Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis
|
|
- Ἐπίκτητος Καραμήτσος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis Petersburg Nuclear Physics Institute A. Sarantsev HISKP (Bonn), PNPI (Russia) NSTAR 7- May, JLAB, USA
2 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Bonn-Gatchina partial wave analysis group: A. Anisovich, E. Klempt, V. Nikonov, A. Srantsev, U. Thoma
3 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 Search for baryon states. Analysis of single meson and double meson photoproduction reactions. γp πn, ηn, KΛ, KΣ, ππn, πηn, CB-ELSA, CLAS, GRAAL, LEPS.. Analysis of single meson and double meson pion-induced reactions. πn πn, ηn, KΛ, KΣ, ππn. Search for meson states. Analysis of the p p annihilation at rest and ππ interaction data.. Analysis of the p p annihilation in flight into two and tree meson final state. 3. Analysis of the J/Ψ decays (BES III collaboration). Analysis of N N interaction. Analysis of single and double meson production NN πnn and ππnn. Analysis of hyperon production NN KΛp
4 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 Energy dependent approach In many cases an unambiguous partial wave decomposition at fixed energies is impossible. Then the energy and angular parts should be analyzed together: A(s, t) = ββ n A ββ n (s)q (β)+ µ...µ n F µ...µ n ν...ν n Q (β ) ν...ν n. C. Zemach, Phys. Rev. 4, B97 (96); 4, B9 (96).. S.U.Chung, Phys. Rev. D 7, 43 (998). 3. A.V. Anisovich et al. J. Phys. G 8 () V. V. Anisovich, M. A. Matveev, V. A. Nikonov, J. Nyiri and A. V. Sarantsev, Hackensack, USA: World Scientific (8) 8 p. Correlations between angular part and energy part are under control.. Unitarity and analyticity can be introduced from the beginning. 3. Parameters are be fixed from combined fit of many reactions.
5 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR πn vertices N + µ...µ n = X (n) µ...µ n N µ...µ n = iγ ν γ X (n+) νµ...µ n () Q (+)µ α...α n Q (+)µ α...α n Q (3+)µ α...α n γn vertices = γ µ iγ X α (n)...α n, Q ( )µ α...α n = γ ν iγ X µνα (n+)...α n, Q ( )µ α...α n = γ ν iγ X να (n+)...α n gµα n, Q (3 )µ α...α n = γ ξ γ µ O (n+) ξα...α n, = X (n+) µα...α n, = X (n ) α...α n g α µ. Fermion propagator for J = N + F µ...µ L ν...ν L (p) = (m+ ˆp)O µ...µ L L + ( α...α L g L+ α β L L+ σ ) L α β g αi β i O β...β L ν...ν L i= σ αi α j = (γ α i γ αj γ αj γ αi )
6 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 Combined analysis of pion- and photo-production data: For pion induced reactions: A i = K j (I iρk) ji and K ij = α g α i gα j M α s + f ij(s) f ij = f () ij + f () ij s s s ij. where f ij is nonresonant transition part. For the photoproduction: A k = P j (I iρk) jk The vector of the initial interaction has the form: P j = α Λ α g α j M α s + F j(s) Here F j is nonresonant production of the final state j.
7 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 Reggezied exchanges: γ(k ) π(q ) γ(k ) p(q ) ρ(k t ) N(k u ) p(k ) p(q ) p(k ) π(q ) The amplitude for t-channel exchange: A = g (t)g (t)r(ξ, ν, t) = g (t)g (t) + ξexp( iπα(t)) sin(πα(t)) ν ν α(t) ν = (s u). Here α(t) is Reggion trajectory, and ξ is its signature: R(+, ν, t) = e i π α(t) sin( π α(t))γ α(t) ν ν α(t), R(, ν, t) = ie i π α(t) cos( π α(t))γ α(t) + ν ν α(t).
8 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 N/D based analysis of the data In the case of resonance contributions only we have factorization and Bethe-Salpeter equation can be easily solved: π η K J m J K m δ JK π η K A jm = A jk α B km α (s) M m s + δ jm M j s B km α (s) = 4m α Â = ˆκ(I ˆBˆκ) κ ij = δ ij M i s B ij = α ds π g (k) α Bα km (s) (s )ρ α (s )g (m) α (s ) s s i There is no factorization for non-resonant contributions: for every non-resonant transition to introduce a vertices and propagator (e.g. R = ). Bα km (s) = Bα km (Ms ) + (s Ms ) 4m α ds π g (k) α (s )ρ α (s )g α (m) (s ) (s s i)(s Ms )
9 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 9 Data Base Pion induced reactions (χ analysis). Observable N data χ N data Observable N data χ N data N / S (πn πn). SAID (.) / S 3 (πn πn).3 SAID (.) N / + P (πn πn).49 SAID (.) / + P 3 (πn πn) SAID (.) N 3/ + P 3 (πn πn).33 SAID (.) 3/ + P 33 (πn πn).79 SAID (.) N 3/ D 3 (πn πn) 8. SAID (.) 3/ D 33 (πn πn) 8.47 SAID (.) N / D (πn πn) 4.37 SAID (.4) N 7/ G 7 (πn πn).4 SAID (.4) N / + F (πn πn) 88.7 SAID (.) / + F 3 (πn πn) 6.4 SAID (.) N 7/ + F 7 (πn πn) 8.98 SAID (.) 7/ + F 37 (πn πn) 7.7 SAID (.) N 9/ G 9 (πn πn) 74.8 SAID (.) N 9/ + H 9 (πn πn) 86.6 SAID (.) dσ/dω(π p nη) 7.8 Richards et al. dσ/dω(π p nη) CBALL dσ/dω(π p KΛ) RAL P (π p KΛ) 3.67 RAL+ANL β(π p KΛ) 7.4 RAL dσ/dω(π + p K + Σ) 69. RAL P (π + p K + Σ) RAL β(π + p K + Σ) 7.8 RAL dσ/dω(π p K Σ ) 9.88 RAL P (π p K Σ ) 9.3 RAL
10 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Data Base π and η photoproduction reactions (χ analysis). χ Observable N χ data Observable N N data data N data dσ/dω(γp pπ ) 6.6 CB-ELSA dσ/dω(γp pπ ) 86.8 GRAAL dσ/dω(γp pπ ) 9.7 CLAS dσ/dω(γp pπ ) 69. TAPS@MAMI Σ(γp pπ ) 4.7 CB-ELSA Σ(γp pπ ) SAID db E(γp pπ ) 4.4 A-GDH P(γp pπ ) SAID db T(γp pπ ) SAID db H(γp pπ ) 7.7 SAID db G(γp pπ ) 7.7 SAID db O x (γp pπ ) 7.4 SAID db O z (γp pπ ) 7.7 SAID db dσ/dω(γp nπ + ) CLAS dσ/dω(γp nπ + ) 83.3 SAID db dσ/dω(γp nπ + ) 48. A-GDH Σ(γp nπ + ) SAID db E(γp nπ + 3. A-GDH P(γp nπ + ). SAID db T(γp nπ + ) SAID db H(γp pπ + ) 7 4. SAID db G(γp pπ + ) SAID db dσ/dω(γp pη) 68.3 CB-ELSA dσ/dω(γp pη).6 TAPS Σ(γp pη).9 GRAAL 98 Σ(γp pη).43 GRAAL 7 T (γp pη).39 Phoenics
11 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Data Base Kaon photoproduction (χ analysis). Observable N data χ N data Observable N data χ N data dσ/dω(γp ΛK + ) 3.78 CLAS9 dσ/dω(γp Σ K + ) 8.98 CLAS P(γp ΛK + ) 7.7 CLAS9 P(γp Σ K + ) 9.3 CLAS C x (γp ΛK + ) 6.44 CLAS C x (γp Σ K + ) CLAS C z (γp ΛK + ) 6.3 CLAS C z (γp Σ K + ) 94.6 CLAS Σ(γp ΛK + ) GRAAL Σ(γp Σ K + ) 4.8 GRAAL Σ(γp ΛK + ) 4.34 LEP Σ(γp Σ K + ) 4.3 LEP T(γp ΛK + ) 66.3 GRAAL 9 dσ/dω(γp Σ + K ) CLAS O x (γp ΛK + ) 66.7 GRAAL 9 dσ/dω(γp Σ + K ) 7.67 CB-ELSA O z (γp ΛK + ) GRAAL 9 P(γp Σ + K ) 4.7 CB-ELSA P(γp ΛK + ) 84.6 GRAAL Σ(γp Σ + K ).39 CB-ELSA
12 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Data Base Multi-meson final states (maximum likelihood analysis). dσ/dω(π p nπ π ) CBALL dσ/dω(γp pπ π ) CB-ELSA (.4 GeV) E(γp pπ π ) 6.9 MAMI dσ/dω(γp pπ η) CB-ELSA (3. GeV) Σ(γp pπ η) 8.37 GRAAL dσ/dω(γp pπ π ) CB-ELSA (3. GeV) Σ(γp pπ π ) 8.96 GRAAL dσ/dω(γp pπ η) CB-ELSA (3. GeV) Σ(γp pπ η) 8.37 GRAAL I c (γp pπ η) CB-ELSA (3. GeV) I s (γp pπ η) CB-ELSA (3. GeV)
13 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 The fit of the the π p KΛ reaction σ tot, mb / / / / + / 3/ + Full experiment for πn KΛ: differential cross section, analyzing power, rotation parameter. A clear evidence for resonances which are hardly seen (or not seen) in the elastic reactions: N(7)P, N(9)P 3, M(πp), MeV The total cross section for the reaction π p K Λ and contributions from leading partial waves.
14 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR dσ/dω, mb/sr π p KΛ (dσ/dω, P, β) P cos θ cm β, rad W=8 W=94 W= W=6 W=7 W= W=6 -.. cos θ cm cos θ cm
15 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR The γp KΛ reaction (CLAS 9) σ tot, µb σ tot, µb 3. / / / / + / 3/ + / / + 3. / / / / + / 3/ + / / M(γp), MeV M(γp), MeV
16 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 dσ/dω, µb/sr The fit of the γp KΛ differential cross section (CLAS 9) cos θ cm
17 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 - P The fit of the γp KΛ recoil asymmetry (CLAS 9) cos θ cm
18 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 The fit of the the π + p K + Σ + reaction.6. σ tot, mb Fit 3/ 3/ + 3/ 7/ + 3/ /.. dσ/dω, mb/sr P M(πp), MeV cos θ cm cos θ cm
19 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 9 The fit of the the π p K Σ reaction... σ tot, mb dσ/dω, mb/sr P M(πp), MeV cos θ cm -.. cos θ cm
20 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR π p nπ π (Crystal Ball) total cross section σ tot, mb Fit of the data P -partial wave D 3 -partial wave S -partial wave M(πp), GeV/c
21 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR π p nπ π (Crystal Ball) Differential cross sections for 47 and 66 MeV/c data. M347 M ( π p) 47 M47 M ( π π) 47 M36 M ( π p) 6 M6 M ( π π) Z47 cos Θ(π) Z347 cos Θ(p) Z6 cos Θ(π) Z36 cos Θ(p) cos Z347 Θ(π p) cos Z47 Θ(ππ) cos Z36 Θ(π p) cos Z6 Θ(ππ)
22 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp pπ π (Crystal Barrel) Differential cross sections. M3M(3)-.6 M ( π p) <M<.6 MM(3)-.6 M ( π π) <M<.6 M3M(3)-.7 M ( π p) <M<.7 MM(3)-.7 M ( π π) <M<.7 M3M(3)-.8 M ( π p) <M<.8 MM(3)-.8 M ( π π) <M< ZM(3)-.6 cos Θ(π) 4 8.<M<.6 Z3M(3)-.6 cos Θ(p) <M<.6 ZM(3)-.7 cos Θ(π) <M<.7 Z3M(3)-.7 cos Θ(p) <M<.7 ZM(3)-.8 cos Θ(π) <M<.8 Z3M(3)-.8 cos Θ(p) <M< Z3M(3)-.6 cos Θ(π p).<m< ZM(3)-.6 cos Θ(ππ).<M< Z3M(3)-.7 cos Θ(π p).6<m< ZM(3)-.7 cos Θ(ππ).6<M< Z3M(3)-.8 cos Θ(π p).7<m< ZM(3)-.8 cos Θ(ππ).7<M<
23 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 γp pπ π (Crystal Barrel) Dalitz plots W=.,.6,.7,.8 GeV. Dp(3 vs 3)M(3)-. Dp(3 vs 3)M(3)-. Dp(3 vs 3)M(3)-.6 Dp(3 vs 3)M(3) Dp(3 vs 3)M(3)-.7 Dp(3 vs 3)M(3)-.7 Dp(3 vs 3)M(3)-.8 Dp(3 vs 3)M(3)
24 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 γp pπ η (CB-ELSA)with linear polarized photon dσ dω = ( ) dσ { + δ l [I s sin(φ) + I c cos(φ)]}, () dω Σ = π I c dφ
25 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR I c and I s for γp pπ η (CB-ELSA) s Ip. W = 76 ± 64 MeV W = 834 ± 64 MeV W = 946 ± 48 MeV c Ip. W = 76 ± 64 MeV W = 834 ± 64 MeV W = 946 ± 48 MeV s Iπ. c Iπ s Iη. c Iη. -. φ* [ ] -. φ* [ ]
26 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 Pole position of baryon states (Re and -Im) in the mass region 9-3 MeV State Solution Solution Arndt Hoehler Cutcosky + 88±3 (Manley) N(87) Re 86± 8 + -Im +3 36±4 3±44 (Manley) N(89) Re 89±8 88± -Im 8± 9±3 N(88) 3 Re 86± 88± -Im 8±6 8±6 N(3) 3 Re 3±4 8± ±7 -Im 34±4 6±4 ±6 + N(9) 3 Re 9±4 9± -Im 7± 3±6 + N() Re ± -Im 3 9 9± N() + N(7) Re ± -Im ±4 Re 6±8 ±6 -Im 37± 36±8 N(99) 7 + -Im 7± 6± 6 6±6 Re 97± 9± 93 9±3 N(9) 7 Re 6± 7 4 ± -Im 3± 48 4±6
27 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 S : pole position and Breit-Wigner parameters State Solution Solution Arndt Hoehler Cutcosky N(89) Re 89±8 -Im 8± BW M 9± 88± parameters Γ 77± 9±3 Re T Total a) γp K + Σ, K Σ + b) 8 9 Im T M(πN), GeV γp K + Λ c) γp K + Λ (O x, O z, T) d) 8 9 M, MeV
28 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 D 3 : pole positions State Solution Solution Arndt Hoehler Cutcosky N(88) 3 Re 86± 88± -Im 8±6 8±6 N(3) 3 Re 3±4 8± ±7 -Im 34±4 6±4 ±6 Re T γp π + n a) γp K + Σ, K Σ + b) γp K + Λ c) 8 M, MeV Im T M(πN), GeV γp π p d) γp π + n e) γp K + Λ f) 4 M, MeV
29 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 9 D : pole position and Breit-Wigner parameters State Solution Solution Arndt Hoehler Cutcosky N(7) Re 6±8 ±6 -Im 37± 36±8 BW M 7± 8±3 8±8 parameters Γ 36± 3± 4± Re T Im T M(πN), GeV Total a) 9 3 γp π + n c) γp π p, K + Λ b) 9 3 γp ηp d) 9 3 M, MeV
30 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 Re T.. G 7 : pole position and Breit-Wigner parameters State Solution Solution Arndt Hoehler Cutcosky N(9) 7 Re 6± 7 4 ± -Im 3± 48 4±6 BW M 8±.4±.4 4± ±7 parameters Γ 9±4 484±3 39±3 ± -. 4 Total a) 4 γp b) 4 3 πp c) Im T M, MeV M(πN), GeV
31 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 P : pole position and Breit-Wigner parameters State Solution Solution Manley + N(87) Re 86± ±3 -Im +3 36±4 3±44 BW M 864± 863± parameters Γ ± 3±3 BG- BG- Re T Im T Re T Im T M(πN), GeV M(πN), GeV
32 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 P 3 : pole position and Breit-Wigner parameters State Solution Solution Arndt Hoehler Cutcosky + N(9) 3 Re 9± 89± -Im 3± N(9) 3 + Re - 97± -Im - ±6 BG- BG- Re T. Re T Im T M(πN), GeV Im T M(πN), GeV
33 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 33 Pole position of F : two and three pole solution State Solution Solution Arndt Hoehler Cutcosky + N() Re ± -Im ± N() + Re Im 6± 4± Re T.4 Re T Im T.6 Im T M(πN), GeV M(πN), GeV
34 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 34 Pole position of F 7 and helicity couplings (absolute value ( 3 GeV )/phase (degrees) State Solution A( )/A( 3 ) Solution A( )/A( 3 ) + N(99) 7 Re 98± /4 o ±3 76/ o -Im 8±3 8/3 o 3±6 78 / 4 o Re T... Σ Im T M(πN), GeV cos θ
35 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 Holographic QCD (AdS/QCD) L, S, N κ gd Resonance Pred.,, N(94) input:.94, 3, (3).7,, N(44).4,, N(3) N().3 4, 3, N(6) N(7) N(67).64,, (6) (7) L, S, N =, 3,: (6).64,, N(7) N(68) L, S, N =,,: N(7).7,, N(89) N(88).8 4, (9) (94) (93).9, 3, 3, (9) (9) (9) (9).9, 3, N(87) N(9) N(88) N(98).9,,3 N(????).3 3,, N(7) N(8) L, S, N =,,: N(????) N(????). 4 3, 3, N() N() L, S, N =,,: (3) (). 4,, N().7 4, 3, (39) (3) (4) L, N =3,: (4).43 (3),, N(6).7 4
36 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 36 Parity doublets of N and resonances at high mass region Parity doublets must not interact by pion emission and could have a small coupling to πn. J= J= 3 J= J= 7 J= 9 N / +(88) * N / (89) * / +(9) **** / (9) a ** N 3/ +(9) ** N 3/ (87) ** 3/ +(94) a *** 3/ (99) a * N / +(88) ** N / (7) / +(94) **** / (93) a *** N 7/ +(98) ** N 7/ (7) **** 7/ +(9) **** 7/ () * N 9/ +() **** N 9/ () **** 9/ +(3) ** 9/ (4) a ** J= J= 7 J= 9 N / +() ** N / (7) / +(94) **** / (93) a *** N 7/ +() ** N 7/ (6) **** 7/ +(9) **** 7/ () * N 9/ +() **** N 9/ () **** 9/ +(3) ** 9/ (4) a **
37 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 37 Summary The analysis of (almost) all available data for production of baryons in the pion and photo induced reaction is completed. We have observed a set of new states in the region 8- MeV, however, this number is much less than that predicted by the classical quark model. The low spin states in this mass region fit very well the AdS/QCD prediction as well as with the idea about chiral restoration at high energies. There are two solutions for the N 7 + lowest state which should be distinguished from analysis of beam asymmetry data on photoproduction of hyperon-kaon final states. The situation for N( + ) can be resolved with reanalysis of πn elastic data and an analysis of new data on double pion photoproduction (with charged pions). The search for the chiral partner of 7/ +(9) state is the main subject in our current analysis of double pion and π η photoproduction data.
38 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 38 MAMI data on γp ηp. A narrow state at 7 MeV? E. F. McNicoll et al., Phys. Rev. C 8 () 38 [arxiv:7.777 [nucl-ex]].4 dσ/dω, µb/sr σ tot, µb / / + 3/ M(γp), MeV cos θ cm
39 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 39 Fits with narrow states or ωp photoproduction Resonance Mass Γ tot BrηN A p / BrηN A p 3/ χ tot /N dat χ sel /N dat χ Σ /N dat MeV MeV 3 GeV / 3 GeV / no res P (+) P ( ) P S S (ωp) σ tot, µb no res P (+) P ( ) σ tot, µb S (ωp) S P Σ 43 o 6 o o 6 o o M(γp), MeV M(γp), MeV M(γp), MeV
40 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 Solutions S (ωp) and P (+).4 dσ/dω, µb/sr σ tot, µb S (ωp) P (+) M(γp), MeV cos θ cm
41 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 Prediction for polarization observables T 43 o o o o S (ωp) 8 o 6 7 P ( ) P (+) P 3 M(γp), MeV -. F 43 o o o o S (ωp) o 6 7 P ( ) P (+) P 3 M(γp), MeV
42 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 Summary New high precision data on γp ηp show a narrow structure in the mass region 6-7 MeV. The structure can be explained either with a narrow state (in the S, P or P 3 partial wave) or as an effect from photoproduction of ωp channel in the S partial wave. The beam asymmetry data [] favor the solution P ( ) with mass 694 MeV and width 3 MeV. High statistical data on beam asymmetry and beam-target polarization observables will determine which partial wave is responsible for the narrow structure. Such data can also help to distinguish between P (+) and P ( ) solutions.
43 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 43 γp π p γp π p M(γp), MeV
44 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π p γp π p
45 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 γp π p, 3/-/
46 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 46 γp π p, Σ γp π p, Σ
47 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 47 9 γp π p, Σ γp π p, Σ
48 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π p, Σ γp π p, Σ
49 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 49 7 γp π p, P γp π p, P
50 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π p, P γp π p, P
51 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π p, P γp π p, P
52 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 86 γp π p, P
53 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 γp π p, T γp π p, T
54 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π p, T γp π p, T
55 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 8 γp π p, G γp π p, H
56 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π p, Ox γp π p, Oz
57 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 γp π + n γp π + n
58 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 γp π + n γp π + n
59 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 9 4 γp π + n, 3/-/ γp π + n, 3/-/
60 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 9 γp π + n, Σ γp π + n, Σ
61 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π + n, Σ γp π + n, Σ
62 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 7 γp π + n, P γp π + n, P
63 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π + n, G γp π + n, G
64 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π + n, H γp π + n, H
65 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 γp π + n, T γp π + n, T
66 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π + n, T γp π + n, T
67 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp ηp. 49. γp ηp M(γp), MeV
68 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp ηp γp ηp
69 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 69 γp ηp, Σ
70 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7
71 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 C x C z cos θ K
72 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR
73 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR
74 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 74 3 γp K + Σ γp K + Σ M(γp), MeV
75 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 γp K + Σ γp K + Σ
76 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 76.7 γp K Σ γp K Σ M(γp), MeV
77 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 77 γp K + Σ, P C x C z cos θ K
78 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp K + Σ, Σ γp K + Σ, Σ
79 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 79 π p nπ π (Crystal Ball) total cross section σ tot, mb Fit of the data P -partial wave D 3 -partial wave S -partial wave M(πp), GeV/c
80 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 π p nπ π (Crystal Ball) Differential cross sections for 333,47 and MeV/c data. M3373 M ( π p) M373 M ( π π) M347 M ( π p) M47 M ( π π) M3 M ( π p) 4 3 M M ( π π) Z373 cos Θ(π) cos Z3373 Θ(p) Z47 cos Θ(π) cos Z347 Θ(p) 47 3 cos Z Θ(π) cos Z3 Θ(p) cos Z3373 Θ(π p) cos Z373 Θ(ππ) cos Z347 Θ(π p) 47 cos Z47 Θ(ππ) 47 cos Z3 Θ(π p) cos Z Θ(ππ)
81 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 π p nπ π (Crystal Ball) Differential cross sections for 6, 69 and 733 MeV/c data M36 M ( π p) M6 M ( π π) 6 4 M369 M ( π p) M69 M ( π π) 69 4 M3748 M ( π p) M748 M ( π π) Z6 cos Θ(π) cos Z36 Θ(p) cos Z69 Θ(π) cos Z369 Θ(p) Z748 cos Θ(π) cos Z3748 Θ(p) cos Z36 Θ(π p) cos Z6 Θ(ππ) cos Z369 Θ(π p) cos Z69 Θ(ππ) cos Z3748 Θ(π p) 733 cos Z748 Θ(ππ)
82 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 γp pπ π (CB-ELSA) Differential cross sections for W=4, and 6 MeV data. M3M(3)-.4 M ( π p) <M<.4 MM(3)-.4 M ( π π) <M<.4 M3M(3)-. M ( π p) 3 3.4<M<. MM(3)-. M ( π π) <M<. M3M(3)-.6 M ( π p) <M<.6 MM(3)-.6 M ( π π) <M< ZM(3)-.4 cos Θ(π).3<M<.4 Z3M(3)-.4 cos Θ(p).3<M<.4 ZM(3)-. cos Θ(π).4<M<. Z3M(3)-. cos Θ(p).4<M<. ZM(3)-.6 cos Θ(π).<M<.6 Z3M(3)-.6 cos Θ(p).<M< Z3M(3)-.4 cos Θ(π p) 9 8.3<M<.4 ZM(3)-.4 cos Θ(ππ) 9.3<M<.4 Z3M(3)-. cos Θ(π p) 8.4<M<. ZM(3)-. cos Θ(ππ) 3.4<M<. Z3M(3)-.6 cos Θ(π p) 6 4.<M<.6 ZM(3)-.6 cos Θ(ππ) 8 6.<M<
83 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 83 γp pπ π (CB-ELSA) Differential cross sections for W=7, 8 and 9 MeV data. M3M(3)-.7 M ( π p) <M<.7 MM(3)-.7 M ( π π) <M<.7 M3M(3)-.8 M ( π p) <M<.8 MM(3)-.8 M ( π π) <M<.8 M3M(3)-.7 M ( π p) <M<.97 MM(3)-.7 M ( π π) <M< ZM(3)-.7 cos Θ(π) <M<.7 Z3M(3)-.7 cos Θ(p) <M<.7 ZM(3)-.8 cos Θ(π) <M<.8 Z3M(3)-.8 cos Θ(p) 8 6.7<M<.8 ZM(3)-.7 cos Θ(π) <M<.97 Z3M(3)-.7 cos Θ(p) <M< Z3M(3)-.7 cos Θ(π p) <M<.7 ZM(3)-.7 cos Θ(ππ) <M<.7 Z3M(3)-.8 cos Θ(π p) <M<.8 ZM(3)-.8 cos Θ(ππ) <M<.8 Z3M(3)-.7 cos Θ(π p) <M<.97 ZM(3)-.7 cos Θ(ππ) <M<
84 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 84 γp pπ π (MAMI) Differential cross sections S = 3/ and S = /. σ [µb] σ tot (3/) σ tot (/) M(πγ) [GeV]
85 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 M3 M M(3)-.8 (p η).7<m< γp pηπ (CB-ELSA) Differential cross sections for W=7 and 8 MeV data. M3 M(3)-.8 (p π).7<m<.9 M M M(3)-.8 ( π η).7<m<.9 M3 M M(3)-. (p η).9<m<. M3 M(3)-. (p π).9<m<. M M M(3)-. ( π η).9<m< Z M(3)-.8 cos Θ(π).7<M< Z M(3)-.8 cos Θ(η).7<M< Z3 M(3)-.8 cos Θ(p).7<M< Z M(3)-. cos Θ(π).9<M<. 4 Z M(3)-. cos Θ(η).9<M<. 8 6 Z3 M(3)-. cos Θ(p).9<M< Z3 cos M(3)-.8 Θ(η p).7<m<.9 9 Z3 cos M(3)-.8 Θ(pπ).7<M<.9 9 Z cos M(3)-.8 Θ(πη).7<M<.9 Z3 cos M(3)-. Θ(η p).9<m<. Z3 cos M(3)-. Θ(pπ).9<M<. 3 Z cos M(3)-. Θ(πη).9<M<
86 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 86 M3 M M(3)-. (p η).<m< γp pηπ (CB-ELSA) Differential cross sections for W=9 and MeV data. M3 M(3)-. (p π).<m<.3 M M M(3)-. ( π η).<m<.3 M3 M M(3)-.4 (p η).3<m<. M3 M(3)-.4 (p π).3<m< M M M(3)-.4 ( π η).3<m< Z M(3)-. cos Θ(π).<M< Z M(3)-. cos Θ(η).<M< Z3 M(3)-. cos Θ(p).<M< Z M(3)-.4 cos Θ(π).3<M< Z M(3)-.4 cos Θ(η).3<M< Z3 M(3)-.4 cos Θ(p).3<M< Z3 cos M(3)-. Θ(η p).<m<.3 Z3 cos M(3)-. Θ(pπ).<M<.3 Z cos M(3)-. Θ(πη).<M<.3 3 Z3 cos M(3)-.4 Θ(η p).3<m<. 8 Z3 cos M(3)-.4 Θ(pπ).3<M<. 3 Z cos M(3)-.4 Θ(πη).3<M<
87 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 87 γp pηπ (CB-ELSA) Beam asymmetry data.
Bonn-Gatchina analysis of photoproduction data
atchina analysis of photoproduction data ECT workshop, Trento 3.6-4.7.4 Bonn-Gatchina analysis of photoproduction data A. Sarantsev Petersburg Nuclear Physics Institute HISKP, Bonn (Bonn University) PNPI,
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
Hadronic Tau Decays at BaBar
Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28
L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8 e p Integrated luminosity 96- + 3-7 (high energy)
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
K + Λ photoproduction in a dynamical coupled-channel approach
+ Λ photoproduction in a dynamical coupled-channel approach Deborah Rönchen HISP, Bonn University In collaboration with M. Döring, U.-G. Meißner, J. Haidenbauer, H. Haberzettl,. akayama PWA/ATHOS5 July
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
The Θ + Photoproduction in a Regge Model
The Θ + Photoproduction in a Regge Model Herry Kwee College of illiam and Mary Cascade 5 Jefferson Lab December 3, 5 1 1. Introduction. Photoproduction γn Θ + K for spin-1/ Θ + γp Θ + K for spin-1/ Θ +
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
LIGHT UNFLAVORED MESONS (S = C = B = 0)
LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Solar Neutrinos: Fluxes
Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Light Hadrons and New Enhancements in J/ψ Decays at BESII
Light Hadrons and New Enhancements in J/ψ Decays at BESII Guofa XU Representing BES Collaboration Institute of High Energy Physics Chinese Academy of Sciences Beijing, China xugf@ihep.ac.cn Outline Introduction
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Large β 0 corrections to the energy levels and wave function at N 3 LO
Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 653Ä664 ˆ Œ ˆ ˆ e + e K + K nπ (n =1, 2, 3) Š Œ ŠŒ -3 Š - ˆ Œ Š -2000 ƒ.. μéμ Î 1,2, μé ³ ±μ²² μ Í ŠŒ -3: A.. ß ±μ 1,2,. Œ. ʲÓÎ ±μ 1,2,.. ̳ ÉÏ 1,2,.. μ 1,.. ÏÉμ μ 1,.
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου
Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ
Ó³ Ÿ. 2014.. 11, º 4(188).. 817Ä827 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ Ÿ.. ² ± Ì,. Œ. ŠÊ Íμ,.. μ ± Ö 1, Œ. ƒ. μ ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ò Ê²ÓÉ ÉÒ ³ ÒÌμ μ ÉÖ ²ÒÌ μ μ É μ μ ²Ê μ±μ - Ê Ê μ³ Ö
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Monolithic Crystal Filters (M.C.F.)
Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Orbital angular momentum and the spherical harmonics
Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined
PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h
PHOS π, ask PHOS π analysis, for production, R AA, and Flow analysis, Henrik Qvigstad henrik.qvigstad@fys.uio.no University of Oslo --5 PHOS π, ask ask he task we use, AliaskPiFlow was written prior, for
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Andreas Peters Regensburg Universtity
Pion-Nucleon Light-Cone Distribution Amplitudes Exclusive Reactions 007 May 1-4, 007, Jefferson Laboratory Newport News, Virginia, USA Andreas Peters Regensburg Universtity in collaboration with V.Braun,
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
Unified dispersive approach to real and virtual photon-photon scattering into two pions
Unified dispersive approach to real and virtual photon-photon scattering into two pions Bachir Moussallam Project started with Diogo Boito arxiv:1305.3143 Photon 2013 *** Paris, May 20-24 Introduction
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1
EPS-HEP 5 DOUBLE-SCTTERING MECHNISM OF PRODUCTION OF TWO MESONS IN ULTRPERIPHERL, ULTRRELTIISTIC HEY ION COLLISIONS ntoni Szczurek, Mariola Kłusek-Gawenda Institute of Nuclear Physics PN Kraków University
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.
B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
NN scattering formulations without partial-wave decomposition
NN scattering formulations without partial-wave decomposition Departemen Fisika, Universitas Indonesia, Depok 644, Indonesia E-mail: imam.fachruddin@sci.ui.ac.id Agus Salam Departemen Fisika, Universitas
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values