) trace of {η(t) : t } on E N = L x=1 Ex N Ψ N : E N {1,..., L} Ψ N (η) = x iff η E x N X N (t) = Ψ N (η E N (N 1+α t)) X (t) θ N = N 1+α Reversible: r(x, y) = C(α) L cap(x, y) Non-reversible p = 1 C. Landim Markov chains model reduction March 17, / 21

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION L.Arkeryd, Chalmers, Goteborg, Sweden, R.Esposito, University of L Aquila, Italy, R.Marra, University of Rome, Italy, A.Nouri,

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Προσομοίωση Monte Carlo Αλυσίδων Markov: Αλγόριθμοι Metropolis & Metropolis-Hastings Προσομοιωμένη Ανόπτηση Simulated Annealing

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Μοντέλα Στατιστικής Μηχανικής, Κινητικότητα & Ισορροπία Αλυσίδες Markov: Καταστάσεις, Εξισώσεις Μεταβάσεων καθ. Βασίλης Μάγκλαρης

Διαβάστε περισσότερα

DEFINITION OF LAPLACE-STIELTJES TRANSFORM FOR THE ERGODIC DISTRIBUTION OF THE SEMI-MARKOV RANDOM PROCESS

DEFINITION OF LAPLACE-STIELTJES TRANSFORM FOR THE ERGODIC DISTRIBUTION OF THE SEMI-MARKOV RANDOM PROCESS DEFINITION OF LAPLACE-STIELTJES TRANSFORM FOR THE ERGODIC DISTRIBUTION OF THE SEMI-MARKOV RANDOM PROCESS T. I. NASIROVA, B.G.SHAMILOVA, U.Y. KERIMOVA Abstract. In this paper we will investigate the semi-markov

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

MOTORCAR INSURANCE I

MOTORCAR INSURANCE I MOTORCAR INSURANCE I I Acc. II Acc. III Acc. Sex Year Month Day 19970602 0 0 M 1966 4 11 19820101 19840801 0 M 1926 3 25 19820801 19840712 0 F 1952 2 19 19781222 19810507 0 M 1952 3 23 19821110 19870614

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10] 3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]

Διαβάστε περισσότερα

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors BYU PHYS 73 Statistical Mechanics Chapter 7: Sethna Professor Manuel Berrondo Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids,

Διαβάστε περισσότερα

Bayesian modeling of inseparable space-time variation in disease risk

Bayesian modeling of inseparable space-time variation in disease risk Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates

Διαβάστε περισσότερα

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo (absolute loss function)186 - (posterior structure function)163 - (a priori rating variables)25 (Bayes scale) 178 (bancassurance)233 - (beta distribution)203, 204 (high deductible)218 (bonus)26 ( ) (total

Διαβάστε περισσότερα

Dark matter from Dark Energy-Baryonic Matter Couplings

Dark matter from Dark Energy-Baryonic Matter Couplings Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Fundamentals of Probability: A First Course. Anirban DasGupta

Fundamentals of Probability: A First Course. Anirban DasGupta Fundamentals of Probability: A First Course Anirban DasGupta Contents 1 Introducing Probability 5 1.1 ExperimentsandSampleSpaces... 6 1.2 Set Theory Notation and Axioms of Probability........... 7 1.3

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression Lu Tian and Richard Olshen Stanford University 1 One sample problem T 1,, T n 1 S( ), C 1,, C n G( ) and T i C i Observations: (U i,

Διαβάστε περισσότερα

INTERACTING PARTICLE SYSTEMS OUT OF EQUILIBRIUM. Davide Gabrielli University of L Aquila. (EURANDOM 2011) joint with

INTERACTING PARTICLE SYSTEMS OUT OF EQUILIBRIUM. Davide Gabrielli University of L Aquila. (EURANDOM 2011) joint with INTERACTING PARTICLE SYSTEMS OUT OF EQUILIBRIUM Davide Gabrielli University of L Aquila (EURANDOM 2011) joint with 1 Continuous time Markov chains State space: configurations of particles η = configuration,

Διαβάστε περισσότερα

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

Large β 0 corrections to the energy levels and wave function at N 3 LO

Large β 0 corrections to the energy levels and wave function at N 3 LO Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March

Διαβάστε περισσότερα

Summary of the model specified

Summary of the model specified Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com

Διαβάστε περισσότερα

Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas

Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas Weizhu Bao Department of Mathematics & Center for Computational Science and Engineering National University of Singapore Email: bao@math.nus.edu.sg

Διαβάστε περισσότερα

Stationary Univariate Time Series Models 1

Stationary Univariate Time Series Models 1 Stationary Univariate Time Series Models 1 Sebastian Fossati University of Alberta 1 These slides are based on Eric Zivot s time series notes available at: http://faculty.washington.edu/ezivot Example

Διαβάστε περισσότερα

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB] (Akihiko Inoue) Graduate School of Science, Hiroshima University (Yukio Kasahara) Graduate School of Science, Hokkaido University Mohsen Pourahmadi, Department of Statistics, Texas A&M University 1, =

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

The circle theorem and related theorems for Gauss-type quadrature rules

The circle theorem and related theorems for Gauss-type quadrature rules OP.circle p. / The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu Purdue University OP.circle p. 2/ Web Site http : //www.cs.purdue.edu/ archives/22/wxg/codes

Διαβάστε περισσότερα

Hartree-Fock Theory. Solving electronic structure problem on computers

Hartree-Fock Theory. Solving electronic structure problem on computers Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Single-value extension property for anti-diagonal operator matrices and their square

Single-value extension property for anti-diagonal operator matrices and their square 1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property

Διαβάστε περισσότερα

Approximation of dynamic boundary condition: The Allen Cahn equation

Approximation of dynamic boundary condition: The Allen Cahn equation 1 Approximation of dynamic boundary condition: The Allen Cahn equation Matthias Liero I.M.A.T.I. Pavia and Humboldt-Universität zu Berlin 6 th Singular Days 2010 Berlin Introduction Interfacial dynamics

Διαβάστε περισσότερα

Lecture 7: Overdispersion in Poisson regression

Lecture 7: Overdispersion in Poisson regression Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Λήψη Α οφάσεων υ ό Αβεβαιότητα Decision Making under Uncertainty Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Εντο

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ

ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ ΚΑΤΑΡΤΙΣΗ ΜΗΤΡΩΟΥ ΕΣΩΤΕΡΙΚΩΝ & ΕΞΩΤΕΡΙΚΩΝ ΜΕΛΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε., ΣΤΕΦ/ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ Γνωστικό Αντικείμενο: Computer Aided Design (CAD) Computer

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Linear System Response to Random Inputs. M. Sami Fadali Professor of Electrical Engineering University of Nevada

Linear System Response to Random Inputs. M. Sami Fadali Professor of Electrical Engineering University of Nevada Linear System Response to Random Inputs M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline Linear System Response to deterministic input. Response to stochastic input. Characterize

Διαβάστε περισσότερα

Mean-Variance Hedging on uncertain time horizon in a market with a jump

Mean-Variance Hedging on uncertain time horizon in a market with a jump Mean-Variance Hedging on uncertain time horizon in a market with a jump Thomas LIM 1 ENSIIE and Laboratoire Analyse et Probabilités d Evry Young Researchers Meeting on BSDEs, Numerics and Finance, Oxford

Διαβάστε περισσότερα

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1 207 : msjmeeting-207sep-07i00 ( ) Abstract 989 Korotyaev Schrödinger Gérard Laba Multiparticle quantum scattering in constant magnetic fields - propagator ( ). ( ) 20 Sigal-Soffer [22] 987 Gérard- Laba

Διαβάστε περισσότερα

Theory and Simulation of Interacting Particle Systems

Theory and Simulation of Interacting Particle Systems Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστικών Συστημάτων Διπλωματική Εργασία Theory and Simulation of Interacting

Διαβάστε περισσότερα

UV fixed-point structure of the 3d Thirring model

UV fixed-point structure of the 3d Thirring model UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches

Διαβάστε περισσότερα

Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης

Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE 802.11 Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης mkafetz@iit.demokritos.gr Το κίνητρο µας-συνεισφορά Η ασύρµατη δικτύωση λαµβάνει ευρείας αποδοχής. Το πρότυπο

Διαβάστε περισσότερα

1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 8/3/2017 ΠΑΡΑΜΕΤΡΟΙ (1/4) (Επανάληψη) Ένταση φορτίου (traffic intensity)

Διαβάστε περισσότερα

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal

Διαβάστε περισσότερα

Wavelet based matrix compression for boundary integral equations on complex geometries

Wavelet based matrix compression for boundary integral equations on complex geometries 1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Phase-Field Force Convergence

Phase-Field Force Convergence Phase-Field Force Convergence Bo Li Department of Mathematics and Quantitative Biology Graduate Program UC San Diego Collaborators: Shibin Dai and Jianfeng Lu Funding: NSF School of Mathematical Sciences

Διαβάστε περισσότερα

A thermodynamic characterization of some regularity structures near the subcriticality threshold

A thermodynamic characterization of some regularity structures near the subcriticality threshold Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ SPA 2017 Invited Session: Regularity structures A thermodynamic characterization of some regularity structures

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011. The Early Life of a Peptide Cation-Radical. Ground and Excited-State Trajectories of Electron-Based Peptide Dissociations During the First 330 Femtoseconds Christopher L. Moss, Wenkel Liang, Xiaosong Li,*

Διαβάστε περισσότερα

Comportement critique du modèle d accrochage de. Toulouse, 29 Mars 2016

Comportement critique du modèle d accrochage de. Toulouse, 29 Mars 2016 Comportement critique du modèle d accrochage de polymère Niccolò Torri Toulouse, 29 Mars 2016 1 Pinning Model 2 New Results 3 Proof 4 Perspectives N. Torri (Université de Nantes) Polymères aléatoires Toulouse,

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές 1. Patsis, P. A. & Zachilas, L.: 1990, Complex Instability Of Simple Periodic-Orbits In A Realistic 2-Component Galactic Potential, Astron. & Astroph., 227, 37 (ISI,

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Η Ουρά Μ/Μ/1/N Σφαιρικές & Τοπικές Εξισώσεις Ισορροπίας Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 22/3/2017 ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ ΘΑΝΑΤΩΝ (1/4) Birth Death Processes

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 9/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

Higher spin gauge theories and their CFT duals

Higher spin gauge theories and their CFT duals Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density 5..29 Radek Wojtak Nicolaus Copernicus Astronomical Center collaboration: Ewa Łokas, Gary Mamon, Stefan

Διαβάστε περισσότερα

Applying Markov Decision Processes to Role-playing Game

Applying Markov Decision Processes to Role-playing Game 1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo

Διαβάστε περισσότερα

Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1

Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1 Managing Economic Fluctuations -Keynesian macro: - -term nominal interest rates. - - P. - - P. Managing Macroeconomic Fluctuations 1 Review: New Keynesian Model -run macroeconomics: - π = γ (Y Y P ) +

Διαβάστε περισσότερα

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution Jim Dai Joint work with Masakiyo Miyazawa July 8, 211 211 INFORMS APS conference at Stockholm Jim Dai (Georgia

Διαβάστε περισσότερα

Buried Markov Model Pairwise

Buried Markov Model Pairwise Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi

Διαβάστε περισσότερα

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q) Online Appendix I Appendix D Additional Existence Proofs Denote B q = {q : A E A S [0, +r ]}, Bψ = {ψ : Y E A S S}, B W = {W : I E A S R}. I slightly abuse the notation by defining B q (L q ) the subset

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 23/3/2016 Άδεια Χρήσης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Ουρών Αναμονής Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 13/3/2019 ΠΑΡΑΜΕΤΡΟΙ (1/3) Ένταση φορτίου (traffic intensity) Σε περίπτωση 1 ουράς, 1 εξυπηρετητή:

Διαβάστε περισσότερα

Quantum Systems: Dynamics and Control 1

Quantum Systems: Dynamics and Control 1 Quantum Systems: Dynamics and Control 1 Mazyar Mirrahimi and Pierre Rouchon 3 February 7, 018 1 See the web page: http://cas.ensmp.fr/~rouchon/masterupmc/index.html INRIA Paris, QUANTIC research team 3

Διαβάστε περισσότερα

LTI Systems (1A) Young Won Lim 3/21/15

LTI Systems (1A) Young Won Lim 3/21/15 LTI Systems (1A) Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

Διαβάστε περισσότερα

Lecture 12: Pseudo likelihood approach

Lecture 12: Pseudo likelihood approach Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed

Διαβάστε περισσότερα

Math 200 Problem Set VI. x 2 1 c 2 2 u

Math 200 Problem Set VI. x 2 1 c 2 2 u Math 00 Problem Set VI 1 Find all second partial derivatives of f, y = + y. Find all second order derivatives of gs, t = fs + t, s t. The wave equation u 1 c u = 0 arises in many models involving wave-like

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics. Based on joint research with

Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics. Based on joint research with Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics (, Based on joint research with ( ( Contents 1. Physical background of the problem 2. Mathematical formulation

Διαβάστε περισσότερα

Deep factorisation of the stable process: Part I: Lagrange lecture, Torino University Part II: Seminar, Collegio Carlo Alberto.

Deep factorisation of the stable process: Part I: Lagrange lecture, Torino University Part II: Seminar, Collegio Carlo Alberto. Deep factorisation of the stable process: Part I: Lagrange lecture, Torino University Part II: Seminar, Collegio Carlo Alberto. Andreas E. Kyprianou, University of Bath, UK. Stable processes Definition

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Introduction to the ML Estimation of ARMA processes

Introduction to the ML Estimation of ARMA processes Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y

Διαβάστε περισσότερα

Universalité pour des polymères aléatoires. Paris, 17 Novembre 2015

Universalité pour des polymères aléatoires. Paris, 17 Novembre 2015 Universalité pour des polymères aléatoires Niccolò Torri Paris, 17 Novembre 2015 1 Polymers 2 Pinning Model and DPRE 3 Universality of the Pinning Model New Results 4 Proofs Continuum model Proof of our

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)

Διαβάστε περισσότερα

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6. Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω

Διαβάστε περισσότερα

Μελέτη του Προτύπου 2D- Potts σε Υπολογιστικό Περιβάλλον MATLAB. Παρουσίαση της Διπλωματικής Εργασίας του Γιάννη Ασσιώτη

Μελέτη του Προτύπου 2D- Potts σε Υπολογιστικό Περιβάλλον MATLAB. Παρουσίαση της Διπλωματικής Εργασίας του Γιάννη Ασσιώτη Μελέτη του Προτύπου 2D- Potts σε Υπολογιστικό Περιβάλλον MATLAB 1 Παρουσίαση της Διπλωματικής Εργασίας του Γιάννη Ασσιώτη 2 Στατιστική Μηχανική Μέγεθος συστημάτων Στοχαστική αντιμετώπιση Σύστημα Χαμιλτονιανή

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 1 IV. Hedging of credit derivatives 1. Two default free assets, one defaultable asset 1.1 Two

Διαβάστε περισσότερα