Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis"

Transcript

1 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis Petersburg Nuclear Physics Institute A. Sarantsev HISKP (Bonn), PNPI (Russia) NSTAR 7- May, JLAB, USA

2 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Bonn-Gatchina partial wave analysis group: A. Anisovich, E. Klempt, V. Nikonov, A. Srantsev, U. Thoma

3 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 Search for baryon states. Analysis of single meson and double meson photoproduction reactions. γp πn, ηn, KΛ, KΣ, ππn, πηn, CB-ELSA, CLAS, GRAAL, LEPS.. Analysis of single meson and double meson pion-induced reactions. πn πn, ηn, KΛ, KΣ, ππn. Search for meson states. Analysis of the p p annihilation at rest and ππ interaction data.. Analysis of the p p annihilation in flight into two and tree meson final state. 3. Analysis of the J/Ψ decays (BES III collaboration). Analysis of N N interaction. Analysis of single and double meson production NN πnn and ππnn. Analysis of hyperon production NN KΛp

4 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 Energy dependent approach In many cases an unambiguous partial wave decomposition at fixed energies is impossible. Then the energy and angular parts should be analyzed together: A(s, t) = ββ n A ββ n (s)q (β)+ µ...µ n F µ...µ n ν...ν n Q (β ) ν...ν n. C. Zemach, Phys. Rev. 4, B97 (96); 4, B9 (96).. S.U.Chung, Phys. Rev. D 7, 43 (998). 3. A.V. Anisovich et al. J. Phys. G 8 () V. V. Anisovich, M. A. Matveev, V. A. Nikonov, J. Nyiri and A. V. Sarantsev, Hackensack, USA: World Scientific (8) 8 p. Correlations between angular part and energy part are under control.. Unitarity and analyticity can be introduced from the beginning. 3. Parameters are be fixed from combined fit of many reactions.

5 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR πn vertices N + µ...µ n = X (n) µ...µ n N µ...µ n = iγ ν γ X (n+) νµ...µ n () Q (+)µ α...α n Q (+)µ α...α n Q (3+)µ α...α n γn vertices = γ µ iγ X α (n)...α n, Q ( )µ α...α n = γ ν iγ X µνα (n+)...α n, Q ( )µ α...α n = γ ν iγ X να (n+)...α n gµα n, Q (3 )µ α...α n = γ ξ γ µ O (n+) ξα...α n, = X (n+) µα...α n, = X (n ) α...α n g α µ. Fermion propagator for J = N + F µ...µ L ν...ν L (p) = (m+ ˆp)O µ...µ L L + ( α...α L g L+ α β L L+ σ ) L α β g αi β i O β...β L ν...ν L i= σ αi α j = (γ α i γ αj γ αj γ αi )

6 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 Combined analysis of pion- and photo-production data: For pion induced reactions: A i = K j (I iρk) ji and K ij = α g α i gα j M α s + f ij(s) f ij = f () ij + f () ij s s s ij. where f ij is nonresonant transition part. For the photoproduction: A k = P j (I iρk) jk The vector of the initial interaction has the form: P j = α Λ α g α j M α s + F j(s) Here F j is nonresonant production of the final state j.

7 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 Reggezied exchanges: γ(k ) π(q ) γ(k ) p(q ) ρ(k t ) N(k u ) p(k ) p(q ) p(k ) π(q ) The amplitude for t-channel exchange: A = g (t)g (t)r(ξ, ν, t) = g (t)g (t) + ξexp( iπα(t)) sin(πα(t)) ν ν α(t) ν = (s u). Here α(t) is Reggion trajectory, and ξ is its signature: R(+, ν, t) = e i π α(t) sin( π α(t))γ α(t) ν ν α(t), R(, ν, t) = ie i π α(t) cos( π α(t))γ α(t) + ν ν α(t).

8 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 N/D based analysis of the data In the case of resonance contributions only we have factorization and Bethe-Salpeter equation can be easily solved: π η K J m J K m δ JK π η K A jm = A jk α B km α (s) M m s + δ jm M j s B km α (s) = 4m α Â = ˆκ(I ˆBˆκ) κ ij = δ ij M i s B ij = α ds π g (k) α Bα km (s) (s )ρ α (s )g (m) α (s ) s s i There is no factorization for non-resonant contributions: for every non-resonant transition to introduce a vertices and propagator (e.g. R = ). Bα km (s) = Bα km (Ms ) + (s Ms ) 4m α ds π g (k) α (s )ρ α (s )g α (m) (s ) (s s i)(s Ms )

9 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 9 Data Base Pion induced reactions (χ analysis). Observable N data χ N data Observable N data χ N data N / S (πn πn). SAID (.) / S 3 (πn πn).3 SAID (.) N / + P (πn πn).49 SAID (.) / + P 3 (πn πn) SAID (.) N 3/ + P 3 (πn πn).33 SAID (.) 3/ + P 33 (πn πn).79 SAID (.) N 3/ D 3 (πn πn) 8. SAID (.) 3/ D 33 (πn πn) 8.47 SAID (.) N / D (πn πn) 4.37 SAID (.4) N 7/ G 7 (πn πn).4 SAID (.4) N / + F (πn πn) 88.7 SAID (.) / + F 3 (πn πn) 6.4 SAID (.) N 7/ + F 7 (πn πn) 8.98 SAID (.) 7/ + F 37 (πn πn) 7.7 SAID (.) N 9/ G 9 (πn πn) 74.8 SAID (.) N 9/ + H 9 (πn πn) 86.6 SAID (.) dσ/dω(π p nη) 7.8 Richards et al. dσ/dω(π p nη) CBALL dσ/dω(π p KΛ) RAL P (π p KΛ) 3.67 RAL+ANL β(π p KΛ) 7.4 RAL dσ/dω(π + p K + Σ) 69. RAL P (π + p K + Σ) RAL β(π + p K + Σ) 7.8 RAL dσ/dω(π p K Σ ) 9.88 RAL P (π p K Σ ) 9.3 RAL

10 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Data Base π and η photoproduction reactions (χ analysis). χ Observable N χ data Observable N N data data N data dσ/dω(γp pπ ) 6.6 CB-ELSA dσ/dω(γp pπ ) 86.8 GRAAL dσ/dω(γp pπ ) 9.7 CLAS dσ/dω(γp pπ ) 69. TAPS@MAMI Σ(γp pπ ) 4.7 CB-ELSA Σ(γp pπ ) SAID db E(γp pπ ) 4.4 A-GDH P(γp pπ ) SAID db T(γp pπ ) SAID db H(γp pπ ) 7.7 SAID db G(γp pπ ) 7.7 SAID db O x (γp pπ ) 7.4 SAID db O z (γp pπ ) 7.7 SAID db dσ/dω(γp nπ + ) CLAS dσ/dω(γp nπ + ) 83.3 SAID db dσ/dω(γp nπ + ) 48. A-GDH Σ(γp nπ + ) SAID db E(γp nπ + 3. A-GDH P(γp nπ + ). SAID db T(γp nπ + ) SAID db H(γp pπ + ) 7 4. SAID db G(γp pπ + ) SAID db dσ/dω(γp pη) 68.3 CB-ELSA dσ/dω(γp pη).6 TAPS Σ(γp pη).9 GRAAL 98 Σ(γp pη).43 GRAAL 7 T (γp pη).39 Phoenics

11 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Data Base Kaon photoproduction (χ analysis). Observable N data χ N data Observable N data χ N data dσ/dω(γp ΛK + ) 3.78 CLAS9 dσ/dω(γp Σ K + ) 8.98 CLAS P(γp ΛK + ) 7.7 CLAS9 P(γp Σ K + ) 9.3 CLAS C x (γp ΛK + ) 6.44 CLAS C x (γp Σ K + ) CLAS C z (γp ΛK + ) 6.3 CLAS C z (γp Σ K + ) 94.6 CLAS Σ(γp ΛK + ) GRAAL Σ(γp Σ K + ) 4.8 GRAAL Σ(γp ΛK + ) 4.34 LEP Σ(γp Σ K + ) 4.3 LEP T(γp ΛK + ) 66.3 GRAAL 9 dσ/dω(γp Σ + K ) CLAS O x (γp ΛK + ) 66.7 GRAAL 9 dσ/dω(γp Σ + K ) 7.67 CB-ELSA O z (γp ΛK + ) GRAAL 9 P(γp Σ + K ) 4.7 CB-ELSA P(γp ΛK + ) 84.6 GRAAL Σ(γp Σ + K ).39 CB-ELSA

12 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Data Base Multi-meson final states (maximum likelihood analysis). dσ/dω(π p nπ π ) CBALL dσ/dω(γp pπ π ) CB-ELSA (.4 GeV) E(γp pπ π ) 6.9 MAMI dσ/dω(γp pπ η) CB-ELSA (3. GeV) Σ(γp pπ η) 8.37 GRAAL dσ/dω(γp pπ π ) CB-ELSA (3. GeV) Σ(γp pπ π ) 8.96 GRAAL dσ/dω(γp pπ η) CB-ELSA (3. GeV) Σ(γp pπ η) 8.37 GRAAL I c (γp pπ η) CB-ELSA (3. GeV) I s (γp pπ η) CB-ELSA (3. GeV)

13 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 The fit of the the π p KΛ reaction σ tot, mb / / / / + / 3/ + Full experiment for πn KΛ: differential cross section, analyzing power, rotation parameter. A clear evidence for resonances which are hardly seen (or not seen) in the elastic reactions: N(7)P, N(9)P 3, M(πp), MeV The total cross section for the reaction π p K Λ and contributions from leading partial waves.

14 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR dσ/dω, mb/sr π p KΛ (dσ/dω, P, β) P cos θ cm β, rad W=8 W=94 W= W=6 W=7 W= W=6 -.. cos θ cm cos θ cm

15 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR The γp KΛ reaction (CLAS 9) σ tot, µb σ tot, µb 3. / / / / + / 3/ + / / + 3. / / / / + / 3/ + / / M(γp), MeV M(γp), MeV

16 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 dσ/dω, µb/sr The fit of the γp KΛ differential cross section (CLAS 9) cos θ cm

17 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 - P The fit of the γp KΛ recoil asymmetry (CLAS 9) cos θ cm

18 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 The fit of the the π + p K + Σ + reaction.6. σ tot, mb Fit 3/ 3/ + 3/ 7/ + 3/ /.. dσ/dω, mb/sr P M(πp), MeV cos θ cm cos θ cm

19 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 9 The fit of the the π p K Σ reaction... σ tot, mb dσ/dω, mb/sr P M(πp), MeV cos θ cm -.. cos θ cm

20 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR π p nπ π (Crystal Ball) total cross section σ tot, mb Fit of the data P -partial wave D 3 -partial wave S -partial wave M(πp), GeV/c

21 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR π p nπ π (Crystal Ball) Differential cross sections for 47 and 66 MeV/c data. M347 M ( π p) 47 M47 M ( π π) 47 M36 M ( π p) 6 M6 M ( π π) Z47 cos Θ(π) Z347 cos Θ(p) Z6 cos Θ(π) Z36 cos Θ(p) cos Z347 Θ(π p) cos Z47 Θ(ππ) cos Z36 Θ(π p) cos Z6 Θ(ππ)

22 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp pπ π (Crystal Barrel) Differential cross sections. M3M(3)-.6 M ( π p) <M<.6 MM(3)-.6 M ( π π) <M<.6 M3M(3)-.7 M ( π p) <M<.7 MM(3)-.7 M ( π π) <M<.7 M3M(3)-.8 M ( π p) <M<.8 MM(3)-.8 M ( π π) <M< ZM(3)-.6 cos Θ(π) 4 8.<M<.6 Z3M(3)-.6 cos Θ(p) <M<.6 ZM(3)-.7 cos Θ(π) <M<.7 Z3M(3)-.7 cos Θ(p) <M<.7 ZM(3)-.8 cos Θ(π) <M<.8 Z3M(3)-.8 cos Θ(p) <M< Z3M(3)-.6 cos Θ(π p).<m< ZM(3)-.6 cos Θ(ππ).<M< Z3M(3)-.7 cos Θ(π p).6<m< ZM(3)-.7 cos Θ(ππ).6<M< Z3M(3)-.8 cos Θ(π p).7<m< ZM(3)-.8 cos Θ(ππ).7<M<

23 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 γp pπ π (Crystal Barrel) Dalitz plots W=.,.6,.7,.8 GeV. Dp(3 vs 3)M(3)-. Dp(3 vs 3)M(3)-. Dp(3 vs 3)M(3)-.6 Dp(3 vs 3)M(3) Dp(3 vs 3)M(3)-.7 Dp(3 vs 3)M(3)-.7 Dp(3 vs 3)M(3)-.8 Dp(3 vs 3)M(3)

24 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 γp pπ η (CB-ELSA)with linear polarized photon dσ dω = ( ) dσ { + δ l [I s sin(φ) + I c cos(φ)]}, () dω Σ = π I c dφ

25 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR I c and I s for γp pπ η (CB-ELSA) s Ip. W = 76 ± 64 MeV W = 834 ± 64 MeV W = 946 ± 48 MeV c Ip. W = 76 ± 64 MeV W = 834 ± 64 MeV W = 946 ± 48 MeV s Iπ. c Iπ s Iη. c Iη. -. φ* [ ] -. φ* [ ]

26 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 Pole position of baryon states (Re and -Im) in the mass region 9-3 MeV State Solution Solution Arndt Hoehler Cutcosky + 88±3 (Manley) N(87) Re 86± 8 + -Im +3 36±4 3±44 (Manley) N(89) Re 89±8 88± -Im 8± 9±3 N(88) 3 Re 86± 88± -Im 8±6 8±6 N(3) 3 Re 3±4 8± ±7 -Im 34±4 6±4 ±6 + N(9) 3 Re 9±4 9± -Im 7± 3±6 + N() Re ± -Im 3 9 9± N() + N(7) Re ± -Im ±4 Re 6±8 ±6 -Im 37± 36±8 N(99) 7 + -Im 7± 6± 6 6±6 Re 97± 9± 93 9±3 N(9) 7 Re 6± 7 4 ± -Im 3± 48 4±6

27 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 S : pole position and Breit-Wigner parameters State Solution Solution Arndt Hoehler Cutcosky N(89) Re 89±8 -Im 8± BW M 9± 88± parameters Γ 77± 9±3 Re T Total a) γp K + Σ, K Σ + b) 8 9 Im T M(πN), GeV γp K + Λ c) γp K + Λ (O x, O z, T) d) 8 9 M, MeV

28 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 D 3 : pole positions State Solution Solution Arndt Hoehler Cutcosky N(88) 3 Re 86± 88± -Im 8±6 8±6 N(3) 3 Re 3±4 8± ±7 -Im 34±4 6±4 ±6 Re T γp π + n a) γp K + Σ, K Σ + b) γp K + Λ c) 8 M, MeV Im T M(πN), GeV γp π p d) γp π + n e) γp K + Λ f) 4 M, MeV

29 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 9 D : pole position and Breit-Wigner parameters State Solution Solution Arndt Hoehler Cutcosky N(7) Re 6±8 ±6 -Im 37± 36±8 BW M 7± 8±3 8±8 parameters Γ 36± 3± 4± Re T Im T M(πN), GeV Total a) 9 3 γp π + n c) γp π p, K + Λ b) 9 3 γp ηp d) 9 3 M, MeV

30 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 Re T.. G 7 : pole position and Breit-Wigner parameters State Solution Solution Arndt Hoehler Cutcosky N(9) 7 Re 6± 7 4 ± -Im 3± 48 4±6 BW M 8±.4±.4 4± ±7 parameters Γ 9±4 484±3 39±3 ± -. 4 Total a) 4 γp b) 4 3 πp c) Im T M, MeV M(πN), GeV

31 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 P : pole position and Breit-Wigner parameters State Solution Solution Manley + N(87) Re 86± ±3 -Im +3 36±4 3±44 BW M 864± 863± parameters Γ ± 3±3 BG- BG- Re T Im T Re T Im T M(πN), GeV M(πN), GeV

32 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 P 3 : pole position and Breit-Wigner parameters State Solution Solution Arndt Hoehler Cutcosky + N(9) 3 Re 9± 89± -Im 3± N(9) 3 + Re - 97± -Im - ±6 BG- BG- Re T. Re T Im T M(πN), GeV Im T M(πN), GeV

33 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 33 Pole position of F : two and three pole solution State Solution Solution Arndt Hoehler Cutcosky + N() Re ± -Im ± N() + Re Im 6± 4± Re T.4 Re T Im T.6 Im T M(πN), GeV M(πN), GeV

34 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 34 Pole position of F 7 and helicity couplings (absolute value ( 3 GeV )/phase (degrees) State Solution A( )/A( 3 ) Solution A( )/A( 3 ) + N(99) 7 Re 98± /4 o ±3 76/ o -Im 8±3 8/3 o 3±6 78 / 4 o Re T... Σ Im T M(πN), GeV cos θ

35 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 Holographic QCD (AdS/QCD) L, S, N κ gd Resonance Pred.,, N(94) input:.94, 3, (3).7,, N(44).4,, N(3) N().3 4, 3, N(6) N(7) N(67).64,, (6) (7) L, S, N =, 3,: (6).64,, N(7) N(68) L, S, N =,,: N(7).7,, N(89) N(88).8 4, (9) (94) (93).9, 3, 3, (9) (9) (9) (9).9, 3, N(87) N(9) N(88) N(98).9,,3 N(????).3 3,, N(7) N(8) L, S, N =,,: N(????) N(????). 4 3, 3, N() N() L, S, N =,,: (3) (). 4,, N().7 4, 3, (39) (3) (4) L, N =3,: (4).43 (3),, N(6).7 4

36 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 36 Parity doublets of N and resonances at high mass region Parity doublets must not interact by pion emission and could have a small coupling to πn. J= J= 3 J= J= 7 J= 9 N / +(88) * N / (89) * / +(9) **** / (9) a ** N 3/ +(9) ** N 3/ (87) ** 3/ +(94) a *** 3/ (99) a * N / +(88) ** N / (7) / +(94) **** / (93) a *** N 7/ +(98) ** N 7/ (7) **** 7/ +(9) **** 7/ () * N 9/ +() **** N 9/ () **** 9/ +(3) ** 9/ (4) a ** J= J= 7 J= 9 N / +() ** N / (7) / +(94) **** / (93) a *** N 7/ +() ** N 7/ (6) **** 7/ +(9) **** 7/ () * N 9/ +() **** N 9/ () **** 9/ +(3) ** 9/ (4) a **

37 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 37 Summary The analysis of (almost) all available data for production of baryons in the pion and photo induced reaction is completed. We have observed a set of new states in the region 8- MeV, however, this number is much less than that predicted by the classical quark model. The low spin states in this mass region fit very well the AdS/QCD prediction as well as with the idea about chiral restoration at high energies. There are two solutions for the N 7 + lowest state which should be distinguished from analysis of beam asymmetry data on photoproduction of hyperon-kaon final states. The situation for N( + ) can be resolved with reanalysis of πn elastic data and an analysis of new data on double pion photoproduction (with charged pions). The search for the chiral partner of 7/ +(9) state is the main subject in our current analysis of double pion and π η photoproduction data.

38 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 38 MAMI data on γp ηp. A narrow state at 7 MeV? E. F. McNicoll et al., Phys. Rev. C 8 () 38 [arxiv:7.777 [nucl-ex]].4 dσ/dω, µb/sr σ tot, µb / / + 3/ M(γp), MeV cos θ cm

39 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 39 Fits with narrow states or ωp photoproduction Resonance Mass Γ tot BrηN A p / BrηN A p 3/ χ tot /N dat χ sel /N dat χ Σ /N dat MeV MeV 3 GeV / 3 GeV / no res P (+) P ( ) P S S (ωp) σ tot, µb no res P (+) P ( ) σ tot, µb S (ωp) S P Σ 43 o 6 o o 6 o o M(γp), MeV M(γp), MeV M(γp), MeV

40 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 Solutions S (ωp) and P (+).4 dσ/dω, µb/sr σ tot, µb S (ωp) P (+) M(γp), MeV cos θ cm

41 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 Prediction for polarization observables T 43 o o o o S (ωp) 8 o 6 7 P ( ) P (+) P 3 M(γp), MeV -. F 43 o o o o S (ωp) o 6 7 P ( ) P (+) P 3 M(γp), MeV

42 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 Summary New high precision data on γp ηp show a narrow structure in the mass region 6-7 MeV. The structure can be explained either with a narrow state (in the S, P or P 3 partial wave) or as an effect from photoproduction of ωp channel in the S partial wave. The beam asymmetry data [] favor the solution P ( ) with mass 694 MeV and width 3 MeV. High statistical data on beam asymmetry and beam-target polarization observables will determine which partial wave is responsible for the narrow structure. Such data can also help to distinguish between P (+) and P ( ) solutions.

43 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 43 γp π p γp π p M(γp), MeV

44 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π p γp π p

45 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 4 γp π p, 3/-/

46 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 46 γp π p, Σ γp π p, Σ

47 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 47 9 γp π p, Σ γp π p, Σ

48 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π p, Σ γp π p, Σ

49 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 49 7 γp π p, P γp π p, P

50 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π p, P γp π p, P

51 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π p, P γp π p, P

52 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 86 γp π p, P

53 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 γp π p, T γp π p, T

54 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π p, T γp π p, T

55 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 3 8 γp π p, G γp π p, H

56 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π p, Ox γp π p, Oz

57 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 γp π + n γp π + n

58 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 γp π + n γp π + n

59 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 9 4 γp π + n, 3/-/ γp π + n, 3/-/

60 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 9 γp π + n, Σ γp π + n, Σ

61 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π + n, Σ γp π + n, Σ

62 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 7 γp π + n, P γp π + n, P

63 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π + n, G γp π + n, G

64 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π + n, H γp π + n, H

65 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 6 γp π + n, T γp π + n, T

66 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp π + n, T γp π + n, T

67 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp ηp. 49. γp ηp M(γp), MeV

68 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp ηp γp ηp

69 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 69 γp ηp, Σ

70 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7

71 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 C x C z cos θ K

72 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR

73 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR

74 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 74 3 γp K + Σ γp K + Σ M(γp), MeV

75 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 7 γp K + Σ γp K + Σ

76 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 76.7 γp K Σ γp K Σ M(γp), MeV

77 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 77 γp K + Σ, P C x C z cos θ K

78 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR γp K + Σ, Σ γp K + Σ, Σ

79 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 79 π p nπ π (Crystal Ball) total cross section σ tot, mb Fit of the data P -partial wave D 3 -partial wave S -partial wave M(πp), GeV/c

80 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 π p nπ π (Crystal Ball) Differential cross sections for 333,47 and MeV/c data. M3373 M ( π p) M373 M ( π π) M347 M ( π p) M47 M ( π π) M3 M ( π p) 4 3 M M ( π π) Z373 cos Θ(π) cos Z3373 Θ(p) Z47 cos Θ(π) cos Z347 Θ(p) 47 3 cos Z Θ(π) cos Z3 Θ(p) cos Z3373 Θ(π p) cos Z373 Θ(ππ) cos Z347 Θ(π p) 47 cos Z47 Θ(ππ) 47 cos Z3 Θ(π p) cos Z Θ(ππ)

81 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 π p nπ π (Crystal Ball) Differential cross sections for 6, 69 and 733 MeV/c data M36 M ( π p) M6 M ( π π) 6 4 M369 M ( π p) M69 M ( π π) 69 4 M3748 M ( π p) M748 M ( π π) Z6 cos Θ(π) cos Z36 Θ(p) cos Z69 Θ(π) cos Z369 Θ(p) Z748 cos Θ(π) cos Z3748 Θ(p) cos Z36 Θ(π p) cos Z6 Θ(ππ) cos Z369 Θ(π p) cos Z69 Θ(ππ) cos Z3748 Θ(π p) 733 cos Z748 Θ(ππ)

82 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 γp pπ π (CB-ELSA) Differential cross sections for W=4, and 6 MeV data. M3M(3)-.4 M ( π p) <M<.4 MM(3)-.4 M ( π π) <M<.4 M3M(3)-. M ( π p) 3 3.4<M<. MM(3)-. M ( π π) <M<. M3M(3)-.6 M ( π p) <M<.6 MM(3)-.6 M ( π π) <M< ZM(3)-.4 cos Θ(π).3<M<.4 Z3M(3)-.4 cos Θ(p).3<M<.4 ZM(3)-. cos Θ(π).4<M<. Z3M(3)-. cos Θ(p).4<M<. ZM(3)-.6 cos Θ(π).<M<.6 Z3M(3)-.6 cos Θ(p).<M< Z3M(3)-.4 cos Θ(π p) 9 8.3<M<.4 ZM(3)-.4 cos Θ(ππ) 9.3<M<.4 Z3M(3)-. cos Θ(π p) 8.4<M<. ZM(3)-. cos Θ(ππ) 3.4<M<. Z3M(3)-.6 cos Θ(π p) 6 4.<M<.6 ZM(3)-.6 cos Θ(ππ) 8 6.<M<

83 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 83 γp pπ π (CB-ELSA) Differential cross sections for W=7, 8 and 9 MeV data. M3M(3)-.7 M ( π p) <M<.7 MM(3)-.7 M ( π π) <M<.7 M3M(3)-.8 M ( π p) <M<.8 MM(3)-.8 M ( π π) <M<.8 M3M(3)-.7 M ( π p) <M<.97 MM(3)-.7 M ( π π) <M< ZM(3)-.7 cos Θ(π) <M<.7 Z3M(3)-.7 cos Θ(p) <M<.7 ZM(3)-.8 cos Θ(π) <M<.8 Z3M(3)-.8 cos Θ(p) 8 6.7<M<.8 ZM(3)-.7 cos Θ(π) <M<.97 Z3M(3)-.7 cos Θ(p) <M< Z3M(3)-.7 cos Θ(π p) <M<.7 ZM(3)-.7 cos Θ(ππ) <M<.7 Z3M(3)-.8 cos Θ(π p) <M<.8 ZM(3)-.8 cos Θ(ππ) <M<.8 Z3M(3)-.7 cos Θ(π p) <M<.97 ZM(3)-.7 cos Θ(ππ) <M<

84 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 84 γp pπ π (MAMI) Differential cross sections S = 3/ and S = /. σ [µb] σ tot (3/) σ tot (/) M(πγ) [GeV]

85 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 8 M3 M M(3)-.8 (p η).7<m< γp pηπ (CB-ELSA) Differential cross sections for W=7 and 8 MeV data. M3 M(3)-.8 (p π).7<m<.9 M M M(3)-.8 ( π η).7<m<.9 M3 M M(3)-. (p η).9<m<. M3 M(3)-. (p π).9<m<. M M M(3)-. ( π η).9<m< Z M(3)-.8 cos Θ(π).7<M< Z M(3)-.8 cos Θ(η).7<M< Z3 M(3)-.8 cos Θ(p).7<M< Z M(3)-. cos Θ(π).9<M<. 4 Z M(3)-. cos Θ(η).9<M<. 8 6 Z3 M(3)-. cos Θ(p).9<M< Z3 cos M(3)-.8 Θ(η p).7<m<.9 9 Z3 cos M(3)-.8 Θ(pπ).7<M<.9 9 Z cos M(3)-.8 Θ(πη).7<M<.9 Z3 cos M(3)-. Θ(η p).9<m<. Z3 cos M(3)-. Θ(pπ).9<M<. 3 Z cos M(3)-. Θ(πη).9<M<

86 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 86 M3 M M(3)-. (p η).<m< γp pηπ (CB-ELSA) Differential cross sections for W=9 and MeV data. M3 M(3)-. (p π).<m<.3 M M M(3)-. ( π η).<m<.3 M3 M M(3)-.4 (p η).3<m<. M3 M(3)-.4 (p π).3<m< M M M(3)-.4 ( π η).3<m< Z M(3)-. cos Θ(π).<M< Z M(3)-. cos Θ(η).<M< Z3 M(3)-. cos Θ(p).<M< Z M(3)-.4 cos Θ(π).3<M< Z M(3)-.4 cos Θ(η).3<M< Z3 M(3)-.4 cos Θ(p).3<M< Z3 cos M(3)-. Θ(η p).<m<.3 Z3 cos M(3)-. Θ(pπ).<M<.3 Z cos M(3)-. Θ(πη).<M<.3 3 Z3 cos M(3)-.4 Θ(η p).3<m<. 8 Z3 cos M(3)-.4 Θ(pπ).3<M<. 3 Z cos M(3)-.4 Θ(πη).3<M<

87 Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 87 γp pηπ (CB-ELSA) Beam asymmetry data.

Bonn-Gatchina analysis of photoproduction data

Bonn-Gatchina analysis of photoproduction data atchina analysis of photoproduction data ECT workshop, Trento 3.6-4.7.4 Bonn-Gatchina analysis of photoproduction data A. Sarantsev Petersburg Nuclear Physics Institute HISKP, Bonn (Bonn University) PNPI,

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

Hadronic Tau Decays at BaBar

Hadronic Tau Decays at BaBar Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28 L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8 e p Integrated luminosity 96- + 3-7 (high energy)

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

K + Λ photoproduction in a dynamical coupled-channel approach

K + Λ photoproduction in a dynamical coupled-channel approach + Λ photoproduction in a dynamical coupled-channel approach Deborah Rönchen HISP, Bonn University In collaboration with M. Döring, U.-G. Meißner, J. Haidenbauer, H. Haberzettl,. akayama PWA/ATHOS5 July

Διαβάστε περισσότερα

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

The Θ + Photoproduction in a Regge Model

The Θ + Photoproduction in a Regge Model The Θ + Photoproduction in a Regge Model Herry Kwee College of illiam and Mary Cascade 5 Jefferson Lab December 3, 5 1 1. Introduction. Photoproduction γn Θ + K for spin-1/ Θ + γp Θ + K for spin-1/ Θ +

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

LIGHT UNFLAVORED MESONS (S = C = B = 0)

LIGHT UNFLAVORED MESONS (S = C = B = 0) LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Solar Neutrinos: Fluxes

Solar Neutrinos: Fluxes Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Light Hadrons and New Enhancements in J/ψ Decays at BESII

Light Hadrons and New Enhancements in J/ψ Decays at BESII Light Hadrons and New Enhancements in J/ψ Decays at BESII Guofa XU Representing BES Collaboration Institute of High Energy Physics Chinese Academy of Sciences Beijing, China xugf@ihep.ac.cn Outline Introduction

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Large β 0 corrections to the energy levels and wave function at N 3 LO

Large β 0 corrections to the energy levels and wave function at N 3 LO Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 653Ä664 ˆ Œ ˆ ˆ e + e K + K nπ (n =1, 2, 3) Š Œ ŠŒ -3 Š - ˆ Œ Š -2000 ƒ.. μéμ Î 1,2, μé ³ ±μ²² μ Í ŠŒ -3: A.. ß ±μ 1,2,. Œ. ʲÓÎ ±μ 1,2,.. ̳ ÉÏ 1,2,.. μ 1,.. ÏÉμ μ 1,.

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ Ó³ Ÿ. 2014.. 11, º 4(188).. 817Ä827 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ Ÿ.. ² ± Ì,. Œ. ŠÊ Íμ,.. μ ± Ö 1, Œ. ƒ. μ ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ò Ê²ÓÉ ÉÒ ³ ÒÌμ μ ÉÖ ²ÒÌ μ μ É μ μ ²Ê μ±μ - Ê Ê μ³ Ö

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Monolithic Crystal Filters (M.C.F.)

Monolithic Crystal Filters (M.C.F.) Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h PHOS π, ask PHOS π analysis, for production, R AA, and Flow analysis, Henrik Qvigstad henrik.qvigstad@fys.uio.no University of Oslo --5 PHOS π, ask ask he task we use, AliaskPiFlow was written prior, for

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Andreas Peters Regensburg Universtity

Andreas Peters Regensburg Universtity Pion-Nucleon Light-Cone Distribution Amplitudes Exclusive Reactions 007 May 1-4, 007, Jefferson Laboratory Newport News, Virginia, USA Andreas Peters Regensburg Universtity in collaboration with V.Braun,

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Unified dispersive approach to real and virtual photon-photon scattering into two pions

Unified dispersive approach to real and virtual photon-photon scattering into two pions Unified dispersive approach to real and virtual photon-photon scattering into two pions Bachir Moussallam Project started with Diogo Boito arxiv:1305.3143 Photon 2013 *** Paris, May 20-24 Introduction

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1

EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1 EPS-HEP 5 DOUBLE-SCTTERING MECHNISM OF PRODUCTION OF TWO MESONS IN ULTRPERIPHERL, ULTRRELTIISTIC HEY ION COLLISIONS ntoni Szczurek, Mariola Kłusek-Gawenda Institute of Nuclear Physics PN Kraków University

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications

Διαβάστε περισσότερα

NN scattering formulations without partial-wave decomposition

NN scattering formulations without partial-wave decomposition NN scattering formulations without partial-wave decomposition Departemen Fisika, Universitas Indonesia, Depok 644, Indonesia E-mail: imam.fachruddin@sci.ui.ac.id Agus Salam Departemen Fisika, Universitas

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα